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Abstract

A static approach is proposed to study secure composi-
tion of software.We extend theλ-calculuswith primitives
for invoking services that respect given security require-
ments. Security-critical code is enclosed in policy fram-
ings with a possibly nested, local scope. Policy framings
enforce safety and liveness properties of execution histo-
ries. The actual histories that can occur at runtime are
over-approximated by a type and effect system. These ap-
proximations are model-checked to verify policy framings
within their scopes. This allows for removing any run-
time execution monitor, and for selecting those services
that match the security requirements.

1. Introduction

Service-oriented computing (SOC) is emerging as
an evolutionary paradigm to design open-ended dis-
tributed applications [28, 27, 17]. In this paradigm, ap-
plications are built by assembling together independent
computational units, called services, distributed over
a network infrastructure. A service is a stand-alone
component available over the network through stan-
dard interaction mechanisms to meet interoperability
demands. An important, challenging aspect is that such
services are open, in that they are built with little or
no knowledge about their operating environment, their
clients, and other services. Composition of services may
require peculiar mechanisms, to handle complex inter-
action patterns (e.g. to implement transactions) while
enforcing non-functional requirements on the system
behaviour (e.g. security and service level agreement).
Web Services [1, 32, 36] built upon XML technologies
are possibly the most illustrative and well developed
example of the SOC paradigm.

So-called orchestration languages offer mechanisms
to coordinate the execution of services according to ex-
pressive interaction patterns. Indeed, XML-based tech-
nologies already provide a variety of mechanisms to de-

scribe, discover, invoke and coordinate the behaviour of
web services [15, 12, 3, 37]. There are also several stan-
dards for defining and enforcing non-functional require-
ments of services, e.g. WS-Security [4], WS-Trust [2]
and WS-Policy [13] among the others. The SOC sce-
nario is also interesting from a theoretical point of view.
For instance, web service authentication have been for-
mally modelled and analyzed in [9, 10] by exploiting
process calculi enriched with cryptographic primitives.

However, composing services in a secure manner is
still a major challenge, from both viewpoints of foun-
dational models and programming language design. In-
deed, services may be offered by different providers,
which only partially trust each other. On the one hand,
the provider has to guarantee a delivered service to re-
spect a given security policy, in any interaction with
the operational environment and regardless of who ac-
tually called the service. On the other hand, the client
may want to protect its sensible data from the service
invoked.

In this paper, we tackle the problem of modelling
composition of services in the presence of security con-
straints. In our proposal, a security policy is a prop-
erty over a statically determined abstraction of the be-
haviour of a service. We are interested in enforcing
safety and liveness properties, that have shown effec-
tive to reason about concurrent systems and security.
For example, history-based access control can be mod-
elled in terms of safety properties (e.g. as in [6, 31]),
while liveness properties can be exploited to formal-
ize denial-of-service and brute-force attacks of crypto-
graphic keys [19]. More generally, a suitable combina-
tion of safety and liveness properties can express con-
tract agreements in terms of an enforce and guarantee
paradigm.

After an example in Section 2, in Section 3 we in-
troduce a typed extension of the λ-calculus to describe
services as program expressions, and to compose them
under security constraints. Our calculus assumes a set
of primitive access events, that abstract from activi-
ties with possible security concerns. The security poli-



cies are regular properties of execution histories (i.e. se-
quences of access events) and have a possibly nested,
local scope. Given an expression e, a safety framing
ϕ[e] enforces the policy ϕ at each step of the execu-
tion of e. A liveness framing ψ〈e〉 prescribes that the
evaluation of e must eventually respect the policy ψ.
We shall exploit a static analysis technique to ensure
the desired behaviour, checking both kinds of proper-
ties at compile-time. Note that, while safety properties
can be enforced by an execution monitor, liveness prop-
erties cannot [29]. Also, liveness cannot be reduced to
safety in general. Indeed, here we cannot predict any
bound on the time a service needs to be completed,
hence e.g. bounded liveness – a safety property – is
inadequate. The consideration above further supports
the use of static techniques.

Our static analysis over-approximates program be-
haviour through history expressions. These represent
sequences of access events together with the scope of
safety and liveness framings. A history expression is
valid when all the histories it denotes respect the secu-
rity policies – according to the scopes and the intended
semantics of safety and liveness framings.

We model services as expressions with a functional

type τ
H
−→ τ ′. Intuitively, when supplied with an argu-

ment of type τ , the service evaluates to a value of type
τ ′, and it generates a history belonging to the stati-
cally inferred history expression H .

A service invocation is modelled by an expression

req τ
ϕ[ ],ψ〈〉
−−−−→ τ ′. It means that we are looking for a ser-

vice of type τ
H
−→ τ ′, where H satisfies both the safety

framing enforcing ϕ and the liveness framing guaran-
teeing ψ. Intuitively, the liveness framing ψ〈〉 can be
seen as the duties the invoked service must fulfill. In-
stead, the safety framing ϕ[ ] says how the caller pro-
tects itself from the service.

We assume that a typed service e : τ
H
−→ τ ′ is pub-

lished in a trusted repository, which collects the type, in
particular guaranteeing that H represents all the pos-
sible behaviour of e.

Our second technical contribution is the definition
in Section 4 of a type and effect system [20, 26, 33] that
extracts from a well-typed program a sound approxi-
mation of its possible runtime histories, represented by
a history expression. Remarkably enough, we exploit
the information about types and effects in order to de-
tect and select those services only, that match the secu-
rity constraints required by the service invocation. In
this way we model the fulfillment of a contract agree-
ment. Our type and effect system enjoys the follow-
ing type safety property: if the history expression of
a program is valid, then there will be no runtime er-

rors. Also, only the services that respect the security
properties required will be chosen. Therefore, execu-
tion monitoring is needed no longer.

Our third contribution is in Section 5, where we de-
velop a static technique to verify validity of history ex-
pressions. This is done by model checking Basic Pro-
cess Algebras (BPAs) with Büchi automata. A history
expressions is rendered as a BPA, while an automa-
ton models the security properties subject to the scope
of safety and liveness framings. Because of the possible
nesting of framings, validity of history expressions is a
non-regular property, so standard model checking tech-
niques cannot be directly applied. Nevertheless, we ex-
tend the proposal in [6], which only considered safety
framings and no service requests. Actually, we trans-
form history expressions so to make model checking
feasible through specially-tailored Büchi automata.

Summing up, a user can invoke services and put
over them constraints that enforce and guarantee se-
curity. Our type and effect system predicts the actual
behaviour of programs, including the security fram-
ings they must respect. Validity of behaviour is model-
checked over BPAs and Büchi automata. If the effect
of a program e is proved valid, then e can be executed
with no runtime monitoring and it will never go wrong.

2. A motivating example

To illustrate our approach, consider a simple certifi-
cation service c that wants to attest a contract between
two external parties, while enforcing its own privacy
policy. Since specifying a privacy policy can be diffi-
cult and error-prone, this task is delegated to a trusted
policy provider.

To assert its willing to provide its clients with a
signed and non-repudiable copy of the contract, the cer-
tification service encloses its code into a liveness fram-
ing ψ〈· · ·〉. The property ψ states that eventually there
will be a signature (modelled by an event αsgn) with
no subsequent revocation (represented by αrvk).

Formally, our policy providers are characterized by
a distinguished event αp. They return a safety policy
ϕ, in the form of a closure λx. ϕ[x], since policies are
not first class objects in our model. The policy ϕ has
to be enforced in the subsequent execution of c, i.e.
(λx. ϕ[x])e will evolve to ϕ[e]. This paradigm can be
seen as a form of dynamic sandboxing.

The certification service requests a policy provider
through the expression:

req τ
ϕ1[ ],ψ1〈〉
−−−−−−→ τ ′

where the policy ψ1 requires that eventually αp occurs,
while ϕ1 says that the service cannot visit untrusted
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sites, modelled by the event αu. The types τ and τ ′ are
immaterial in this example.

The leftmost part in the diagram below highlights
the evolution of the certification service. The rightmost
part shows the two policy providers p1 and p2 available.
The arrows represent the service invocation and the de-
livered safety policy.

(ε+ αu) · αp

αp

ϕ

ϕ1[ ], ψ1〈〉

p1

p2

ψ〈req〉

...

...

ψ〈e〉

ψ〈ϕ[e′]〉

The service p1 exposes a history expression αp, to
mean that p1 will generate exactly the event αp and no
other security-relevant operation will be performed. So
p1 can be chosen, because αp satisfies both ϕ1 and ψ1.
The service p2 possibly connects to an untrusted site
(thus generating the event αu), and then provides the
client with a privacy policy. This behaviour is mod-
elled by the history expression (ε + αu) · αp, where ε
stands for the empty history, · for concatenation of his-
tories, and + for non-deterministic choice. Thus, p2 can
generate the histories αp and αuαp. The second history
does not respect the safety constraint ϕ1, so p2 will be
rejected by our static machinery.

The safety policy delivered by p1 states that con-
necting to the network (αc) is prevented after a read
(αr) of local data.

The next diagram depicts the invocation of the ex-
ternal parties. The required guarantee is expressed by
the liveness property ψ2, saying that the certification
service will eventually receive back a signed contract.
There are three such parties. The service s1 first reads
the contract file (αr) and then signs it; the service s2
behaves as s1 after connecting to the network (αc); the
last service s3 is a loop of either action of revoking or
signing (recursion is written through the µ operator).

αr · αsgn

µh. (αrvk + αsgn) · h

ψ2〈〉

s1

s2

s3

αc · αr · αsgn
ψ〈ϕ[req]〉

ψ〈αc〉

...

...

ψ〈ϕ[e′]〉

Both history expressions αrαsgn and αcαrαsgn
clearly satisfy the requested agreement ψ2, while the
history expression of s3 does not, because the infi-
nite history (αrvk)

ω is possible. Then, the service
request can be non-deterministically solved by com-
posing the certification service with either s1 or s2.
After completion of the service, the safety fram-
ing ϕ[· · · ] is left, so the certification service can now
connect to the network. The resulting global his-
tory expression is obtained by composition:

H = ψ〈αp · ϕ[αr · αsgn + αc · αr · αsgn] · αc〉

Now we can model-check H , that turns out to be valid.
Indeed, both histories αpαrαsgnαc and αpαcαrαsgnαc
do satisfy the properties ψ and ϕ within the scopes lo-
calized by the framings (the last αc is permitted, be-
cause outside of the scope of ϕ). At this point the ser-
vice composition can be executed without resorting to
any execution monitor.

Assume now to have a fourth service s4 with his-
tory expression αr ·αsgn · (ε+αc). Also s4 satisfies the
request agreement ψ2, but the composed global his-
tory expression is no longer valid. Indeed, the history
αpαrαsgnαcαc violates security, because the leftmost
αc in inside the privacy policy ϕ. A further refinement
of our machinery will allow us to efficiently discard ser-
vices like s4; note that a trivial static way consists in
checking all possible compositions of services.

3. Programming model

To study secure service composition in a pure frame-
work, we consider an explicitly typed, call-by-value
λ-calculus enriched with security policies and service
requests. An access event α ∈ Σ abstracts from a
security critical operation (e.g. writing a file, open-
ing a socket connection). A (plain) history η is a se-
quence of access events. A security policy ϕ ∈ Π is a
regular property of histories. A safety framing ϕ[e] en-
forces the policy ϕ at each step of the evaluation of e.
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A liveness framing ψ〈e〉 requires that the policy ψ will
be eventually satisfied while evaluating e. A service re-
quest takes the form:

req ` τ
ϕ[ ],ψ〈〉
−−−−→ τ ′

Operationally, this results in searching a finite global

service environment Λ = {ei : τi
Hi−−→ τ ′i} for a ser-

vice with a functional type τ
H
−→ τ ′, such that the ef-

fect H respects the safety framing ϕ[· · · ] and the live-
ness framing ψ〈· · ·〉. The label ` will be exploited by
our static analysis to optimize the service lookup mech-
anism (see Section 4).

3.1. Syntax

The syntax of our calculus follows. We omit the def-
inition of policies ϕ, ψ and of guards b, as they are not
relevant for the subsequent technical development. To
enhance readability, our calculus comprises conditional
expressions and named abstractions (the variable z in
e′ = λzx :τ. e stands for e′ itself within e).

Expressions

e ::=
x variable
α access event
if b then e else e conditional
λzx :τ. e abstraction
e e application
ϕ[e] safety framing
ψ〈e〉 liveness framing
req ` τ

ϕ[ ],ψ〈〉
−−−−→ τ ′ service request

The values v of our calculus are the variables and
the abstractions. We write ∗ for a fixed, closed, event-
free value, and λ. e for λx. e, for x not free in e. The
following abbreviation is standard: e; e′ = (λ. e′) e.

3.2. Operational semantics

We define the behaviour of expressions through the
following small-step operational semantics. The config-
urations are pairs η, e where the history η is a sequence
of access events. A transition η, e → η′, e′ means that,
starting from a history η, the expression e may evolve
to e′, possibly extending the history to η′. An expres-
sion is initially evaluated starting from the empty his-
tory ε. We write η |= ϕ when the history η obeys the
policy ϕ. We assume as given a total function B that
evaluates the guards in conditionals.

Reduction rules

η, e1 → η′, e′1

η, e1e2 → η′, e′1e2

η, e2 → η′, e′2

η, ve2 → η′, ve′2

η, (λzx :τ. e)v → η, e{v/x, λzx :τ. e/z}

η, if b then etrue else efalse → η, eB(b)

η, α→ ηα, ∗

e : τ
H
−→ τ ′ ∈ Λ ϕ[H ], ψ〈H〉 valid

η, req τ
ϕ[ ],ψ〈〉
−−−−→ τ ′ → η, e

η, e→ η′, e′ η, η′ |= ϕ

η, ϕ[e] → η′, ϕ[e′]

η |= ϕ

η, ϕ[v] → η, v

η, e→ η′, e′ η 6|= ψ

η, ψ〈e〉 → η′, ψ〈e′〉

η |= ψ

η, ψ〈e〉 → η, e

The first two rules implement call-by-value evalua-
tion; as usual, functions are not reduced within their
bodies. The third rule implements β-reduction. Notice
that the whole function body λzx : τ. e replaces the
self variable z after the substitution, so giving an ex-
plicit copy-rule semantics to recursive functions. A con-
ditional if b then e else e′ evaluates to e (resp. e′) if b
evaluates to true (resp. false).

The evaluation of an event α consists in appending
α to the current history, and producing the value ∗,
that stands for a no-operation.

To evaluate a safety framing ϕ[e], we must consider
two cases. If, starting from the current history η, e may
evolve to e′ and extend the history to η′, then the whole
framing ϕ[e] may evolve to ϕ[e′], provided that both η
and η′ satisfy ϕ. Otherwise, if e is a value and the cur-
rent history satisfies ϕ, then the framing is discarded.
In both cases, as soon as a history is found not to re-
spect ϕ, the evaluation gets stuck, to model a security
exception. For simplicity, we do not model here excep-
tions and exception handling, but extending our lan-
guage in this direction is straightforward.

A liveness framing ϕ〈e〉 is evaluated as follows. The
expression e evolves within the framing until the prop-
erty ϕ is not satisfied. Of course, if e cannot be further
reduced, the execution gets stuck. As soon as the cur-
rent history obeys ϕ, the framing is discarded. Note
that we cannot operationally guarantee that ϕ will
eventually hold: indeed, this is a liveness property, so
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it cannot be enforced by execution monitoring alone.
Therefore, we delegate our static analysis for discover-
ing whether a liveness framing will be eventually dis-
carded or not.

The rule for service invocation non-deterministically
chooses from Λ a service that respects the types and
the required safety and liveness properties, if any. Note
that this rule takes advantage of the verification tech-
nique in Section 5 to decide about the validity of the
history expressions ϕ[H ] and ψ〈H〉.

3.3. History expressions

To statically predict the histories generated by pro-
grams at runtime, as well as the scopes of policies,
we introduce history expressions with the following ab-
stract syntax. History expressions are much alike regu-
lar expressions, and include the empty history ε, access
events α, sequencing H · H ′, non-deterministic choice
H +H ′, safety and liveness framings ϕ[H ] and ϕ〈H〉,
and recursion µh.H (µ binds the occurrences of the
variable h in H). Free variables fv and closed expres-
sions are defined as expected. We assume that the op-
erator · has precedence over +.

History Expressions

H ::= ε | h | α | H ·H | H +H | ϕ[H ] | ϕ〈H〉 | µh.H

To define the semantics of history expressions, we
enrich histories with a family ΣΠ of special framing
events, parametrized by policies in Π. The events [ϕ
and ]ϕ denote the opening and closing of a safety
framing ϕ[· · · ], while 〈ϕ and 〉ϕ play the same role
for liveness framings. Formally, a history η is a (possi-
bly infinite) sequence (β1, β2, . . .) where βi ∈ Σ ∪ ΣΠ,
ΣΠ = { [ϕ, ]ϕ, 〈ϕ, 〉ϕ | ϕ ∈ Π }, and Σ ∩ ΣΠ = ∅. Note
that, if η is infinite, then ηη′ = η, for each η′.

For example, a history α[ϕα
′]ϕ represents a com-

putation that (i) generates an event α, (ii) enters the
scope of a safety framing ϕ[· · · ], (iii) generates α′

within the scope of ϕ, and (iv) leaves the scope of ϕ.
Note that plain histories (with events in Σ only) are
enough to give the operational semantics of our cal-
culus, because the role of framing events is played by
framed expressions.

We say that a history η is balanced when η = ε,
or η is either [ϕη

′ ]ϕ or 〈ϕη′〉ϕ and η′ is balanced, or
η = η′η′′, and and both η′ and η′′ are balanced. For
example, α[ϕα

′[ϕ′α′′]ϕ′ ]ϕ and 〈ϕαω = 〈ϕαω〉ϕ are bal-
anced, while α[ϕα

′[ϕ′α′′]ϕ is not. Let H range over sets
of balanced histories. We define HH′ as the set of histo-

ries { ηη′ | η ∈ H, η′ ∈ H′ }, ϕ[H] as { [ϕη ]ϕ | η ∈ H},
and ϕ〈H〉 as the set { 〈ϕη〉ϕ | η ∈ H}.

The denotational semantics of history expressions
is defined over the complete lattice (2(Σ∪ΣΠ)∗ ,⊆). The
environment ρ used below maps variables to sets of
(finite) histories. We stipulate that concatenation and
union of sets of histories are defined only if both their
operands are defined. Hereafter, we feel free to omit
curly braces, when unambiguous.

Semantics of history expressions

JεKρ = ε JαKρ = α JhKρ = ρ(h)

JH ·H ′Kρ = JHKρ JH ′Kρ JH +H ′Kρ = JHKρ ∪ JH ′Kρ

Jϕ[H ]Kρ = ϕ[JHKρ] Jϕ〈H〉Kρ = ϕ〈JHKρ〉

Jµh.HKρ =
⋃

n∈ω f
n(∅) where f(X) = JHKρ{X/h}

For example, consider H = µh. α + h · h + ϕ[h].
The semantics of H consists of all the histories hav-
ing an arbitrary number of occurrences of α, and ar-
bitrarily nested, balanced safety framings of ϕ. For in-
stance, αϕ[α], ϕ[α]ϕ[αϕ[α]] ∈ JHK∅.

3.4. Validity

We now define when a history is valid. Intuitively,
valid histories represent viable computations. Instead,
invalid ones happen to violate some security constraint,
so they are going to be identified and rejected by
our static analysis. For example, consider the history
η0 = αcαrϕ[αc], where ϕ requires that no αc occurs af-
ter αr (see Section 2). Then, η0 is not valid according to
our intended meaning, because the rightmost αc occurs
within a safety framing enforcing ϕ, and αcαrαc does
not obey ϕ. Consider now the history η1 = αψ〈α〉αsgn,
where ψ requires that eventually αsgn. Then, η1 is not
valid, because the event αsgn occurs after the liveness
framing has been closed.

Note that our notion of validity ensures that, at
each step of execution, the policies enforced by safety
and liveness framings can always inspect the whole his-
tory generated so far. This is motivated by our basic
assumption that no event can be hidden. For exam-
ple, a history α1ϕ[α2]α3 is valid when α1 |= ϕ and
α1α2 |= ϕ (even if α1 is outside of the safety framing),
while α1α2α3 is not required to satisfy ϕ any longer.

To give a formal definition of validity, it is conve-
nient to introduce the notion of safe and live sets (S-
and L-sets for short). For example, the history η0 above
has one S-set ϕ[{αcαr, αcαrαc}]. Intuitively, this means
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that the scope of the framing ϕ[· · · ] encloses the histo-
ries αcαr and αcαrαc. For each S-set of the form ϕ[H],
validity requires that all the histories in H obey ϕ.

Formally, let η = β1β2 · · · be a history. Let η[ be
the plain history obtained from η by erasing all the
framing events. Let ηπ be the set of all the finite pre-
fixes of η, including the empty history ε. For example,
(η [0 )π = (αcαrαc)

π = {ε, αc, αcαr, αcαrαc}.
To have a short, inductive definition of the S-sets

S(η) and the L-sets L(η) of η, it is convenient to ma-
nipulate η in order to balance all the safety framings at
finite depth, i.e. [ϕα becomes [ϕα]ϕ = ϕ[α], and all the
framings at the infinity, i.e. [ϕ〈ψα

ω becomes ϕ[ψ〈αω〉].

S(ε) = ∅
S(η α) = S(η 〈ϕ) = S(η 〉ϕ) = S(η)

S(η0 ϕ[η1]) = S(η0 η1) ∪ ϕ[η[0 (η[1)
π]

L(ε) = ∅
L(η α) = L(η 〈ϕ) = L(η [ϕ) = L(η ]ϕ) = L(η)

L(η0 ϕ〈η1〉) = L(η0 η1) ∪ ϕ〈η
[
0 (η[1)

π〉

where η0 is finite. We say that a history η is valid when:

ϕ[H] ∈ S(η) =⇒ ∀η′ ∈ H. η′ |= ϕ

ϕ〈H〉 ∈ L(η) =⇒ ∃η′ ∈ H. η′ |= ϕ

A history expression H is valid when all the histories
in JHK are such. As a first example, we have that:

L(η1) = L(αψ〈α〉αsgn)

= L(αψ〈α〉) = L(αα) ∪ ψ〈α[(α[)π〉
= ∅ ∪ ψ〈α{ε, α}〉 = ψ〈{α, αα}〉

Since neither α |= ψ nor αα |= ψ, then η1 is not valid.
As a more involved example, consider the history:

η = 〈ψ[ϕα1]ϕ〈ψα2〉ψα3[ϕα4[ϕα5

Let η|i be the prefix of η[ containing exactly i events.
Then, after rewriting η as η]ϕ]ϕ to balance the safety
framings, we have:

S(η) = { ϕ[{ε, α1}], ϕ[{η|3, η|4, η|5}], ϕ[{η|4, η|5}] }
L(η) = { ψ〈{α1, α1α2}〉 }

Finally, consider, the infinite history η′ = 〈ϕαω,
where ϕ requires that eventually α′. The history η′ is
not valid, because it has an L-set ϕ〈(αω)π〉 = ϕ〈α∗〉
(note that we have balanced the liveness framing at
the infinity) but no history in α∗ obeys ϕ.

4. Type and effect system

We now introduce a type and effect system for our
calculus, building upon [6, 31]. Types and type environ-
ments, ranged over by τ and Γ, are mostly standard,

and are defined in the following table. The history ex-

pression H in the functional type τ
H
−→ τ ′ describes the

latent effect associated with an abstraction, i.e. one of
the histories in JHK is generated when a value is ap-
plied to an abstraction with that type.

Types and Type Environments

τ ::= unit | τ
H
−→ τ Γ ::= ∅ | Γ;x : τ (x 6∈ dom(Γ))

A typing judgment Γ, H, I ` e : τ means that the
expression e evaluates to a value of type τ , and pro-
duces a history belonging to the effect H . The compo-
nent I is a mapping from labels ` to sets of indexes I`,
that will be exploited in matching each service invo-
cation req` with a set of services that respect the re-
quired security properties.

Typing relation

Γ, ε ` x : Γ(x) Γ, α ` α : unit Γ, ε ` ∗ : unit

Γ;x : τ ; z : τ
H
−→ τ ′, H ` e : τ ′

Γ, ε ` λzx : τ.e : τ
H
−→ τ ′

Γ, H ` e : τ
H′′

−−→ τ ′ Γ, H ′ ` e′ : τ

Γ, H ·H ′ ·H ′′ ` e e′ : τ ′

Γ, H ` e : τ

Γ, ϕ[H ] ` ϕ[e] : τ

Γ, H ` e : τ

Γ, ϕ〈H〉 ` ϕ〈e〉 : τ

I` = { i | ei : τ
Hi−−→ τ ′ ∈ Λ ∧ ϕ[ψ〈Hi〉] valid }

Γ, ε, I` ` req ` τ
ϕ[ ],ψ〈〉
−−−−→ τ ′ : τ

Σi∈I`Hi−−−−−→ τ ′

Γ, H ` e : τ Γ, H ` e′ : τ

Γ, H ` if b then e else e′ : τ

Γ, H ` e : τ

Γ, H +H ′ ` e : τ

The relation Γ, H, I ` e : τ is defined as the least
relation closed under the rules above; we have omitted
the component I when unneeded.

Typing judgments are similar to those of the simply-
typed λ-calculus. The effects in the rule for application
are concatenated according to the evaluation order of
the call-by-value semantics. The rule for abstraction
constraints the premise to equate the effect and the la-
tent effect of functional type. The rule for a service
invocation req` constructs an index set I` that picks
from Λ exactly those services whose history expression
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H makes valid both ϕ[H ] and ψ〈H〉. The last rule al-
lows for weakening of effects.

As an example, consider the following expression:

e = if b then λzx :unit. α else λzx :unit. α′

Let τ = unit, and Γ = {z : τ
α+α′

−−−→ τ ;x : τ}. Then, the
following typing derivation is possible:

Γ, α ` α : τ

Γ, α+ α′ ` α : τ

∅, ε ` λzx :τ. α : τ
α+α′

−−−→ τ

Γ, α′ ` α′ : τ

Γ, α′ + α ` α′ : τ

∅, ε ` λzx :τ. α′ : τ
α′+α
−−−→ τ

∅, ε ` if b then λzx :τ. α else λzx :τ. α′ : τ
α+α′

−−−→ τ

Note that we can equate the history expressions α+α′

and α′ +α, because they have the same semantics. The
typing derivation above shows the use of the weakening
rule to unify the latent effects on arrow types.

Consider now the following expression:

e′ = λwx. if b
′
then ∗ elsew(e x)

Let Γ = {w : τ
H
−→ τ, x : τ}, where H is left undefined.

Then, recalling that ε ·H ′ = H ′ = H ′ ·ε for any history
expression H ′, we have:

Γ, ε ` w : τ
H
−→ τ

Γ, ε ` e : τ
α+α′

−−−→ τ Γ, ε ` x : τ

Γ, α+ α′ ` e x : τ

Γ, (α+ α′) ·H ` w(e x) : τ

The typing derivation proceeds as follows:

Γ, ε ` ∗ : τ

Γ, (α+ α′) ·H ` w(e x) : τ

Γ, ϕ[(α+ α′) ·H ] ` ϕ[w(e x)] : τ

Γ, ε+ ϕ[(α + α′) ·H ] ` if b′ then ∗ elseϕ[w(e x)] : τ

To apply the typing rule for abstractions, the con-
straint H = ε + ϕ[(α + α′) · H ] must be solved. Let
H = µh. ε+ ϕ[(α+ α′) · h]. It is easy to prove that:

JHK = Jε+ ϕ[(α+ α′) · h]K
{JHK/h}

= {ε} ∪ ϕ[(α+ α′) · JHK]

We have then found a solution to the constraint above,
so we can conclude that:

∅, ε ` e′ : τ
µh. ε+ϕ[(α+α′)·h]
−−−−−−−−−−−−→ τ

Note in passing that a simple extension of the type in-
ference algorithm of [31] suffices for solving constraints
as the one above.

The next theorem states that our type and effect sys-
tem over-approximates the actual runtime histories. As

usual, precision is lost when reducing the if-then-else
construct to non-determinism, and when dealing with
recursive functions (see the examples above). Addition-
ally, we over-approximate the set of services satisfying
the calling requirements.

Theorem 1. If Γ, H, I ` e : τ and ε, e →∗ η, e′, then

η ∈ (JHK
[
)π.

To state the type safety property, it is convenient to
introduce an alternative operational semantics for our
calculus. This new semantics, with transition relation
e � e′, discards the history component from configu-
rations, and removes all the safety and liveness fram-
ings as soon as they are opened. A new reduction rule
is provided for service invocation. It exploits the in-
dex sets I` computed by our type and effect system to
choose a service that match the security requirements:

e ∈ { ei ∈ Λ | i ∈ I` }

req ` τ
ϕ[ ],ψ〈〉
−−−−→ τ ′ � e

Unlike →, the transition relation � is subject to no ex-
ecution monitor (indeed, it does not even track the his-
tory η). Also, resolving service invocations involves no
validity checks in �. The following type safety result
states that a well-typed expression with a valid effect
can be evaluated with �, and will never go wrong.

Theorem 2 (Type Safety). Let Γ, H, I ` e : τ , with
e closed, H valid, and I` 6= ∅ for each label ` in e.
Then, each computation of e in → can be replayed
in �, and vice versa.

5. Verifying validity

We now extend the procedure in [6] to verify the va-
lidity of history expressions. Our technique is based on
model checking Basic Process Algebras (BPAs) with
Büchi automata. The standard decision procedure for
verifying that a BPA process p satisfies a ω-regular
property ϕ amounts to constructing the pushdown au-
tomaton for p and the Büchi automaton for the nega-
tion of ϕ. Then, the property holds if the (context-free)
language accepted by the conjunction of the above,
which is still a pushdown automaton, is empty. This
problem is known to be decidable, and several algo-
rithms and tools show this approach feasible [18].

Recall that our notion of validity is non-regular,
because of the arbitrary nesting of framings. As an
example, consider again the history expression H =
µh. α + h · h+ ϕ[h]. The language JHK is context-free
and non-regular, because it contains unbounded pairs
of balanced [ϕ and ]ϕ. Since context-free languages are
not closed under intersection, the emptiness problem is
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undecidable. To apply the procedure sketched above,
we then need to manipulate history expressions in or-
der to make validity a regular property.

As a matter of fact, it turns out that it is possible to
regularize the safety side of validity, by removing the
redundant safety framings. For the liveness side, this
approach seems not feasible, but, surprisingly enough,
a tailored construction of Büchi automata suffices.

5.1. Redundant framings

History expressions can generate histories with
redundant framings, i.e. nesting of the same fram-
ing. For example, the history η = ϕ[αϕ′[ϕ[α′]]] has
an inner redundant safety framing ϕ around α′.
Since α′ is already under the scope of the outer-
most ϕ-framing, it happens that η is valid if and only
if ϕ[αϕ′[α′]] is valid. Formally, the L-sets of η com-
prise ϕ[{α, αα′}] for the outer framing, and ϕ[{αα′}]
for the inner one. Validity requires that all the his-
tories in {α, αα′} and {αα′} obey ϕ. Since the sec-
ond set is strictly included in the first one, it turns out
that the inner safety framing is redundant.

Similarly, consider the history η′ = αψ〈α′ψ〈α′′〉〉.
The L-sets of η′ are ψ[{α, αα′, αα′α′′}] for the outer
framing and ψ[{αα′, αα′α′′}] for the inner one. Since
the first set includes the second one, and validity re-
quires that there exists a history in the L-set satisfying
ψ, then the outer framing is redundant.

Removing redundant framings from a history pre-
serves its validity. But one needs the expressive power
of a pushdown automaton, because framings openings
and closings are to be matched in pairs. For example,
consider the following history:

η = α

n
︷ ︸︸ ︷

[ϕ · · · [ϕ

m
︷ ︸︸ ︷

]ϕ · · · ]ϕ [ϕ

The last [ϕ is redundant if n > m, and is not if n = m.

5.2. Regularization of safety framings

Below, we define a transformation that, given a his-
tory expression H , yields an H ′ that does not gener-
ate redundant safety framings, and H ′ is valid if and
only if H is such.

Let h∗ ∈ fv(H) be a selected occurrence of h in H .
We say that h∗ is guarded by guard(h∗, H), defined as
the smallest set satisfying the following equations.

Guards

guard(h∗, h) = ∅
guard(h∗, H0 ·H1) = guard(h∗, Hi) if h∗ ∈ Hi

guard(h∗, H0 +H1) = guard(h∗, Hi) if h∗ ∈ Hi

guard(h∗, ϕ[H ]) = {ϕ} ∪ guard(h∗, H)

guard(h∗, ϕ〈H〉) = guard(h∗, H)

guard(h∗, µh′. H ′) = guard(h∗, H ′) if h′ 6= h

For example, in µh. ϕ[α ·h ·ϕ′[h]] ·h, the first occur-
rence of h is guarded by {ϕ}, the second one is guarded
by {ϕ, ϕ′}, and the third one is unguarded.

Let H be a (possibly non-closed) history expression.
Without loss of generality, assume that all the variables
in H have distinct names. We define below H ↓Φ,Ω, the
expression produced by the regularization of H against
a set of policies Φ and a mapping Ω from variables to
history expressions.

Regularization of safety framings

ε↓Φ,Ω = ε h↓Φ,Ω = h α↓Φ,Ω = α

(H ·H ′)↓Φ,Ω = H ↓Φ,Ω · H ′ ↓Φ,Ω

(H +H ′)↓Φ,Ω = H ↓Φ,Ω + H ′ ↓Φ,Ω

ϕ[H ]↓Φ,Ω =

{

H ↓Φ,Ω if ϕ ∈ Φ

ϕ[H ↓Φ∪{ϕ},Ω] otherwise

ϕ〈H〉↓Φ,Ω =

{

H ↓Φ,Ω if ϕ ∈ Φ

ϕ〈H ↓Φ,Ω〉 otherwise

(µh.H)↓Φ,Ω = µh. (H ′σ′ ↓Φ,Ω{(µh.H)Ω/h} σ)

where H = H ′{h/hi}i, hi fresh, h 6∈ fv(H ′), and

σ(hi) = (µh.H)Ω↓Φ∪guard(hi,H′),Ω

σ′(hi) =

{

h if guard(hi, H
′) ⊆ Φ

hi otherwise

Intuitively, H↓Φ,Ω results from H by eliminating all
the redundant safety framings, and all the framings in
Φ. The environment Ω is needed to deal with free vari-
ables in the case of nested µ-expressions (see [5] for de-
tails and an example). We sometimes omit to write the
component Ω when unneeded, and, when H is closed,
we abbreviate H ↓∅,∅ with H ↓.
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The last three regularization rules would benefit
from some explanation. Consider first a history expres-
sion of the form ϕ[H ] to be regularized against a set of
policies Φ. To eliminate the redundant safety framings,
we must ensure that H has neither ϕ-framings, nor re-
dundant safety framings itself. This is accomplished by
regularizing H against Φ ∪ {ϕ}.

A history expression ϕ〈H〉 is dealt with by remov-
ing the liveness framing if ϕ ∈ Φ (because there is an
outer safety framing enforcing ϕ), otherwise the fram-
ing remains. Note that we could end up with redun-
dant liveness framings, but they will not prevent us
from verifying validity of history expressions.

Consider a history expression of the form µh.H . Its
regularization against Φ and Ω proceeds as follows.
Each free occurrence of h in H guarded by some Φ′ 6⊆ Φ
is unfolded and regularized against Φ∪Φ′. The substi-
tution Ω is used to bind the free variables to closed
history expressions. Technically, the i-th free occur-
rence of h in H is picked up by the substitution {h/hi},
for hi fresh. Note also that σ(hi) is computed only if
σ′(hi) = hi. As a matter of fact, regularization is a to-
tal function, and its definition can be easily turned into
a terminating rewriting system.

As an example, consider the history expressionH0 =
µh.H , where H = α+h·h+ϕ[h]. Then, H can be writ-
ten as H ′{h/hi}i∈0..2, where H ′ = α+ h0 · h1 + ϕ[h2].
Since guard(h2, H

′) = {ϕ} 6⊆ ∅:

H0 ↓∅ = µh.H ′{h/h0, h/h1}↓∅ {H0 ↓ϕ /h2}
= µh. α+ h · h+ ϕ[H0 ↓ϕ]

To compute H0 ↓ϕ, note that no occurrence of h is
guarded by Φ 6⊆ {ϕ}. Then:

H0 ↓ϕ = µh. (α+h · h+ϕ[h])↓ϕ = µh. α+h ·h+h

Since JH0 ↓ϕK = {α}ω has no ϕ-framings, we have that
JH0 ↓K =

(
{α}ωϕ[{α}ω]

)ω
has no redundant framings.

We now establish the following basic properties of
regularization.

Theorem 3. For any history expression H :

(a) H ↓ has no redundant safety framings.

(b) H ↓ is valid if and only if H is valid

5.3. Basic Process Algebras

Basic Process Algebras [7] provide a natural char-
acterization of (possibly infinite) histories. A BPA pro-
cess is given by the following abstract syntax:

p ::= ε | α | p · p′ | p+ p′ | X

where ε denotes the terminated process, α ∈ Σ, X is
a variable, · denotes sequential composition, + repre-
sents (nondeterministic) choice.

A BPA process p is guarded if each variable occur-
rence in p occurs in a subexpression α · q of p. We as-

sume a finite set ∆ = {X
def
= p} of guarded definitions,

such that, for each variable X , there exists a single,

guarded p such that {X
def
= p} ∈ ∆. As usual, we con-

sider the process ε · p to be equivalent to p.

The operational semantics of BPAs is given by the
following labelled transition system, in the SOS style.
The set {(ai)i |p0

a1−→ · · ·
ai−→ pi }∪{(ai)i |p0 · · ·

ai−→ · · · }

is denoted by Jp0,∆K, where Jp,∆K
fin

is the first set,
containing the strings that label finite computations.
We omit the component ∆, when empty.

Operational Semantics of BPA processes

α
α
−→ ε

p
α
−→ p′

p+ q
α
−→ p′

q
α
−→ q′

p+ q
α
−→ q′

p
α
−→ p′

p · q
α
−→ p′ · q

p
α
−→ p′ X

def
= p ∈ ∆

X
α
−→ p′

We now introduce a mapping from history expres-
sions to BPAs, in the line of [6, 31]. Without loss of gen-
erality, we assume that all the variables in H have dis-
tinct names. The mapping takes as input a history ex-
pression H and an injective function Θ from history
variables h to BPA variables X , and it outputs a BPA
process p and a finite set of definitions ∆.

To avoid the problem of unguarded BPA processes,
we assume a standard preprocessing step, that inserts
a dummy event before each unguarded occurrence of
a variable in a history expression. Dummy events are
eventually discarded before the verification phase.

The rules that transform history expressions into
BPAs are rather standard. History events, variables,
concatenation and choice are mapped into the corre-
sponding BPA counterparts. A history expression µh.H
is mapped to a fresh BPA variable X , bound to the
translation of H in the set of definitions ∆. An expres-
sion ϕ[H ] is mapped to the BPA for H , surrounded by
the opening and closing of the ϕ-framing.
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Mapping history expressions to BPAs

BPA(ε,Θ) = (ε, ∅)
BPA(α,Θ) = (α, ∅)
BPA(h,Θ) = (Θ(h), ∅)

BPA(H0 ·H1,Θ) = (p0 · p1,∆0 ∪ ∆1),where

BPA(Hi,Θ) = (pi,∆i)

BPA(H0 +H1,Θ) = (p0 + p1,∆0 ∪ ∆1),where

BPA(Hi,Θ) = (pi,∆i)

BPA(ϕ[H ],Θ) = ([ϕ · p · ]ϕ,∆),where

BPA(H,Θ) = (p,∆)

BPA(ϕ〈H〉,Θ) = (〈ϕ · p · 〉ϕ,∆),where

BPA(H,Θ) = (p,∆)

BPA(µh.H,Θ) = (X,∆ ∪ {X
def
= p}),where

BPA(H,Θ{X/h}) = (p,∆)

We now state the correspondence between history
expressions and BPAs. The prefixes of the histories gen-
erated by a history expression H (i.e. JHK

π
) are all and

only the finite prefixes of the strings that label the com-
putations of BPA(H).

Lemma 4. JHK
π

= JBPA(H)K
fin

.

5.4. Büchi Automata

Büchi automata are finite state automata whose ac-
ceptance condition roughly says that a computation
is accepted if some final state is visited infinitely of-
ten; see [35] for details. Since we also need to estab-
lish the validity of finite histories, we use the standard
trick of padding a finite string with a special symbol $.
Then, each final state has a self-loop labelled with $.
For brevity, we will omit these transitions hereafter.

Given a policy ϕ, we are interested in defining a
formula ϕ[ ] and a formula ϕ〈〉 to be used in verify-
ing the validity of a history η. In the first case, we re-
quire that η has no redundant safety framings. Here-
after, let the formula ϕ be defined by the Büchi au-
tomaton Aϕ = (Σ, Q,Q0, ρ, F ), which we assume to
have a non-final sink state.

As an example, let ϕ be the policy saying that no
event αc can occur after an αr (see Section 2). The
Büchi automaton for ϕ is shown below.

q0

αrαc

q1

αr, αc
q2

αr αc

We define the formula ϕ[ ] through the Büchi au-
tomaton Aϕ[ ]

depicted below. For example, the history

[ϕαr]ϕαc is accepted by Aϕ[ ]
, while αr[ϕαc]ϕ is not (re-

call that we do not draw the self-loops labelled by $).

q1 q2

q′0 q′1

αrq0

[ϕ ]ϕ[ϕ ]ϕ

αr

αr

αrαc

αc

αc

αr, αc

Intuitively, the automaton Aϕ[ ]
is partitioned into

two layers. The first layer is a copy of Aϕ, where all
the states are final. This models the fact that we are
outside the scope of ϕ, i.e. the history leading to any
state in this layer has balanced safety framings of ϕ (or
none). The second layer is reachable from the first one
when opening a safety framing for ϕ, while closing the
framing gets back. The transitions in the second layer
are a copy of those connecting final states in Aϕ. Con-
sequently, the states in the second layer are exactly the
final states in Aϕ. Since Aϕ[ ]

is only concerned with the
verification of ϕ, the transitions for opening and clos-
ing safety framings ϕ′ 6= ϕ, as well as those for liveness
framings ϕ′′, are rendered as self-loops.

Büchi automaton for ϕ[ ]

Aϕ[ ]
= (Σ′, Q′, Q0, ρ

′, F ′)

Σ′ = Σ ∪ { [ϕ, ]ϕ, 〈ϕ, 〉ϕ | ϕ ∈ Π }
Q′ = F ′ = Q ∪ { q′ | q ∈ F }
ρ′ = ρ ∪ { (q, [ϕ, q

′) | q ∈ F } ∪ {(q′, ]ϕ, q)}
∪ { (q′0, α, q

′
1) | (q0, α, q1) ∈ ρ ∧ q1 ∈ F }

∪ { (q, [ϕ′ , q) ∪ (q, ]ϕ′ , q) | q ∈ Q′ ∧ ϕ′ 6= ϕ }
∪ { (q, 〈ϕ′′ , q) ∪ (q, 〉ϕ′′ , q) | q ∈ Q′ }

Likewise, we define the Büchi automaton Aϕ〈〉
, but

we now allow for redundant liveness framings.
As an example, let ϕ be the policy saying that αsgn

eventually occurs with no subsequent αrvk (see Sec-
tion 2). The Büchi automaton for ϕ is shown below.

q0 q1

αrvk αsgn

αsgn

αrvk
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The Büchi automaton for ϕ〈〉 is illustrated below.
For example, the history αrvk〈ϕαsgn is accepted by
Aϕ〈〉

, while 〈ϕαsgnαrvk〈ϕ is not.

q0 q1

αsgn

αrvk

αsgn

αrvk
〈ϕ

αrvk

〈ϕ, αsgn

〈ϕ, αsgn
αsgn

〉ϕ

〈ϕ

〉ϕαrvk 〈ϕ

αsgnαrvk

q′0 q′1

q′′1q′′0

〈ϕ, αrvk

The automaton Aϕ〈〉
consists of three layers. The

first layer is a copy of Aϕ, and it represents being out-
side of the liveness framing ϕ〈· · ·〉. The second and the
third layer model being inside the framing. If you are
in the second layer, then you have already found a his-
tory that satisfies the property ϕ, while if you are in the
third layer, you are still looking for. Suppose now that
a new framing ϕ〈· · ·〉 is opened when you are in the sec-
ond layer, so this is a redundant liveness framing. If you
were in a state that was final in Aϕ, then you remain in
the second layer; otherwise, you go to the correspond-
ing state in the third layer. If the redundant framing is
opened when you are in the third layer, then you stay
there. If a framing is closed when you are in the sec-
ond layer, then you can go back to the first layer, but if
you are in the third layer, then you get stuck. The au-
tomaton Aϕ〈〉

is defined in the following table.

Büchi automaton for ϕ〈〉

Aϕ〈〉
= (Σ′, Q′, Q0, ρ

′, F ′)

Σ′ = Σ ∪ { [ϕ, ]ϕ, 〈ϕ, 〉ϕ | ϕ ∈ Π }
Q′ = Q ∪ { q′, q′′ | q ∈ Q }
F ′ = { q′ | q ∈ Q }
ρ′ = ρ ∪ { (q, 〈ϕ, q

′) | q ∈ F } ∪ { (q, 〈ϕ, q
′′) | q 6∈ F }

∪ { (q′0, α, q
′
1) | (q0, α, q1) ∈ ρ }

∪ { (q′, 〈ϕ, q
′) | q ∈ F } ∪ { (q′, 〈ϕ, q

′′) | q 6∈ F }
∪ { (q′′0 , α, q

′
1) | (q0, α, q1) ∈ ρ ∧ q1 ∈ F }

∪ { (q′′0 , α, q
′′
1 ) | (q0, α, q1) ∈ ρ ∧ q1 6∈ F }

∪ {(q′, 〉ϕ, q)} ∪ {(q′′, 〈ϕ, q
′′)}

∪ { (q, 〈ϕ′ , q) ∪ (q, 〉ϕ′ , q) | q ∈ Q′ ∧ ϕ′ 6= ϕ }
∪ { (q, [ϕ′′ , q) ∪ (q, ]ϕ′′ , q) | q ∈ Q′ }

We now relate validity of histories with the formulae
ϕ[ ] and ψ〈〉 for the policies ϕ, ψ spanning over η.

Lemma 5. Let η be a history with no redundant safety
framings. Then, η is valid if and only if η |= ϕ[ ] and
η |= ψ〈〉 for all ϕ, ψ such that [ϕ, 〈ψ∈ η.

Büchi automata are closed under intersection [35].
Therefore, a valid history η is accepted by the intersec-
tion of the automata Aϕ[ ]

and Aψ〈〉
, for all ϕ, ψ in η.

The last result of our paper follows. Validity of a his-
tory expression H can be decided by showing that the
BPA generated by the regularization of H satisfies a
ω-regular formula. Together with Theorem 2, an ex-
pression in our calculus never violates security if its ef-
fect is checked valid. Thus we are dispensed from using
an execution monitor.

Theorem 6. A history expression H is valid iff:

JBPA(H ↓)K |=
∧

[ϕ∈H

ϕ[ ] ∧
∧

〈ψ∈H

ψ〈〉

6. Conclusions and related work

We have enriched the λ-calculus with primitives to
express service composition under security constraints.
The security requirements are safety and liveness prop-
erties over execution histories. These properties have a
local scope, possibly nested. The policies enforced by
the framing can always inspect the whole past history.
If of interest, we can easily limit the scope from the side
of the past. It suffices to mark in the history the point
in time βϕ from which checking a policy ϕ has to start.
The corresponding automaton discards all the events
before βϕ, and then behaves like the standard automa-
ton enforcing ϕ.

We have used a type and effect system to extract
from a given program a history expression, i.e. a safe
approximation of its runtime behaviour. A history ex-
pression is valid when it represents execution histo-
ries that never violate the security policies within their
scope. To verify the validity of history expression, we
have exploited model checking over Basic Process Alge-
bras and Büchi automata. However, nesting of scopes
makes validity non-regular, and has required us to
transform history expressions so that model checking
is feasible. When a history expression of a program e is
verified valid, then e will not go wrong, so we no run-
time monitoring is required. Note that our static anal-
ysis enables us to compose at compile-time those ser-
vices that match the imposed security constraints.

Besides our own work [6], that of Skalka and
Smith [31] is the closest to this paper. We share with
them the use of a type and effect system and that of
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model checking validity of effects. In [31], a static ap-
proach to history-based access control is proposed.
The λ-calculus is enriched with access events and lo-
cal checks on the past event history. Local checks make
validity a regular property, so regularization is un-
needed. The programming model and the type system
of [31] allow for access events parametrized by con-
stants, and for let-polymorphism. We have omitted
these features for simplicity, but they can be easily re-
covered by using the same techniques of [31].

The secure composition of components has been
the main concern underlying the design of Sewell and
Vitek’s box-π [30], an extension of the π-calculus that
allows for expressing safety policies in the form of secu-
rity wrappers. These are programs that encapsulate a
component to control the interactions with other (pos-
sibly untrusted) components. The calculus is equipped
with a type system that statically captures the al-
lowed causal information flows between components.
Our safety framings are closely related to wrappers,
but in [30] there is no analog of our liveness framings.

Gorla, Hennessy and Sassone [22] consider a calculus
for mobile agents which may migrate between sites in
a controlled manner. Each site has a membrane, repre-
senting both a security policy and a classification of ex-
ternal sites with respect to their levels of trust. A mem-
brane guards the incoming agents before allowing them
to execute. Three classes of membranes are studied, the
most complex being the class of policies enforceable by
finite state automata. When an agent comes from an
untrusted site, all its code must be checked. Instead,
an agent coming from a trusted site must only pro-
vide the destination site with a digest of its behaviour,
so allowing for more efficient checks.

Recently, increasing attention has been devoted to
express service contracts as behavioural (or session)
types. These synthetise the essential aspects of the
interaction behaviour of services, while allowing effi-
cient static verification of properties of composed sys-
tems. Session types [23] have been exploited to formal-
ize compatibility of components [34] and to describe
adaptation of web services [14]. Security issues have
been recently considered in terms of session types, e.g.
in [11], which proves the decidability of type-checking
in an extension of the π-calculus with session types and
correspondence assertions [38].

A related line of research addresses the issue of
modelling and analysing resource usage. Igarashi and
Kobayashi [24] introduce a type systems to check
whether a program accesses resources according to a
user-defined usage policy. Our model is less general
than the framework of [24], but we provide a static ver-
ification technique, while [24] does not. Colcombet and

Fradet [16] and Marriot, Stuckey and Sulzmann [25]
mix static and dynamic techniques to transform pro-
grams in order to make them obey a given safety prop-
erty. Besson, de Grenier de Latour and Jensen [8] tackle
the problem of characterizing when a program can call
a stack-inspecting method while respecting a global se-
curity policy. Compared to [16, 25, 8], our program-
ming model allows for local policies, while the other
only considers global ones.

Other works have proposed type-based methodolo-
gies to check security properties of distributed systems.
For instance, Gordon and Jeffrey [21] use a type and
effect system to prove authenticity properties of secu-
rity protocols. Web service authentication has been re-
cently modelled and analysed in [9, 10] through a pro-
cess calculus enriched with cryptographic primitives.
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[19] F. C. Gärtner. Revisiting liveness properties in the con-
text of secure systems. In Proc. FASec, 2002.

[20] D. K.Gifford and J. M. Lucassen. Integrating functional
and imperative programming. In ACM Conference on
LISP and Functional Programming, 1986.

[21] A. Gordon and A. Jeffrey. Types and effects for asym-
metric cryptographic protocols. In Proc. IEEE Com-
puter Security Foundations Workshop, 2002.

[22] D. Gorla, M. Hennessy, and V. Sassone. Security poli-
cies as membranes in systems for global computing. In
Foundations of Global Ubiqitous Computing Workshop,
2004.

[23] K. Honda, V. Vansconcelos, and M. Kubo. Lan-
guage primitives and type discipline for structures
communication-based programming. In Proc. ESOP,
1998.

[24] A. Igarashi and N. Kobayashi. Resource usage analysis.
In Proc. 29th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, 2002.

[25] K. Marriott, P. J. Stuckey, and M. Sulzmann. Resource
usage verification. In Proc. First Asian Programming
Languages Symposium, 2003.

[26] F. Nielson and H. R. Nielson. Type and effect systems.
In Correct System Design, 1999.

[27] M. P. Papazoglou. Service-oriented computing: Con-
cepts, characteristics and directions. In WISE, 2003.

[28] M. Papazouglou and D. Georgakopoulos. Special issue
on service oriented computing. Communications of the
ACM, 46(10), 2003.

[29] F. B. Schneider. Enforceable security policies. ACM
Transactions on Information and System Security (TIS-
SEC), 3(1), 2000.

[30] P. Sewell and J. Vitek. Secure composition of untrusted
code: box-π, wrappers and causality types. Journal of
Computer Security, 11(2), 2003.

[31] C. Skalka and S. Smith. History effects and verification.
In Asian Programming Languages Symposium, 2004.

[32] M. Stal. Web services: Beyond component-based com-
puting. Communications of the ACM, 55(10), 2002.

[33] J.-P. Talpin and P. Jouvelot. The type and effect disci-
pline. Information and Computation, 2(111), 1994.

[34] A. Vallecillo, V. Vansconcelos, and A. Ravara. Typing
the behaviours of objects and components using session
types. In Proc. of FOCLASA, 2002.

[35] M. Y. Vardi. An automata-theoretic approach to linear
temporal logic. In Proc. Banff Higher order workshop
conference on Logics for concurrency, 1996.

[36] W. Vogels. Web services are not distributed objects.
IEEE Internet Computing, 7(6), 2003.

[37] W3C. UDDI Technical White Paper, 2000.

[38] T. Woo and S. Lam. A semantic model for authentica-
tionprotocols. In IEEESymposiumon Security and Pri-
vacy, 1993.

13


