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Abstract

There is a growing interest in establishing rules to reg-

ulate the privacy of citizens in the treatment of sensitive

personal data such as medical and financial records. Such

rules must be respected by software used in these sectors.

The regulatory statements are somewhat informal and must

be interpreted carefully in the software interface to private

data. This paper describes techniques to formalize regula-

tory privacy rules and how to exploit this formalization to

analyze the rules automatically. Our formalism, which we

call privacy APIs, is an extension of access control matrix

operations to include (1) operations for notification and log-

ging and (2) constructs that ease the mapping between legal

and formal language. We validate the expressive power of

privacy APIs by encoding the 2000 and 2003 HIPAA con-

sent rules in our system. This formalization is then encoded

into Promela and we validate the usefulness of the formal-

ism by using the SPIN model checker to verify properties

that distinguish the two versions of HIPAA.

1 Introduction

An increasing number of government agencies and
enterprises are finding a need to write down privacy
rules for their handling of personal information of par-
ties who entrust such information to them. These
rules are derived from a complex set of requirements
laid down by diverse stakeholders; they are often
complex and may contain important ambiguities and
unexpected consequences. Examples include sector-
specific rules like the Health Insurance Portability and
Accountability Act (HIPAA) [41] and Gramm-Leach-
Bliley Act [20] in the US and comprehensive privacy
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rules established by the European Economic Commu-
nity [38, 39]. Increasing automation of data manage-
ment using computer systems invariably means that
these privacy rules become requirements for software
systems that manage data affected by privacy rules.
Analyzing conformance to these rules requires careful
comparison of the ‘privacy API’ of a computer system
with the (typically informal) regulatory rule sets. This
paper develops a technique for bridging the gap be-
tween regulatory rule sets and specifications that are
precise enough to be implemented without ambiguity
and formal enough to be analyzed by automatic means
for the criteria that stakeholders for the regulatory rule
sets care about.

A variety of efforts have been made to develop
languages for expressing rules for privacy. However,
there have been few practical case studies for these ap-
proaches and there remain many questions about ex-
actly which features are really needed. We examinee
this issue from the bottom up by taking a practical reg-
ulatory rule set, the HIPAA consent rules, and explore
whether anything beyond techniques developed almost
3 decades ago are required to express them. In par-
ticular, we ask whether the HIPAA consent rules can
be expressed using a basic set of access control matrix
operations from the classic access control systems lit-
erature. We find that this is not possible directly, but
we identify a modest set of extensions that are capable
of expressing the complete rule set. Our extensions re-
quire us to add explicit operations for notification and
logging and to cover conditions and obligations that
typically cannot be directly verified by a computer. In
addition, it is important for purposes of readability and
textual accuracy to include certain binding constructs
to reflect legal phrasing where terms in one clause are
taken to be ‘as in’ another clause. With these few ad-
ditions we are able to describe sets of rules which we
call privacy APIs that are capable of expressing the
HIPAA rules with such precision that we are able to en-
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code them in a modelling language (Promela) and use a
model checker (SPIN) to demonstrate consequences of
the rule sets of the kind that concerned key stakehold-
ers enough to precipitate rule changes from one version
to the next.

The value of this contribution is two-fold. First, we
are able to set a baseline of constructs sufficient to pro-
vide a formalization of practical rules that can be read
by a human. This aids readers in determining confor-
mance of the encoding to the informal regulatory rules
on the one hand and the software on the other hand.
Second, we are able to provide a formalization that can
be used for automated analysis to explore consequences
of the rule set that may be surprising and undesirable.

The rest of this paper is organized as follows. In
Section 2 we present background on access control and
define auditable privacy systems. In Section 3 we de-
scribe privacy APIs. In Section 4 we present a study
of the HIPAA consent requirements. In Section 5 we
show our formal model, queries, and results. In Section
6 we discuss related work. We conclude in Section 7.

2 Background

In this work, we use the style of commands intro-
duced by Harrison, Ruzzo, and Ullman (HRU) [30] to
create a formalism we call an auditable privacy system
and use it to let us better understand and verify legal
privacy requirements. In this section we describe the
properties of the classic HRU model, define auditable
privacy systems, and describe the limitations of the
classic HRU model in directly modelling them.

2.1 Access Control and HRU

There are two general types of access control poli-
cies, discretionary access control (DAC) and manda-
tory access control (MAC). In DAC policies, an object’s
owner has control over which permissions are granted
to others. In MAC policies, policy rules determine per-
missions and access to objects, normally without the
input of the owner.

Originator Control (ORCON) policies [26] are a spe-
cial kind of MAC that give rights to the originators
of system objects even if those objects are no longer
owned by them. For example, if Alice creates a file
and Bob makes a copy of it, only Alice can grant new
permissions on Bob’s copy, even if Bob modifies it. The
policy is mandatory since the system, not Bob, deter-
mines how the originator designation is assigned. The
ORCON idiom is commonly used for policies where one
principal holds or collects another principal’s informa-
tion.

Legal policy about the extent of ORCON rights that
people have over information about them varies by
country and area of law. The laws that we discuss
in this work give a weak level of control to the data
subject, the principal that an object is “about,” and a
stronger level of control to the data

One of the early models for access control systems is
the HRU model. Rules in the language are transaction-
style commands that execute in sequence on a single
system. The model uses a single access control matrix
to store the state of the system. Primitive operations
of the system manage the reading and writing of rights
and the creation and deletion of principals and objects
in the matrix. Commands consist of (optional) con-
ditions and a series of primitive operations that are
executed transactionally. The policy of a system is the
set of commands that the system publishes. Since the
policy of the system is determined by the functional-
ity of the full set of commands, in order to validate
the properties of the system, the full set of commands
must be analyzed and verified.

We can view a system’s command set in the idiom
of an interface or API (application programmers inter-
face). Since the access control matrix is only accessible
through the commands we can focus on the verification
of the commands to gain confidence in the safety of the
system as a whole.

2.2 Auditable Privacy System

We extend the theory and formal Privacy System of
Gunter, et al. [28] with auditing to produce an auditable
privacy system. The basic events of an auditable pri-
vacy system are:

Transfer. Transferring an object by copying it and
passing the copy to the recipient’s domain. Objects
may be transferred with or without ORCON restric-
tions.

Action. Using a private object for some purpose.
Uses include low level events like read and write as well
as scenario based events such as treatment for medical
needs and billing for services. Often we need a method
of auditing what actions occurred and for what pur-
pose.

Creation. The addition of new objects or principals
to the system and access control matrix. Principals
may create new objects about themselves or other oth-
ers if authorized. Often we require a method of audit-
ing the creation of objects and principals.

Rights Establishment. A subject or owner of an ob-
ject granting or revoking permissions on it to princi-
pals, roles, or groups of principals.

Notification. An obligation to inform concerned
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principals about events performed by other principals
in the system. It is commonly imposed as an enforce-
ment mechanism where system level verification is not
sufficient.

Logging. An obligation on the system to track
events–both those that succeed and those that fail. It
is used for system verification and auditing.

We call a system that includes all the above
events and obligations, that includes both run time
and post-hoc auditing of the behavior of prin-
cipals and the transfer of objects through do-
mains, an Auditable Privacy System. We use
the six primitive operations from the HRU model:
enter r into (p, o) and delete r from (p, o) for rights
establishment; create principal p, create object o,
destroy principal p, and destroy object o for cre-
ation. Their semantics are given in HRU’s original pa-
per [30] and reproduced in Appendix B for reference.
We add two primitive operations: inform p of t for
notification; and log t for logging. Transfer is accom-
plished by creating a new object and inserting the old
object’s content.

Since an auditable privacy system is ORCON based
and considers objects being “about” its subject and
created by its originator, we need the following non-
primitive commands that layer over the primitive op-
erations:

command CreateObject (a, s, o)
create object o

and enter originator in (a, o)
and enter subject in (s, o)
end

command CopyObject (a, s, o, o′)
if originator in (a, o)

and subject in (s, o)
then create object o′

and enter originator in (a, o′)
and enter subject in (s, o′)
end

2.3 Limitations of the HRU model

While the HRU model gives the tools to model com-
mands that affect the access control matrix, by itself it
has shortcomings in implementing an auditable privacy
system.

First, there is no baked-in notion of the initiator (ac-
tor) of a command. Commands may take arguments,
one of which can be designated for the actor, but there
is no primitive in the system supporting this or provid-
ing authentication. This is important because privacy
policies normally predicate rules on the actor in a com-

mand.
Second, there are no roles or groups in the classic

HRU system. Policies often define rules in terms of
roles so omitting that functionality makes maintaining
permissions significantly more complex.

Third, the commands in the HRU system are re-
stricted to conditions and primitive operations that
affect the state of the access control matrix, greatly
limiting the power of the commands that we can write.
We would like to include environment based conditions
and operations that include logging and notification.

Fourth, in order to enforce ORCON policies we need
to create non-primitive operations that act as an in-
terface to the primitive operations. These operations
enforce the MAC properties of the system by acting
as an interface to the system. The HRU model does
not allow commands to invoke other commands, so this
functionality must be added.

Finally, since the commands are limited to reading
and modification of the access control matrix, there is
no way to include outside obligations in the commands.

These shortcomings require us to modify the classic
HRU model in the following ways.

First, we give each command an implicit argument
called actor which is assigned the value of the actor in
a command. We thereby rely on the system’s authen-
tication for identifying the actor in a command.

Second, we use groups to provide rudimentary roles.
Each group is an object in the system and principals
have permission member on it if they are members of
the group. We do not handle the general trust man-
agement issue since it is not needed here. Some roles
indicate affiliations or relationships between principals,
so in those cases we place indicative permissions in the
matrix as appropriate (e.g. Alice has relationship doc-
tor on Bob).

Third, we add a global append-only log and a mech-
anism for informing principals of events that occur in
the system, the two outside operations needed for au-
ditable privacy systems.

Fourth, we allow commands to invoke other com-
mands and hide some primitive operations. This en-
ables us to write commands that function as an inter-
face to the underlying access control matrix.

Finally, we discern two kinds of obligations: (1)
obligations that the computer system can perform or
verify and (2) obligations that the computer system
can not perform or verify. For the first type, the com-
puter system performs the obligation or validates that
the obligation is performed before the command com-
pletes. We address the second type in the next section.

By making the above adaptations we have a model
that can fully implement auditable privacy systems.
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We use auditable privacy systems to underly privacy
APIs, which we define next.

3 Privacy APIs

Legal privacy rules are complex natural language
documents written by a large group of people. Their
length and complexity often make them prohibitively
difficult to understand. However, by observing a sim-
ilarity between legal privacy policies and APIs we can
gain some traction.

Both APIs and legal privacy policies publish a set of
allowed command combinations (procedures) to access
a database of protected information (system state) and
disallow all others. Verification consists of checking
that each procedure is safe and that no combination of
procedures will lead to a disallowed state.

Using this similarity, we convert legal privacy poli-
cies to access control rules that are an interface to a
set of private information. The set of procedures that
we derive from a legal policy document is its privacy
API which we formally define below. The policy goals
are the system invariants. We can use formal methods
tools such as model checking to explore the states of
the system and verify that the privacy API enforces
the system invariants.

The invariants of a legal privacy policy are a function
of the influences of stakeholders involved in its design.
Each stakeholder’s invariants reflect its ideals which are
often in conflict with other stakeholders. Policy writers
design a system that satisfies some of the invariants of
each, hopefully creating a reasonable amalgam.

Stakeholders can use their ideals to define a tailored
set of invariants that lets them find the relative ac-
ceptability of a policy as it evolves. When a policy
changes, they evaluate whether the new system is more
or less acceptable. We can use the privacy API model
to streamline that evaluation.

Since legal privacy policies give rules for the inter-
action of users and information, they normally include
conditions and obligations that a computer system can
not perform or verify. In some cases, the conditions
and obligations require an expert to evaluate properly
(e.g. when deciding if a purpose is reasonable). They
are part of the requirements, events that the system
specification can not observe, so we must treat them
differently in our model. Our model verifies and en-
forces what it can and for the rest it relies on the en-
vironment. By factoring out unenforceable conditions
and obligations, we achieve a model that is easier to
design and verify.

From a more theoretical view, outside conditions
and obligations are environment variables that are in-

visible to the system specification [27]. The system
specification needs assurance that the environmental
variables are correct, however, so we must create a
bridge between them. Flags accomplish this by allow-
ing principals to make assertions about the environ-
ment that the computer system can check to impose
outside conditions and obligations. The flags can be
tied to particular principals in the system (e.g. patient
gives a consent form that is signed and dated) or be
non-principal-specific conditions (e.g. disclosure docu-
ment reserves the right to change).

In our model implementation, when the model can
not perform or verify a condition or obligation, it must
either (1) allow the command and set a flag that in-
dicates an obligation must be fulfilled, (2) look for an
assertion that the required obligation has already been
fulfilled, or (3) forbid the execution until an autho-
rized principal authorizes it. The third case is similar
to adding another condition to the command and re-
moving the hindering condition, so we deal with it in
that manner. The first and second cases are handled
with environment flags. The second case finds parallels
in legislative policies which use post-hoc auditing and
notification for enforcement. Conditions of the last two
types are an if condition which both returns a boolean
and a checks or returns an obligation with flags. We
call such a condition an if with obligation, or OIF.

Example: The following is a selection from the
Gramm-Leach-Bliley Act (GLB) financial services
privacy [20] requirements [15 USC Subchapter 1

§6802(b)(1)(B)]: “A financial institution may not dis-
close nonpublic personal information to a nonaffiliated
third party unless . . . (B) the consumer is given the
opportunity, before the time that such information is
initially disclosed, to direct that such information not
be disclosed to such third party;”

Using our adapted HRU syntax1 we translate the
quote as follows. Note that since GLB includes OR-
CON restrictions [15 USC Subchapter 1 §6802(c)], we use
the ORCON CopyObject command.

COM Disclose(a, s, r, f, p, ev)
if “third party disclose” in p

and affiliated not in (a, r)
and member in (s, consumer group)
and “consumer given chance to opt-out”

in ev
and opt-out not in (s, r)

then CopyObject (a, s, f, f′)
and enter own in (r, f′)
end

1In this work we use the following abbreviations for parame-
ters: (a)ctor, (s)ubject, (r)ecipient, (f)ile, (p)urpose, (ev)idence.
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Alice executes the above command, trying to dis-
close a file F about Sam, a consumer, to Rick, a non-
affiliated third party. First the command checks that
the purpose is for a third party disclosure. Then, if
it finds that affiliated 6∈ M [Alice, Rick], that Sam is
a member of consumer group, that environmental
flag consumer given opportunity to opt-out is as-
serted true, and that opt-out 6∈ M [Sam, Rick], it does
an ORCON copy of F to create F′ and transfers the
new copy to the ownership of Rick. ¤

We can use our model to translate larger sections of
legal privacy policies, giving a large set of commands
and conditions.

4 Translating HIPAA Consent

Part of the US Health Insurance Portability and Ac-
countability Act (HIPAA) [41] is a Privacy Rule which
governs the management, storage, and distribution of
patient health information. Since hospital electronic
health care records systems are normally complex and
often nonuniform, assuring compliance with the rule is
hard. Health care entities are required by law to have a
Privacy Officer in charge of enforcing compliance with
the rule, so hospital administrators and staff need not
learn the details of the rule. Instead they are trained
in the basics while specialized health care software en-
forces the access control rules.

Our goal is to provide a model to let policy writers
and enforcers better understand allowed flows of in-
formation, allow comparisons between versions of the
law, and allow verification of the law’s intended in-
variants. To do this, we translate a section of HIPAA
rules into auditable privacy system commands and use
formal methods model checking tools to verify proper-
ties of the system. We study the rules about patient
consent for treatment, payment, and health care oper-
ations.

4.1 Consent

The rules about when health care entities must get
patient consent before performing treatment, payment,
and health care operations activities [§164.506] were the
subject of debate during the development of HIPAA.
The version of the rules from 2000 [23] contains many
provisions and exceptions, so the rules are about one
page long. The later version of the rules from 2003 [25]
was simplified, so it is only about one third of a page
long. For this study, we translate both versions of
the consent rules and use a model checker to perform
queries that explore their differences.

The system requirements for the HIPAA privacy
rules contain many low level requirements, for example
rules regarding the placement of computer terminals
and password management. Our model abstracts away
such low level issues and so has only the following sys-
tem requirements: each principal in the system has a
unique name and is authenticated; there is a database
of private records in which each file is associated with
its subject; the computer system has access to the date
and time; the computer system has can test boolean
equality, string equality, and test for the presence of
an item in a set; the computer system has an append
only log; the system has a method of notifying princi-
pals when needed. This abstraction lets us focus on the
functionality of the law’s access control requirements,
those that govern the disclosure and use of private in-
formation.

We translate the English rules into the modified
HRU syntax but preserve the original structure of the
policy. Each paragraph or clause in the law is trans-
lated into one or more commands. The reference struc-
ture of clauses is preserved by allowing commands to
call other commands in a function-like manner. Com-
plex conditions that may be referenced by multiple
clauses or rules are translated as if commands (or
“AsIn” commands since their titles normally contain
that phrase) that may be called by other if commands
and can return true or false. We discuss the need for
this below in section 4.3.

As noted above, the consent rule was considerably
rewritten between the two versions that we considered,
so the two rule sets vary considerably in length. The
2000 version rule set contains 5 helper commands and
60 regular and if commands, all local to [§164.506].
There are 26 environmental evidence flags included.
The 2003 version rule set contains 5 helper commands
and 54 regular and if commands with 21 of them local
to [§164.506] and 33 of them non-local. There are 74
environmental evidence flags included.

HIPAA requires that events be logged
[164.308(a)(ii)(D), v.2003]. This requires a system
to audit events logs, so all commands in the system
must perform an implicit logging operation. For
conciseness, however, our verification model only
records events that other commands later look for.

4.2 Translation Methodology

In our translation, we strove to stay as close to the
structure of the text as possible. To this end, we de-
signed a methodology which made translation straight-
forward and observably close to the text.

Each paragraph in the text has one or more com-
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mands that execute it. Paragraphs are translated into
multiple commands when they allow or deny multiple
actions (e.g. use and disclose). A paragraph has at
most one if command (AsIn) which includes or refer-
ences all the conditions needed for the paragraph. The
result is a rule set whose size is linear in the number of
paragraphs.

When paragraphs reference each other, whether di-
rectly or implicitly, we locate and translate the refer-
enced clause and include an explicit call to it.

Parent paragraphs that refer to their children in-
clude their children as references. Where appropriate,
child paragraphs have their own commands. A child
paragraph may reference its own specific AsIn, its par-
ent’s AsIn, or both.

Each condition or obligation in a paragraph is in-
cluded in the paragraph’s AsIn. If the condition or
obligation is unrelated to access control (e.g. [§164.520]

which has typographic rules for privacy practices dis-
closures documents) then it is checked as an environ-
mental flag. We follow the language of the text, so
unless two conditions or obligations are phrased very
similarly or have obviously the same intent they have
separate flags. The number of environment flags in-
cluded in each model is dependent on the writing style
of each paragraph.

One of the most important factors in deciding
whether a request should be permitted or denied is
the purpose for the request. Some requests may be
made for more than one purpose, so we provide each
command with a list of purposes. Commands receive
a purpose set as a parameter so the set can be passed
on to other commands that may be referenced. We use
this method because it is similar to the textual style–
paragraphs and clauses are divided and parameterized
by purpose.

4.3 Challenges in Translation

It is not surprising that legal privacy policies differ
in style from standard computer systems access control
policies, but two common features we came upon made
the distinction very sharp.

The first distinguishing feature is the way that ref-
erences are used. Commonly, a paragraph refers to
the conditions of another paragraph independent of its
body. For example, [§164.506(a), v.2003] “Except with
respect to uses or disclosures that require an authoriza-
tion under [§164.508(a)(2)]” is a condition that points to
the conditions of the referenced paragraph, but does
not intend to activate the functionality of it. This is
akin to a procedure creating a condition out of the pre-
condition of another procedure without executing the

referenced procedure. Because this is not a common
programming language idiom, we implement it by di-
viding each paragraph into two parts: an if command
(AsIn) which contains the conditions and one or more
regular commands that reference the associated AsIn.
This separation allows us to keep the reference struc-
ture of the law.

Legal references also vary in specificity. Most are un-
ambiguous, but some are global pointers that refer to a
large body of law. For example, [§164.520(b)(3), v.2000]

“Except when required by law, a material change to
any term. . . ” is a deference to any other relevant le-
gal requirement. We deal with this and other kinds of
ambiguous references by creating an environmental as-
sertion that the condition is satisfied. Non-monotonic
default logic (for example, [4]) could perhaps be used
here instead.

The second distinguishing feature is the use of tes-
timonials in resolving conditions. Many environmental
conditions are resolved by a testimonial from a prin-
cipal in the system. For example, [§164.506(a)(3)(c),

v.2000] “If . . . the covered health care provider deter-
mines, in the exercise of professional judgment, that
the individual’s consent to receive treatment is clearly
inferred from the circumstances.” Our model handles
testimonials in the same way that it handles other en-
vironmental conditions, but an implementation must
track the testimonials that allowed a command to ex-
ecute and log who asserted them.

To illustrate the translation, we give an example
paragraph and the regular and if commands that we
derive.

Example: Section [§164.506(c)(1), v.2003] reads:
“(c) Implementation specifications: Treatment, pay-
ment, or health care operations. (1) A covered entity
may use or disclose protected health information for its
own treatment, payment, or health care operations.”

We separate the purpose (only for its own usage) of
the paragraph into an if command:

OIF AllowedAsIn506c1 (a, s, r, p, f, ev)
if “own use” in p

and isTPO(p)
then return true
else return false
end

The quote contains six permissions: use and dis-
close for treatment, payment, and health care opera-
tions. We create two commands, Use506c1 and Dis-
close506c1, parameterized by purpose.
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COM Use506c1 (a, s, r, p, f, ev)
if AllowedAsIn506c1 (a, s, r, p, f, ev)

and r == a
and own in (a, f)
and isTPO(p)

then EnterUse(a, p, f)
end

Use506c1 checks the paragraph’s if command, that
the recipient of the information is the actor, and that
the actor owns the file. Own means that the file is
locally visible to the actor. This condition is implicit
in the legal text, that a covered entity can only look at
files that it has locally.

CopyObject, isTPO, and EnterDisclose are
helper commands. CopyObject is given above.
isTPO returns true if the purpose set provided in-
cludes treatment, payment, or health care operations.
EnterUse inspects the purpose set for treatment, pay-
ment, and health care operations and inserts the ap-
propriate permission in the matrix. EnterDisclose is
similar. Disclose506c1 and the helper commands are
provided in Appendix C. ¤

5 Analysis

After translating the section of legal text into com-
mands, we convert the commands into a format suit-
able for input to a standard model checker. With
it we can define invariants and evaluate whether the
command set respects them. We use the Spin model
checker (www.spinroot.com) although other similar
tools could have been used instead. Spin’s input lan-
guage is Promela, a C-like language.

The translation to Promela is straightforward from
our command syntax. Each command is converted into
a process which listens and responds along a named
public channel. A globally readable record (evidence)
contains a bit flag for each environmental flag. A sim-
ilar record (purpose) contains a bit flag for each pur-
pose value. Global variables hold the values of the
command’s actor (a), subject (s), intended recipient
(r), purpose (p), and file (f). The access matrix m is a
two dimensional array with principals in rows and all
system objects (principals, files, and group objects) as
columns. Each entry in the array is a record with a
bit flag for each possible permission. Processes refer to
each other and communicate by passing messages over
their named channels. The model executes as a single
thread. We do not use concurrency.

Example: To illustrate the Promela model, we give
an example process, Use506c1 shown above. See Ap-

pendix A for a brief background for readers unfamiliar
with Promela.
1active proctype Use506c1(){
2 bool result = false, temp;

3 do

4 ::Use506c1 chan?request( ) ->

5 AllowedAsIn506c1 chan!request(true);

6 AllowedAsIn506c1 chan?response(temp);

7 result = temp && (r==a);

8 result=result&&(m.mat[a].obj[f].own==1);

9 if

10 :: result ->

11 EnterUse chan!request(true);

12 EnterUse chan?response(temp);

13 :: else -> skip;

14 fi;

15 Use506c1 chan!response(result);

16 od}
The process listens for request messages with a sin-

gle boolean. When a message appears, line 4 executes.
Line 5 transmits a request to AllowedAsIn506c1 to
check the conditions. When AllowedAsIn506c1 re-
sponds, it assigns the response value to temp. Lines
7–8 checks that the recipient is the actor and that the
actor owns the file. Lines 9–14 check the result. If the
result is true, EnterUse is requested to update the
permissions. Use506c1 finishes and sends its result on
lines 15–16. ¤

We next show how we can perform queries on our
model using Spin.

We are interested in queries that legislators, lawyers,
and interested parties would normally perform by
hand. We want to ask queries such as “Does this loop-
hole exist in the law?” and “Can this command execute
before that?” When the result of a query violates the
invariant of a stakeholder, we call it a relative stake-
holder problem. The context of a query is important
as is the set of procedures that are active for the test.
Such queries may not need a large number of steps to
be answered, but they are interesting because the one
asking may not be able to look at the text directly due
to its length or complexity.

In order to find interesting queries to perform, we
examined the different HIPAA consent policies and the
summary of public comments that motivated the pol-
icy changes between 2000 and 2003. The comments
document [24] contains a short list of concerns that
interested parties found in the 2000 document. Some
items on the list are relative stakeholder problems, so
other stakeholders might not consider them to be con-
cerns. Others are concerns in that they forbid what is
common industry practice.
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The 2003 policy was written with the comments in
mind, but it is not clear if the new policy solved all of
the concerns. To answer that question, we take the ex-
pert discovered concerns, “discover” them in the 2000
version, and find out whether they are still present in
the 2003 version. We selected the following three con-
cerns for this test:

(1) Emergency medical providers were concerned
that the requirement that they attempt to obtain con-
sent as soon as reasonably practicable after an emer-
gency would have required significant efforts which
might have been viewed by patients as harassing, be-
cause these providers typically do not have ongoing re-
lationships with patients.

(2) Providers that are required by law to treat
were concerned about the mixed messages to patients
and interference with the physician-patient relation-
ship that would have resulted because they would have
had to ask for consent to use or disclose protected
health information for treatment, payment, or health
care operations, but could have used or disclosed the
information for such purposes even if the patient said
no.

(3) The transition provisions would have resulted in
significant operational problems and the inability to
access health records would have had an adverse effect
on quality activities because many providers were not
required to obtain consent for treatment, payment, or
health care operations.

We translate the above concerns to the following
queries. They are designed to discover the concern
in the 2000 version and check whether they return
the same result in the 2003 version. (1) Are emer-
gency providers required to obtain patient consent pa-
tients for treatment, payment, or health care opera-
tions (TPO) after the fact? (2) Can a doctor access
a patient record for TPO after the patient has denied
consent? (3) Can a doctor see a patient record for TPO
without consent in a non-emergency situation?

We evaluate the queries by first setting the initial
state of the 2000 model to have appropriate invariants,
principals, files, and permissions to discover the con-
cern and then using the same initial state in the 2003
model to see if it yields the same result. As an exam-
ple, we present the setup and invariant for the second
query

Example: We initialize the matrix: Dan is a doc-
tor, file1 is a private record, Paula is the subject
of file1, Dan has permission own on file1, and Dan is
required by law to treat Paula. Dan, file1, Paula, and
health care provider group are all names for unique
integer values that index the matrix.

m.mat[Dan].obj[health care provider group].m-

ember = 1;

m.mat[Paula].obj[file1].subject = 1;

m.mat[Dan].obj[file1].own = 1;

m.mat[Dan].obj[Paula].required = 1;

Paula then denies Dan consent for TPO on file1.
a = Paula; s = Paula; f = file1; r = Dan;

denyConsent506b4i chan!request(true);

denyConsent506b4i chan?response( );

We then set the purpose flags in the purpose set p.
There also are a large set of evidence flags that are set
which we skip here for brevity.
p.treatment=1; p.payment=1;

p.healthcare operations=1;

Then we check an invariant to see if Dan can get
access to file1 for TPO. We also check f new which
would be the index of a new copy of file1 that Dan
could perhaps gain access to through a disclosure.
invariant = (m.mat[Dan].obj[file1].treat==0)

&&(m.mat[Dan].obj[file1].pay==0)&&

(m.mat[Dan].obj[file1].healthops==0)&&

(m.mat[Dan].obj[f new].treat==0)&&

(m.mat[Dan].obj[f new].pay ==0) &&

(m.mat[Dan].obj[f new].healthops==0);

assert(invariant==1);

We then allow Spin to non-deterministically execute
commands, non-deterministically changing the actor
and recipient variables each time. After each command
completes, we evaluate and check the invariant. ¤

Spin found the first query to be true in the 2000
version as expected. Since there is no notion of after
the fact consent in the 2003 version, the model checker
couldn’t evaluate the query, a trivial false.

Spin found the second query to be true for the
2000 model, but surprisingly returned true for the 2003
model as well. Upon inspection we found that there
was a provision in the (current) 2003 rules stating that
even though consent is not required for treatment, pay-
ment, or health care operations, health care entities
optionally may request consent anyway [164.506(b)(1),

v.2003]. No paragraph in the section declares that an
optional consent is binding, however. To find out what
this omission meant, we consulted with the Lauren Ste-
infeld, Privacy Officer of the University of Pennsylva-
nia. Ms. Steinfeld remarked that a situation of denial
of an optional consent request for TPO is legally com-
plex because it has a conflict of patient expectations
of privacy and potential medical necessity. In practice,
this case may be affected by state laws which preempt
the federal guidelines. In short, it is not resolved in
this section of HIPAA.
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The third query diverged for the 2000 model, but
a query which limited the exploration to a depth of
two rule invocations returned a false as expected. The
query for the 2003 version return true as expected.

We learned a number of lessons from our experi-
ments.

First, following the structure and style of the law let
us discover a somewhat subtle policy property in query
2. We had expected that the result for the 2003 ver-
sion would be negative since the the paragraph about
entities required by law to provide health care was re-
moved. However, since the 2003 version is silent on the
need to respect optional consent, our query found an
ambiguity in the legal text that requires deeper legal
analysis to resolve.

Second, we can discover properties of the system
based on the presence or absence of permissions or en-
vironmental flags in the model. For some concerns, an
assertion that no command includes a particular oblig-
ation is sufficient as in our first query.

Third, we have indication that our current model
may suffer from an undecidability property noted by
HRU. The original HRU paper [30] proved that the
general question of safety, whether granting a general
right to one principal can eventually lead to it being
leaked to an unauthorized principal, for systems de-
scribed in their syntax is undecidable. They note that
certain systems may not be subject to their conclusion,
but we have not yet explored that question for our sys-
tem. We will consider ways of modifying our model or
queries to further explore this problem.

6 Related Work

Access control systems research has been extensively
researched for decades. Recent work on formaliza-
tions of access control systems and privacy rules in-
clude Anderson’s [3] principals for the design of a na-
tional patient information database, Bertino, et al.’s
formal model for policy features and comparison [15],
Fischer-Hübner and Ott’s formalization of the Gener-
alized Framework for Access Control [22], Yu, et al.’s
formal semantics [45] for P3P [42], Jajodia et al.’s work
on provisional authorizations [32] which underly the
XML access control language XACL [29], and Wije-
sekera and Jajodia’s propositional policy model and
algebra [44, 43].

The formalization and analysis in this work uses
a classic access control model to achieve its goals.
We chose HRU syntax to begin from the ground up,
adding only exactly what is necessary. We could per-
haps have used any of a long list of more modern sys-
tems such the Enterprise Privacy Authorization Lan-

guage (EPAL) [5], the Platform for Privacy Preferences
(P3P) [42], XACL [29], UCON [37], Cassandra [13], or
Fischer-Hübner and Ott’s formalization [22], however
we did not find the necessity. We give detailed reason-
ing for two models that are close to our own: EPAL
and Cassandra.

EPAL [5, 7] allows the writing of rule based policies
that include obligations, similar to our model. Policies
consist of two documents: (1) a vocabulary document
which contains principals, purposes, actions, “data”
(i.e. information that the policy discusses), and oblig-
ations and (2) a policy document that contains rules
that give approved (or disapproved) combinations of
vocabulary terms and conditions that can inspect flags
and parameters provided in a special invocation “con-
tainer” and return boolean values. Policies are queried
for a ruling and, like our model, can return true or false
with an optional inclusion of obligations. There has
been extensive work on the formal semantics of EPAL
[6], policy composition [9, 11] and comparison [10], and
translation to other languages [33, 8]. As a study of
the power of EPAL, Powers, et al.translate a section of
Ontario’s Freedom of Information an Protection of Pri-
vacy Act [36] to EPAL [40]. As with our model, their
resulting policy closely mirrors the legal text, having
one rule per textual paragraph. They show how the
policy allows them to process a request and return a
ruling in a similar manner to how a human would, but
do not analyze or verify their policy formulation.

Certain properties of EPAL’s rules, conditions, sys-
tem model, and vocabularies, however, made it difficult
for us to use. Rules do not have an explicit represen-
tation of access to system and object state, so rules
that inspect the state of objects and rights or modify
state (e.g. data anonymization, disclosure of minimum
necessary information, etc.) must rely on complex con-
ditions and obligations. They also do not include a pa-
rameter for “recipient,” so rules that depend on the in-
formation recipient can not be written easily. They also
can not query or invoke other rules, so they can not col-
laborate or query each other for rulings or obligations.
Conditions can not access rule invocation parameters
such as purpose, actor, and data. They are confined to
flags and parameters included in a “container.” There
also is no provision for writing to or inspecting a system
log. Vocabularies include functionality for hierarchies
of principals, data, and purposes (but not actions) and
rule priorities, functionality that we did not need.

We could perhaps have used EPAL by devising
larger sets of conditions, obligations, containers, and
rules, but we find our representation more scalable for
legal texts. In particular, since EPAL has no struc-
ture for rules referring each other, the size of an EPAL
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rule set would grow exponentially with the number of
references in the legal text.

In the early 2000’s, the British government pro-
duced a set of documents describing how its Integrated
Care Records Service should work, including an output
based specification (OBS) [34]. Becker and Sewell use
their Cassandra trust management language to model
the OBS’ rules for the national data Spine [14]. Cas-
sandra is a Datalog and credential based access control
language. It provides rules for performing actions, acti-
vating roles, deactivating roles, requesting credentials,
and submitting credentials over a distributed comput-
ing environment.

Cassandra differs from this work in several ways.
First, since Cassandra is concerned with trust man-
agement, it does not address the flow of objects in
the system, an important concern in our model. Con-
versely, since we are concerned with permissions and
object distribution, we provide only rudimentary sup-
port for roles in the form of groups. This difference of
focus reflects a difference in legal policy design. While
the UK’s law uses roles and credentials extensively, the
US’ health and financial privacy laws do not. Ad-
ditionally, we desire the smallest set of features that
will accomplish our modelling goal. Cassandra, for in-
stance, includes a credential distribution system, sig-
nificantly more than is needed here. Finally, they are
concerned with implementing policy specifications as
given and thereby showing the sufficiency and flexibil-
ity of their language, not investigating policy permis-
siveness or performing policy comparison using queries
and invariants.

Earp et al. [21] provide a framework for comparing
web site privacy policies from different perspectives.
Their framework could be used to compare the pro-
visions in different versions of privacy regulations as
well.

Breaux and Antón [17] analyze one of the HIPAA
fact sheet summaries [35] to find patterns and seman-
tics of rights, obligations, rules, and constraints in nat-
ural language privacy regulations. They use a formal
semantic language KTL to model and query simple ref-
erences. Our work differs in its focus on the imple-
mentation and modelling of an intricate legal source,
rather than the extraction of semantic patterns. Our
technique let us to discover omissions in the law, but
it is unclear if KTL can do so too.

Barth, et al. [12] present a theoretical model of
privacy policies with respect to contextual integrity.
Their theoretical model is limited to the passing of
messages between agents, ignoring action and purpose,
but they present theorems for checking future satisfi-
ability of policy obligations. They give several short

examples from legal privacy policies, including GLB,
HIPAA, and the Childrens Online Privacy Protection
Act (www.coppa.org).

There has been extensive work on the formalization
of obligations in contexts including from businesses
processes [2] and contracts [1], access control poli-
cies [31, 37, 16], and enterprise privacy policies [19, 18].
Obligations in our model are handled rudimentarily
with flags and checks by policy rules. A full treat-
ment of the classification, tracking, enforcement, and
management of the different types of obligations that
arise in privacy laws is beyond the scope of this paper.

7 Conclusions

Our work contributes in four important ways to the
formal analysis of legal privacy policies.

First, we define auditable privacy systems, a for-
malism for understanding the basic operations of le-
gal privacy policies, and shown the minimum amount
of change required to implement them using classical
access control models.

Second, we have created a language suitable for
modelling legal privacy policies and developed a
methodology of translating natural language text to it.
Our method closely follows the structure of the text,
preserving references to other rules and environmen-
tal conditions. The payoff for this method comes from
preserving the subtleties of the law during modelling
and analysis. In translation, we reveal essential dif-
ferences between the underlying policy frameworks of
HIPAA (and, from our readings, legal privacy policies
in general), and classical access control matrix based
systems.

Third, our model is designed to allow for users to
do policy evaluation by “executing the law.” This ap-
proach differs from the standard methods of inspection
and expert consultation by allowing non-experts to ex-
plore the rights and permissions of legal policies.

Finally, by observing a bridge between legal privacy
policies and formal analysis, we open the door for ver-
ification of more legal privacy rules. Our queries un-
covered an unexpected ambiguity of the law, a feature
that some commenters on the 2000 law considered a
problem and a HIPAA expert saw as legally tricky. By
expanding the range and scope of our work in the fu-
ture, we hope to open more legal policies to scrutiny.
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A Promela Basics

The following is a short primer to let the reader
understand the Promela code included in this work.
For a full tutorial see spinroot.com.

Promela has two selection structures - do and if.
They are closed by their names reversed (do/od if/fi).
Both structures select nondeterministically from a set
of options that begin with the :: symbol. The first
statement in an option is its guard, indicated by the
-> symbol which normally separates it from the other
statements in the option. If the guard is true or exe-
cutable, the option may be selected by the structure.
If it is not, the option is excluded. The skip statement
is a no-op and is always executable.

Processes talk over named channels using listen (?)
and transmit (!). We use only synchronous channels in
our model, so a transmitting process blocks until there
is a process willing to listen and vice versa. Transmit
and listen commands are always executable. Channels
are typed by the kinds of messages that can be passed
over them. All the messages in our model have the
same pattern - mtype(bool) - where mtype is a mes-
sage type (here request and response) and the body
is a boolean. A process can listen for a message that fits
particular parameters and when it accepts a message it
assigns the variables in the listen statement the appro-
priate values. For example, chan1?request(t) listens
on chan1 for messages of type request that contain
only one parameter (here t is a boolean) and assigns
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t the value of the boolean in the message. The special
write only variable accepts any type and is used for
throwaway values.

Promela does not have built in multi-dimensional
arrays, so we build a two dimensional array by creating
an array of records which themselves contain an array.
Each location in the array is a record with bit flags for
each potential permission. The result is a syntax like
this: m.mat[a].obj[f].own == 1 which refers to the
array location [a,f] in the array and assigns 1 to the
flag own there.

Like C’s ?: operator, Promela includes a three argu-
ment operator a->b:c where a is a boolean formula. If
a is true, b is the result of the operator. If a is false, c
is the result of the operator. For example, x = (true
-> 1 : 2) assigns x the value 1.

B Semantics of HRU model

Let r be a generic right from a finite set of generic
rights R. Let X0, . . . , Xk be formal parameters to a
command. Let p, p1, . . . , pn and o, o1, . . . , om be inte-
gers between 1 and k. Let t be a text string.

The operations in the system are:
enter r into (Xp, Xo), delete r from (Xp, Xo),
create principal Xp, create object Xo,
destroy principal Xp, and destroy object Xo.

The configuration of the system is a tuple (P,O, M)
where P is the set of principals in the system, O is the
set of objects in the system (P ⊆ O), and M is the
access matrix.

A formal description of the effect of the primitive
operations on the system configuration is as follows.
Let (P,O, M) and (P ′, O′,M ′) be configurations of the
system. A step (P,O, M)

op−→ (P ′, O′, M ′) can occur if
either:

1. op = enter r into (p, o) and P ′ = P , O′ = O, p ∈
P , o ∈ O, M ′[p1, o1] = M [p1, o1] if (p1, o1) 6= (p, o)
and M ′[p, o] = M [p, o] ∪ {r}, or

2. op = delete r from (p, o) and P ′ = P , O′ = O,
p ∈ P , o ∈ O, M ′[p1, o1] = M [p1, o1] if (p1, o1) 6=
(p, o) and M ′[p, o] = M [p, o]− {r}, or

3. op = create principal p′ where p′ is a new sym-
bol not in O, P ′ = P ∪ {p′}, O′ = O ∪ {p′},
M ′[p, o] = M [p, o] for all (p, o) ∈ P×O, M ′[p′, o] =
∅ for all o ∈ O′, and M ′[p, p′] = ∅ for all p ∈ P ′,
or

4. op = create object o′ where o′ is a new symbol
not in O, P ′ = P , O′ = O∪{o′}, M ′[p, o] = M [p, o]
for all (p, o) ∈ P × O, and M ′[p, o′] = ∅ for all
p ∈ P , or

5. op = destroy principal p′ where p′ ∈ P , P ′ =
P − {p′}, O′ = O − {p′}, and M ′[p, o] = M [p, o]
for all (p, o) ∈ P ′ ×O′, or

6. op = destroy object o′ where o′ ∈ O, P ′ = P ,
O′ = O − {o′}, and M ′[p, o] = M [p, o] for all
(p, o) ∈ P ′ ×O′

C Extra commands

Disclose command for [§164.506(c)(1), v.2003]

COM Disclose506c1 (a, s, r, p, f, ev)
if AllowedAsIn506c1 (a, s, r, p, f, ev)

and own in (a, f)
then CopyObject(a, s, f, f′)
and enter own in (r, f′)
and EnterDisclose(a, p, f)
end

Helper commands:

COM EnterUse(a, p, f)
if “treatment” in p

then enter treat in (a, f)
if “payment” in purpose

then enter pay in (a, f)
if “healthcare operations” in p

then enter healthops in (a, f)
and return
end

COM EnterDisclose(a, p, f)
if “treatment” in p

then enter treatDisclose in (a, f)
if “payment” in p

then enter payDisclose in (a, f)
if “healthcare operations” in p

then enter healthopsDisclose in (a, f)
and return
end

IF isTPO(p)
if “treatment” in p
or “payment” in p
or “healthcare operations” in p

then return true
end
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