
Types and Effects for Secure Service Orchestration

Massimo Bartoletti Pierpaolo Degano Gian Luigi Ferrari
Dipartimento di Informatica, Università di Pisa, Italy

Abstract

A distributed calculus is proposed for describing net-
works of services. We model service interaction through
a call-by-property invocation mechanism, by specifying the
security constraints that make their composition safe. A
static approach is then proposed to determine how to com-
pose services and guarantee that their execution is always
secure, without resorting to any dynamic check.

1 Introduction

The ability of selecting and assembling together het-
erogeneous services is an important step towards the full
development of service-oriented computing [21, 20, 10].
A service is a stand-alone component distributed over a
network, and made available through standard interaction
mechanisms. Orchestration of services may require pecu-
liar mechanisms to handle complex interaction patterns (e.g.
to implement transactions), while enforcing non-functional
requirements on the system behaviour (e.g. security and ser-
vice level agreement). Service orchestration heavily de-
pends on which information about a service is made pub-
lic, on how to choose those services that match the user’s
requirements, and on their actual run-time behaviour. Secu-
rity makes service orchestration even harder. Services may
be offered by different providers, which only partially trust
each other. On the one hand, providers have to guarantee
the delivered service to respect a given security policy, in
any interaction with the operational environment, and re-
gardless of who actually called the service. On the other
hand, clients may want to protect themselves from the ser-
vices invoked.

A major problem is how to select a plan for secure
service orchestration. This amounts to selecting from the
network those services that accomplish the requested task,
while respecting the security constraints on demand. Ser-
vices that locally obey the property imposed by a request
are not always good candidates, because their behaviour
may affect security of the whole composition. For example,
consider a device with limited computational power that

downloads an applet from the network and then delegates
a remote service to run it. Although the contract between
the device and the code provider is fulfilled, the applet may
violate a security policy enforced by the executer. To de-
termine the viable plans, one has to check the effects of all
the available applets against the security policies of all the
remote executers.

In this paper, we propose a solution to this problem,
within a distributed framework. Services are functional
units in an enrichedλ-calculus, they are explicitly located at
network sites, and have a published public interface. Unlike
standard syntactic signatures, this interface includes an ab-
straction of the service behaviour, in the form of annotated
types. To obtain a service with a specific behaviour, a client
queries the network for a published interface matching the
requirements — a sort of call-by-property invocation. Se-
curity is implemented by wrapping the critical blocks of
code inside security framings (with possibly nested scopes),
that enforce the relevant policies during the execution of the
block. In the spirit of history-based security [1], a security
policy can inspect the whole history at a given site. Since
our framework is fully distributed, our policies cannot span
over multiple sites.

We introduce a type and effect system for our calcu-
lus [11, 18, 24]. The type of a service describes its I/O be-
haviour, while the effect, in the form of a history expression,
represents those aspects of its behaviour relevant to security.
History expressions extend regular expressions with infor-
mation about the selection of services, coupled with their
corresponding effect.

Our main result is a way of extracting from a history ex-
pression all the viable plans, i.e. those that drive secure exe-
cutions. This is a two-stage construction. A novel transfor-
mation of history expressions makes them model-checkable
for validity. Valid history expressions guarantee that the ser-
vices they are extracted from never go wrong at run-time.
From valid histories it is then immediate to obtain the vi-
able plans, that make any execution monitor unneeded.

This paper builds over [3], borrowing from it and ex-
tending history-based security policies, the call-by-property
invocation mechanism, history expressions and the verifica-
tion technique. Together with the notion of plans, we fur-

ther add here an explicit notion of location and of localized
executions, so allowing several clients and services to run
concurrently. Our planning technique acts as a trusted or-
chestrator of services, that constructs the plans for a client,
by considering the view of the network at the moment the
client is injected. The provided plans guarantee that the in-
voked services always respect the required properties. Thus,
in our framework the only trusted entity is the orchestrator,
and neither clients nor services need to be such. In particu-
lar, the orchestrator infers functional and behavioural types
of each service. Also, it is responsible for certifying the ser-
vice code, for publishing its interface, and for guaranteeing
that services will not arbitrarily change their code on-the-
fly: when this happens, services need to be certified again.
All these extensions bring forth considerable technical com-
plications in the definitions of the operational semantics of
the calculus (in Sect. 3), of history expressions (in Sect. 4),
of the type and effect system (in Sect. 5). The orchestrator
is introduced in Sect. 6. In spite of the added technicalities,
the present analysis is significantly finer grained than the
all-or-nothing analysis of [3].

`1 : τ −→ (τ
ϕ[αr]
−−−−→ τ)

`2 : τ −→ (τ
αr·αw
−−−−−→ τ)

`0 : unit

`3 : (τ
h
−→ τ)

αc·ϕ
′[h]

−−−−−−→ τ

(req r2
(τ −→ τ) −→ τ) f

αc; · · ·ϕ′[f()] · · ·

f = req r1
τ −→ (τ −→ τ)

λx. ϕ[αr; · · ·]

λx.αr ; · · · ; αw

· · · f() · · ·

`4 : (τ
h
−→ τ)

h
−→ τ

f

f

2 A motivating example

To illustrate our approach, consider the scenario in the
above figure. The boxes model services, distributed over a
network. Each box is decorated with the location `i where
the service is published, and with the public interface of the
service. This interface is in the form of an annotated type,
which is an abstraction of the service behaviour.

The client at site `0 is a device with limited computa-
tional capabilities, wanting to execute some code down-
loaded from the network. To do that, the client issues two
requests in sequence. Its public interface is the singleton
unit type, meaning that the client cannot be invoked by any-
one. The request labelled r1 asks for a piece of mobile code
(e.g. an applet), and it can be served by two code providers
at `1 and `2. The request type τ −→ (τ −→ τ) means that,
upon receiving a value of type τ (which can be an arbitrary
base type, immaterial here) the invoked service replies with
a function from τ to τ , with no security constraints.

The service at `1 returns a function that protects itself
with a policy ϕ, permitting its use in certified sites only
(modelled by the event αc). Within the function body, the
only security-relevant operation is a read αr on the file sys-
tem where the delivered code is run. In the public interface
of `1, this behaviour is represented by the history expres-
sion ϕ[αr] which annotates the type of the returned func-
tion. The code provided by `2 first reads (αr) some local
data, and eventually writes them (αw) back to `2.

Since `0 has a limited computational power, the code
f obtained by the request r1 is passed as a parameter to
the service invoked by the request r2. This request can be
served by `3 and `4. The service at `3 is certified (αc), and
runs the provided code f under a “Chinese Wall” security
policy ϕ′, requiring that no data can be written (αw) after
reading them (αr). The service at `4 is not certified, and it
simply runs f .

The abstract behaviour of the whole network is rendered
by the following history expressionH :

{r2[`3] B `3 : αc · ϕ
′[{r1[`1] B ϕ[αr], r1[`2] B αr · αw}]

r2[`4] B `4 : {r1[`1] B ϕ[αr], r1[`2] B αr · αw}}

The intuitive meaning of H is that, if r2 is served by `3
(written as r2[`3]), then the event αc is generated at site `3,
followed by a safety framing ϕ′. This framing protects the
behaviour it wraps, i.e. ϕ[αr] if `1 is chosen for r1, or αrαw
if `2 is chosen instead. Otherwise, if r2 is served by `4, then
the behaviour (on site `4) depends on the former choice for
r1: if `1 was selected, then ϕ[αr], otherwise αrαw.

The history expressionH approximates the run-time be-
haviour of each site in the network, and it can be obtained
(e.g. through the type and effect system of Sec. 5) as a suit-
able combination of the abstract behaviour of the client `0
with the certified interfaces of the services it can invoke.

Our next goal is to determine how to compose services
while keeping security, i.e. while respecting all the policies
on demand. The composition of services is rendered as a
plan that chooses the appropriate service for each request.
The viable plans that drive safe executions are obtained by
statically analysing the history expression H inferred for
the network. Our analysis first “flattens” the structure of the
history expression, by collecting all the possible combina-
tions of service choices. In our example, we would obtain:

H ′ = {r1[`1] | r2[`3] B `3 : αc · ϕ
′[ϕ[αr]],

r1[`2] | r2[`4] B `4 : αr · αw,

r1[`1] | r2[`4] B `4 : ϕ[αr]

r1[`2] | r2[`3] B `3 : αc · ϕ
′[αr · αw]}

Every element of H ′ clearly separates the plan from the
associated abstract behaviour, which has no further plans
within – and so it can be model-checked for validity using

the techniques in [3]. For instance, under the plan that com-
poses r1[`1] with r2[`3] (written as r1[`1] | r2[`3]), the over-
all abstract behaviour is αc · ϕ′[ϕ[αr]]. The first two plans
in H ′ are viable, while the others give rise to non-valid be-
haviour. The plan r1[`1] | r2[`4] is not viable, because the
policy ϕ would be violated when f is run on a non certified
site; instead, the plan r1[`2] | r2[`3] would violate ϕ′.

Planning service composition can be even more com-
plex. Consider a slight extension of our example, where the
client is billed for the services it has invoked. To do that,
assume that an argument g is passed to the request r1, to
invoke a billing service through a request r3, and so let the
code provider invoice the customer `0 for the service. The
same function g is also passed later on the service which
will actually run the code f , to charge `0 for the cost of the
execution.

A billing service acts as a function that takes as input
an invoice (of some type τ ′) and delivers back a payment
certification, i.e. a function of type τ ′ αpaid

−−−→ τ ′ that gener-
ates αpaid to signal successful transaction. Let τb = τ ′ −→

(τ ′
αpaid
−−−→ τ ′) be the type of billing services. Then, the re-

quest types of r1 and r2 would have the following form:

ρ1 = τ × τb
ψ
−→ (τ −→ τ) ρ2 = (τ −→ τ) × τb

ψ
−→ τ

where the property ψ on demand requires that payment is
accomplished before the control returns back to the client.
The request types ρ1 and ρ2 will be exploited to discover
services matching both the syntactic signature and the re-
quired behaviour ψ.

Assume now that two billing services `5 and `6 are
discovered in the network. The service `5 can be used
by certified users only, while `6 imposes no constraints.
Clearly, the service which provides the code and the one
which runs it can choose different billing services. The plan
r1[`1.r3[`6]] | r2[`3.r3[`5]] is viable: the request r3 is re-
solved with `6 within the service `1 chosen for r1, while
it is resolved with `5 within the service `3 chosen for r2.
Instead, the plan r1[`1.r3[`5]] | r2[`3.r3[`5]] is not viable,
because `1 is not certified.

3 Programming model

To study secure service orchestration in a formal setting,
we consider a calculus where services are functional units
distributed over a network. We first define their syntax and
stand-alone operational semantics, i.e. the behaviour of a
service in isolation. We then introduce plans, that drive the
selection of services provided by the network. Finally, we
define the syntax and operational semantics of networks.

Services. A service is modelled as an expression in a
λ-calculus enriched with primitives for security and service

requests. Security-relevant operations are rendered as side-
effects in the calculus, and they are called access events. A
security policy ϕ is a regular property over a sequence η of
access events, called history. The programming construct
used to enforce security policies is called safety framing: a
service e framed within a policy ϕ (written ϕ[e]) must re-
spect ϕ at each step of its execution. A service request has
the form req rρ. The label r uniquely identifies the request,
while the request type ρ is the query pattern to be matched
by the invoked service. Types are defined afterwards, and
are used by the orchestrator to statically discover the plans
that drive safe executions. Indeed, our network semantics
exploits plans to resolve service requests.

The abstract syntax of services follows. We assume as
given the languages for (regular) policiesϕ and for guards b.
We omit their definition here, as they are not relevant for the
subsequent technical development. To enhance readability,
our calculus comprises conditional expressions and named
abstractions (the variable z in e′ = λzx. e stands for e′ itself
within e).

Syntax of services

e, e′ ::= x variable
α access event
if b then e else e conditional
λzx. e abstraction
e e′ application
ϕ[e] safety framing
req rτ service request
wait ` wait reply

The values v of our calculus are the variables, the abstrac-
tions, and the requests. We write ∗ for a fixed, closed, event-
free value, and λ. e for λx. e, for x not free in e. The fol-
lowing abbreviation is standard: e; e′ = (λ. e′) e. Without
loss of generality, we assume that framings include at least
one event, maybe dummy.

The stand-alone evaluation of a service is much alike
the call-by-value semantics of the λ-calculus; additionally,
it enforces all the policies within their framings. Since
here services are considered in isolation, requests are not
resolved. The configurations are pairs η, e. A transition
η, e → η′, e′ means that, starting from a history η, the ser-
vice e evolves to e′ and extends η to η′. We write η |= ϕ
when the history η obeys the policy ϕ. We assume as given
a total function B that evaluates the guards in conditionals.

Service semantics (stand-alone)

η, e1 → η′, e′1

η, e1e2 → η′, e′1e2

η, e2 → η′, e′2

η, ve2 → η′, ve′2

η, (λzx. e)v → η, e{v/x, λzx. e/z}

η, α → ηα, ∗ η, if b then ett else eff → η, eB(b)

η, e→ η′, e′ η′ |= ϕ

η, ϕ[e] → η′, ϕ[e′]

η |= ϕ

η, ϕ[v] → η, v

The first two rules implement call-by-value evaluation; as
usual, functions are not reduced within their bodies. The
third rule implements β-reduction. Notice that the whole
function body λzx. e replaces the self variable z after the
substitution, so giving an explicit copy-rule semantics to re-
cursive functions. The evaluation of an event α consists in
appending α to the current history, and producing the no-
operation value ∗. A conditional if b then ett else eff
evaluates to ett (resp. eff) if b evaluates to true (resp. false).

To evaluate a safety framing ϕ[e], we must consider two
cases. If, starting from the current history η, emay evolve to
e′ and extend the history to η′, then the whole framing ϕ[e]
may evolve to ϕ[e′], provided that η′ satisfies ϕ. Otherwise,
if e is a value and the current history satisfies ϕ, then the
scope of the framing is left. In both cases, as soon as a
history is found not to respect ϕ, the evaluation gets stuck.

Plans. When a service is plugged into a network, a plan
is used to resolve the requests therein, acting as an orches-
trator. Our static machinery will deduce plans guaranteeing
that the selected services matches the requests. Plans have
the following syntax:
Syntax of Plans

π, π′ ::= 0 empty
r[`.π] service choice
π | π′ composition

The empty plan 0 has no choices. The plan r[`.π] associates
the service e published at site ` with the request labelled r,
and imposes the plan π to e (so constrained by the choice
taken for r). The composition operator | is associative, com-
mutative and idempotent. We abbreviate r[`.0] with r[`].
We require plans to have a single choice for each request
made at the same level, i.e. r[`.π] | r[`′.π′] implies ` = `′

and π = π′.

Networks. A service e is plugged into a network by pub-
lishing it at a site `, together with its interface τ . Hereafter,

`〈e : τ〉 denotes such a published service. Labels ` can
be seen as Uniform Resource Identifiers, and they are only
known by the orchestrator. We assume that each site pub-
lishes a single service, and that interfaces are certified, i.e.
they are inferred by the type system in Sect. 5. Also, we
assume that services cannot invoke each other circularly,
because this would result in a meaningless service compo-
sition. A client is a special published service `〈e : unit〉.
As we will see, this special form prevents anyone from in-
voking a client. A network is a set of clients and published
services.

The state of a published service `〈e : τ〉 is denoted by
`〈e : τ〉 : π B η, e′, where π is the plan used by the current
instantiation of the service, η is the history generated so far,
and e′ models the code in execution. When unambiguous,
we simply write ` for `〈e : τ〉 in states.

The syntax and the operational semantics of networks
follows; the operator ‖ is associative and commutative.
Given a network {`i〈ei : τi〉}i∈1..k, a configuration N has
the form `1 : π1 B η1, e

′
1 ‖ · · · ‖ `k : πk B ηk, e

′
k, abbrevi-

ated as {`i : πi B ηi, e
′
i}i∈1..k. To trigger a computation of

the network, we need to fix the plans πi for each client; if `i
is a service, we assume πi = 0. Then, for all i ∈ 1..k, the
initial configuration has ηi = ε, and e′i = ∗ if `i is a service,
while e′i = ei if `i is a client.
Network configurations and semantics

N,N ′ ::= `〈e : τ〉 : π B η, e′ service state
N ‖N ′ composition

η, e→ η′, e′

` : π B η, e→ ` : π B η′, e′

N1 → N ′
1

N1 ‖N2 → N ′
1 ‖N2

` : (r[`′.π′] | π′′) B η, (req rρ)v ‖ `′〈e : τ〉 : 0 B ε, ∗ →
` : (r[`′.π′] | π′′) B η, wait `′ ‖ `′〈e : τ〉 : π′ B e v

` : π B η, wait `′ ‖ `′ : π′ B η′, v →
` : π B η, v ‖ `′ : 0 B ε, ∗

A transition of a stand-alone service is localized at site `,
regardless of a plan π. The second rule specifies the asyn-
chronous behaviour of the network: a transition of a sub-
network becomes a transition of the whole network. The
last two rules model requests and replies. A request r, re-
solved by the current plan with the service `′, can be served
if the service is available, i.e. it is in the state `′ : 0 B ε, ∗.
In this case, a new instance of the service is generated: e is
applied to the received argument v, under the plan π′, re-
ceived as well from the invoker. The special event σ signals
that the service has started. The invoker waits until `′ has
produced a value. When this happens, the service becomes
available again. We follow here the stateless approach, by

clearing the history of a service at each instantiation (in-
deed, statefullness could be easily obtained by maintaining
the history η′ at `′ in the last rule).

Note that a service works in a tail-recursive fashion, and
so there is a single instance of it in network configura-
tions. We could easily model replication of services, by
creating a new instance for each request. Note also that a
network evolves by interleaving the activities of its compo-
nents, which only sinchronize when competing for the same
service. It is straightforward to derive a truly concurrent se-
mantics from the above one, e.g. using C/E Petri nets.

4 History expressions

We shall now extend the history expressions of [3]. They
statically predict the histories generated at run-time by a
network of clients and services.

Syntax. History expressions are much alike context-free
specifications, and include the empty history ε, access
events α, sequencing H · H ′, non-deterministic choice
H + H ′, safety framings ϕ[H], recursion µh.H (µ binds
the occurrences of the variable h in H), localization ` : H ,
and planned selections {π1 BH1 · · ·πk BHk}.

Syntax of history expressions

H,H ′ ::= ε empty
h variable
α access event
H ·H ′ sequence
H +H ′ choice
ϕ[H] safety framing
µh.H recursion
` : H localization
{πi BHi}i∈I planned selection

Intuitively, access events represent the program actions
where sensible resources are accessed; the constructors ·
and + correspond to sequentialization of code and condi-
tionals, respectively; safety framings model blocks of code
subject to security policies; recursion is for loops and re-
cursive functions. These constructs have been previously
introduced in [3]. The new construct ` : H localizes the
behaviour H to the site `. For example, ` : α · (`′ : α′) · β
denotes two histories: αβ occurring at location `, and α′ oc-
curring at `′. A planned selection abstracts the behaviour of
service requests. For instance, {r[`1] BH1 · · · r[`k] BHk}
says that a request r can be resolved into one of the ser-
vices provided by the sites `1, . . . , `k, which may generate
a history represented by H1, . . . , Hk, respectively.

Semantics. To give a semantics to history expressions, we
enrich the set of events with framing events of the form
[ϕ,]ϕ, that denote the opening and closing of a safety fram-
ing ϕ[· · ·]. For example, the history η = α[ϕα

′]ϕ repre-
sents a computation that (i) generates an event α, (ii) enters
the scope of ϕ, (iii) generates α′ within the scope of ϕ, and
(iv) leaves the scope of ϕ. Hereafter, we shall only consider
histories with balanced framing events.

The denotational semantics of a history expression is a
set, written (`i : Hi)i∈I . The intended meaning is that the
behaviour of the service at location `i is approximated by
the set of histories Hi. Technically, H belongs to the lifted
cpo of sets of histories [27], ordered by (lifted) set inclusion
⊆⊥ (where ⊥ ⊆⊥ H for all H, and H ⊆⊥ H′ whenever
H ⊆ H′). The least upper bound between two elements of
the cpo is standard set union ∪, assuming that ⊥ ∪ H =
H. For notational convenience, we feel free to omit curly
braces when writing singleton sets, and we write ϕ[H] for
{ [ϕη]ϕ | η ∈ H}.

The stateless semantics 〈〈H〉〉π of a closed history ex-
pression H depends on the given evaluation plan π, and is
defined in two steps. In the first, we define the stateful se-
mantics JHKπθ (in an environment θ binding variables), i.e. a
semantics in which services keep track of the histories gen-
erated by all the past invocations. A simple transformation
then yields 〈〈H〉〉π , in which each invocation is instead in-
dependent of the previous ones, i.e. it always starts with the
empty history.
Semantics of history expressions

〈〈H〉〉π = { ` : { 〈〈η〉〉 | η ∈ H} | ` : H ∈ JHKπ∅ }

where 〈〈η〉〉 =

{

η if σ 6∈ η

〈〈η0〉〉 ∪ 〈〈η1〉〉 if η = η0 σ η1

JεKπθ = (? : ε) JαKπθ = (? : α) J` : HKπθ = JHKπθ {`/?}

Jϕ[H]Kπθ = ϕ[JHKπθ] JH ·H ′Kπθ = JHKπθ � JH ′Kπθ

JhKπθ = θ(h) JH +H ′Kπθ = JHKπθ ⊕ JH ′Kπθ

Jµh.HKπθ =
⊕

n∈ω

fn(? : ⊥) where f(X) = JHKπθ{X/h}

J{πi BHi}i∈IK
π
θ =

⊕

πivπ

JHiK
πi/π
θ where

⊕

∅ = (? : ⊥)

We first comment on the rules for JHKπθ . The meaning of an
event α is the pair (? : {α}), where ? is dummy and will be
bound to the relevant location. The rule for localizing H at
` records the actual binding: the current location ` replaces
“?”. The semantics of a sequenceH ·H ′ is obtained by con-

catenating the histories denoted by H and H ′ site by site,
using the auxiliary (strict) function � defined afterwards.
Similarly for the semantics of choices H + H ′, that joins
the histories site by site through the strict operator ⊕. The
semantics of µh.H is the least fixed point of the operator f
above, computed in the cpo obtained by coalesced sum of
the cpos of sets of histories H .

The semantics of a planned selection {πiBHi}i∈I under
an evaluation plan π is the sum of the semantics of those
Hi such that π resolves all the choices in πi (rendered as
πi v π). In that case, the choices in πi are consumed, and
the evaluation ofHi proceeds with the residual planπi/π. If
π does not resolve any of the πi, then no service is available,
and an error occurs (rendered as ⊥). Consider for example
the evaluation of {r[`]B` : {r′[`1]Bα1, r

′[`2]Bα2}} under
π = r[`.r′[`1]] | r′[`2]. Since π resolves the choice for r,
one has to evaluate ` : {r′[`1] B α1, r

′[`2] B α2} under the
residual plan r′[`1], obtained by consuming the choice r[`].
The final result is then (` : {α1}).

The intuition on the auxilary operators follows. The se-
quentialization of (`i : Hi)i∈I and (`′j : H′

j)j∈J consists of
two parts. The first part comprises `i : HiHj for all `i = `′j ,
i.e. `i : { ηη′ | η ∈ Hi, η

′ ∈ Hj }. The second part has
`i : Hi and `′j : H′

j for all i 6∈ J and j 6∈ I . As an example,
(`0 : {α0}, `1 : {α1, β1}) � (`1 : {γ1}, `2 : {α2}) =
(`0 : {α0}, `1 : {α1γ1, β1γ1}, `2 : {α2}). The choice
operator ⊕ is pretty the same, except that union replaces
language concatenation. For example, (`0 : {α0}, `1 :
{α1, β1}) ⊕ (`0 : ⊥, `1 : {γ1}, `2 : {α2}) = (`0 : ⊥, `1 :
{α1, β1, γ1}, `2 : {α2}).

The relation v is a partial order between plans, whose
least element is 0. Intuitively, r[`.π0] v π if both plans
agree on the service selected for r and on the choices oc-
curring in π0, i.e. π has the form r[`.π1] | π′

1 and π0 v π1.
For example, r0[`0] v r0[`0.r1[`1]] | r2[`2]. The defini-
tion of the residual plan π′/π relies on the fact that plans
ordered by v form a meet semi-lattice, and so the meet
u of any pair of elements always exists. For example,
r0[`0.0]/r0[`0.r1[`1]] = 0/r1[`1] = r1[`1].

Auxiliary definitions

{`i : Hi}i∈I � {`′j : Hj}j∈J =
{`i : HiHj}`i=`j ∪ {`i : Hi}i∈(I∪J)\(I∩J)

{`i : Hi}i∈I ⊕ {`′j : Hj}j∈J =
{`i : Hi ∪Hj}`i=`j ∪ {`i : Hi}i∈(I∪J)\(I∩J)

0 v π π0 | π1 v π if π0 v π and π1 v π

r[`.π0] v π if π = r[`.π1] | π′
1 and π0 v π1

0/π = π r[`.π0]/(r[`.π1] | π
′
1) = π0/π1

(π0 | π1)/π = (π0/π) u (π1/π)

Example 1. Consider the history expression:

H = `0 : α0 · {r[`1] B `1 : σ · α1, r[`2] B `2 : σ · α2} · β0

The stateful semantics of H under plan π = r[`1] yields:

Jα0 · {r[`1] B `1 : σ · α1, r[`2] B `2 : σ · α2} · β0K
π{`0/?}

=
(

(? : {α0}) � J{r[`1] B `1 : σ · α1, r[`2] B `2 : σ · α2}Kπ

� (? : {β0})
)

{`0/?}

=
(

(? : {α0}) � J`1 : σ · α1K
0 � (? : {β0})

)

{`0/?}

=
(

(? : {α0}) � (`1 : σ · α1) � (? : {β0})
)

{`0/?}

= (? : {α0β0}, `1 : {σα1}){`0/?}

= (`0 : {α0β0}, `1 : {σα1})

In this case, the stateless semantics just removes the event
σ, i.e. 〈〈H〉〉π = (`0 : {α0β0}, `1 : {α1}).

Example 2. Consider the history expression:

H = `0 : µh. β0 + α0 · {r[`1] B `1 : ϕ[σ · α1]} · h

This represents a service `0 that recursively generates α0

and raise a request r (which can be served by `1 only). The
stateful semantics of H under π = r[`1] is:

J`0 : µh. β0 + α0 · {r[`1] B `1 : ϕ[σ · α1]} · hKπ

= Jµh. β0 + α0 · {r[`1] B `1 : ϕ[σ · α1]} · hKπ{`0/?}

=
(
⊕

n∈ω Jfn(? : ⊥)Kπ
)

{`0/?}

where f(X) = Jβ0 + α0 · {r[`1] B `1 : ϕ[σ · α1]} · hKπ{X/h}.
The fixed point of f , after the substitution {`0/?}, is:

(`0 : {β0, α0β0, α0α0β0, . . .},
`1 : {ϕ[σα1], ϕ[σα1]ϕ[σα1], . . .})

Instead, the stateless semantics 〈〈H〉〉π is the set:

(`0 : {β0, α0β0, α0α0β0, . . .}, `1 : {ϕ[α1]})

Example 3. Consider the history expression:

H = {r[`0] B {r′[`1] B `1 : α1, r
′[`2] B `2 : α2}}

The semantics of H under π = r[`0.r
′[`1]] | r′[`2] is:

J{r[`0] B {r′[`1] B `1 : α1, r
′[`2] B `2 : α2}}Kπ

= J{r′[`1] B `1 : α1, r
′[`2] B `2 : α2}Kr

′[`1]

= J{r′[`1] B `1 : α1}Kr
′[`1] = J`1 : α1K

0 = (`1 : α1)

In this case there are no σ, so the stateless and the stateful
semantics coincide.

Validity. We now define when histories are valid, i.e. they
arise from viable computations that do not violate any se-
curity constraint. For example, consider the history η0 =
αwαrϕ[αw], where ϕ requires that no write αw occurs after
a read αr. Then, η0 is not valid according to our intended
meaning, because the rightmost αw occurs within a safety
framing enforcing ϕ, and αwαrαw does not obey ϕ. To
be valid, a history η must obey all the policies within their
scopes, determined by the framing events in η.

To give a formal definition of validity, it is convenient to
introduce the notion of safe sets. For example, the history
η0 above has one safe set ϕ[{αwαr, αwαrαw}]. Intuitively,
this means that the scope of the framing ϕ[· · ·] spans over
the histories αwαr and αwαrαw. For each safe set ϕ[H],
validity requires that all the histories in H obey ϕ.

Some notation is now needed. Let η[be the history
obtained from η by erasing all the framing events, and
let η∂ be the set of all the prefixes of η, including the
empty history ε. For example, if η0 = αwαrϕ[αw],
then (η [0)∂ = ((αwαr[ϕαw]ϕ)[)∂ = (αwαrαw)∂ =
{ε, αw, αwαr, αwαrαw}. Then, the safe sets S(η) and va-
lidity of histories and of history expressions are defined as
follows:
Safe sets and validity

S(ε) = ∅ S(η α) = S(η)
S(η0 ϕ[η1]) = S(η0 η1) ∪ ϕ[η[0 (η[1)

∂]

A history η is valid (|= η in symbols) when:

ϕ[H] ∈ S(η) =⇒ ∀η′ ∈ H : η′ |= ϕ

A history expressionH is π-valid when, for all `:

〈〈H〉〉π@ ` 6= ⊥ and η ∈ 〈〈H〉〉π@ ` =⇒ |= η

where (`i : Hi)i∈I@ `j = Hj .

Note that validity of a history expression is parametric with
the given evaluation planπ, and it is defined componentwise
on its semantics, provided it is not ⊥.

Example 4. The safe sets of the history expression H =
ϕ[α0 · {r[`1] B α1, r[`2] B ϕ′[α2]}] · α3, with respect to
plans r[`1] and r[`2], are:

S(〈〈H〉〉r[`1]) = S([ϕα0α1]ϕα3) = { ϕ[{ε, α0, α0α1}] }

S(〈〈H〉〉r[`2]) = S([ϕα0[ϕ′α2]ϕ′]ϕα3)

= { ϕ[{ε, α0, α0α2}], ϕ
′[{α0, α0α2}] }

If ϕ requires “never α3” and ϕ′ “never α2”, thenH is r[`1]-
valid, because the histories ε, α0, and α0α1 obey ϕ. In-
stead, H is not r[`2]-valid, as the history α0α2 in the safe
set ϕ′[{α0, α0α2}] does not obey ϕ′.

Example 5. Consider the history expression of Ex. 2 with
plan π = r[`1], and assume that the policy ϕ requires
“never α1 more than once”. Then, the stateless seman-
tics 〈〈H〉〉π has exactly one safe set, ϕ[{ε, α1}], which is
valid. Instead, the stateful JHKπ would have the safe set
ϕ[{ε, α1, α1α1, . . .}], which is not valid.

5 Types and effects

We now introduce a type and effect system for our calcu-
lus, building upon [3]. Types and type environments, ranged
over by τ and Γ, are mostly standard and are defined in the
following table. The history expression H in the functional
type τ H

−→ τ ′ describes the latent effect associated with an
abstraction, i.e. one of the histories represented byH is gen-
erated when a value is applied to an abstraction with that
type.
Types and Type Environments

τ, τ ′ ::= unit | τ
H
−→ τ ′

Γ ::= ∅ | Γ;x : τ where x 6∈ dom(Γ)

For notational convenience, we assume that the request type
ρ in req rρ is a special type. E.g. we use unit

ϕ[ε]
−−→

(unit
ϕ′[ε]
−−−→ unit) for the request type of a service obeying

ϕ and returning a function subject to the policy ϕ′. Addi-
tionally, we put some restrictions on request types. First,
only functional types are allowed: this models services be-
ing considered as remote procedures (instead, clients have
unit type, so they cannot be invoked). Second, no con-
straints should be imposed over ρ0 in a request type ρ0

ϕ
−→

ρ1, i.e. in ρ0 there are no annotations. This is because the
constraints on the selected service should not affect its ar-
gument.

A typing judgment Γ, H ` e : τ means that the ser-
vice e evaluates to a value of type τ , and produces a history
denoted by the effect H . The auxiliary typing judgment
Γ, H `` e : τ is defined as the least relation closed under
the rules below, and we write Γ, (` : H) ` e : τ when the
service e at ` is typed by Γ, H `` e : τ . Typing judgments
are similar to those of the simply-typed λ-calculus, and im-
prove on those of [3] (see there for worked-out examples
with no requests). The effects in the rule for application
are concatenated according to the evaluation order of the
call-by-value semantics (function, argument, latent effect).
The actual effect of an abstraction is the empty history ex-
pression, while the latent effect is equal to the actual effect
of the function body. The rule for abstraction constraints
the premise to equate the actual and latent effects, up to as-
sociativity, commutativity, idempotency and zero of +, as-
sociativity and zero of · , α-conversion, and elimination of
vacuous µ-binders. The next-to-last rule allows for weaken-
ing of effects. Note that our type system does not assign any
type to wait expressions: indeed, waits are only needed in
configurations, and not in service code.

We stipulated that the services provided by the network
have certified types. Consequently, the typing relation is
parametrized by the set W of services `〈e : τ〉 such that
∅, ε `` e : τ . We assume W to be fixed, and we write ``
instead of ``,W . To enforce non-circular service compo-
sition, we require W to be partially ordered by ≺, where
` ≺ `′ if ` can invoke `′; clients are obviously the least ele-
ments of ≺, and they are not related to each other. Note that
the up-wards cone of ≺ of a client represents the (partial)
knowledge it has of the network.

Typing services

Γ, H `` e : τ

Γ, ` : H ` e : τ
if e is published at `

Γ, ε `` ∗ : unit Γ, α `` α : unit Γ, ε `` x : Γ(x)

Γ, H `` e : τ
H′′

−−→ τ ′ Γ, H ′ `` e′ : τ

Γ, H ·H ′ ·H ′′ `` e e′ : τ ′

Γ;x : τ ; z : τ
H
−→ τ ′, H `` e : τ ′

Γ, ε `` λzx. e : τ
H
−→ τ ′

Γ, H `` e : τ

Γ, ϕ[H] `` ϕ[e] : τ

Γ, H `` e : τ Γ, H `` e′ : τ

Γ, H `` if b then e else e′ : τ

Γ, H `` e : τ

Γ, H +H ′ `` e : τ

τ = d{ ρ�r[`′] τ
′ | ∅, ε ``′ e : τ ′ ` ≺ `′〈e : τ ′〉 ρ ≈ τ ′ }

Γ, ε `` req rρ : τ

A service invocation req rρ has an empty actual effect, and
a functional type τ , whose latent effect is a planned selec-
tion that picks from the network those services known by `
and matching the request type ρ.

To give a type to requests, we need some auxiliary tech-
nical notation. First we introduce ≈, � and d, with the help
of a running example. We write ρ ≈ τ , and say ρ, τ com-
patible, whenever, omitting the annotations on the arrows,
ρ and τ are equal. Formally:

unit ≈ unit

(ρ0
ϕ
−→ ρ1) ≈ (τ0

H
−→ τ1) iff ρ0 ≈ τ0 and ρ1 ≈ τ1

Example 6. Let ρ = (τ −→ τ)
ϕ
−→ (τ −→ τ), with τ = unit ,

be the request type in req rρ, and consider two services
`i〈ei : τi〉 with τi = (τ

hi−→ τ)
αi·hi−−−→ (τ

βi−→ τ), for
i ∈ 1..2. We have that τ1 ≈ ρ ≈ τ2, i.e. both the services
are compatible with the request r.

The operator �r[`] combines a request type ρ and a type
τ , when they are compatible. Given a request type ρ =

ρ0
ϕ
−→ ρ1 and a type τ = τ0

H
−→ τ1, the result of ρ�r[`] τ is

τ0
{r[`]B`:ϕ[σ·H]}
−−−−−−−−−−→ (ρ1 � r[`] τ1), where:

unit � r[`]unit = unit

(ρ0
ϕ
−→ ρ1) � r[`](τ0

H
−→ τ1) =

(ρ0 � r[`]τ0)
{r[`]Bϕ[H]}
−−−−−−−−→ (ρ1 � r[`]τ1)

Example 6 (cont.). The request type ρ is composed with
the service types τ1 and τ2 as follows:

τ̂1 = (τ
h1−→ τ)

{r[`1]B`1:ϕ[σ·α1·h1]}
−−−−−−−−−−−−−−→ (τ

{r[`1]Bβ1}
−−−−−−−→ τ)

τ̂2 = (τ
h2−→ τ)

{r[`2]B`2:ϕ[σ·α2·h2]}
−−−−−−−−−−−−−−→ (τ

{r[`2]Bβ2}
−−−−−−−→ τ)

where τ̂1 = ρ�r[`1] τ1 and τ̂2 = ρ�r[`2] τ2.

The top-level arrow carries a planned selection {r[`]B` :
ϕ[σ · H]}, meaning that, if the service at ` is chosen for r,
then it generates (at location `, and prefixed by σ) the be-
haviour H , subject to the policy ϕ. This top-level choice
induces a dependency on the further choices for r recorded
in ρ1 � r[`] τ1. These dependent choices are written r[`], and
their effect is not localized. In the example above, the ser-
vice at `1 returns a function whose (latent) effect {r[`]Bβ1}
means that β1 occurs in the location where the function will
be actually applied. Dependent choices are only used for
technical reasons, to improve the precision of the analysis;
formally, they are treated just as standard choices. The ac-
tual plans provided by the orchestrator will have no depen-
dent choices.

Note that combining functional types never affects the
type of the argument. This reflects the intuition that the type

of the argument to be passed to the selected service cannot
be constrained by the request.

Eventually, the operator d unifies the types obtained by
combining the request type with the service types. Given
two types τ = τ0

H
−→ τ1 and τ ′ = τ ′0

H′

−−→ τ ′1, the result of
τ d τ ′ is τ ′′0

H∪H′

−−−−→ (τ1ς d τ ′1ς), where ς unifies τ0 and τ ′0
(i.e. τ0ς = τ ′0ς = τ ′′0), and:

unit d unit = unit

(τ0
H
−→ τ1) d (τ ′0

H′

−−→ τ ′1) = (τ0 d τ ′0)
H∪H′

−−−−→ (τ1 d τ ′1)

Example 6 (cont.). We now unify the combination of the
request type ρ with the service types, obtaining:

τ ′ = (τ
h
−→ τ)

{r[`1]B`1:ϕ[σ·α1·h], r[`2]B`2:ϕ[σ·α2·h]}
−−−−−−−−−−−−−−−−−−−−−−−−−→

(τ
{r[`1]Bβ1, r[`2]Bβ2}
−−−−−−−−−−−−−→ τ)

where ς = {h/h1, h/h2} is the selected unifier between
τ

h1−→ τ and τ h2−→ τ .

The following example further illustrates how requests
and services are typed.

Example 7. Consider the request and the services of Ex-
ample 6, and consider the client (req rρ)(λ.γ)∗ at site `0.
Note that applying any service resulting from the request r
to the function λ.γ yields a new function, which we eventu-
ally apply to the value ∗. We have the typing derivation in
Fig. 1. The stateful semantics JHKπ under π = r[`1] is:

J{r[`1] B `1 : ϕ[σ · α1 · γ], r[`2] B `2 : ϕ[σ · α2 · γ]}Kπ

� J{r[`1] B β1, r[`2] B β2}Kπ{`0/?}

= (`1 : {ϕ[σα1γ]}) � (? : {β1}){`0/?}

= (`1 : {ϕ[σα1γ]}, `0 : {β1})

A plan π is well-typed for a service at `, wt@`(π), when, for
each request req rρ, the chosen service is compatible with
ρ, while respecting the partial order ≺:

wt@`(0) wt@`(π | π′) if wt@`(π) ∧ wt@`(π′)
wt@`(r[`

′.π′]) if ` ≺ `′〈e : τ〉 ∧ ρ ≈ τ ∧ wt@`′(π
′)

The next theorem states that our type and effect system cor-
rectly over-approximates the actual run-time histories. Con-
sider first a network with a single client e at location `1,
and let its computed effect be H , with 〈〈H〉〉π = (`1 :
H1, . . . , `k : Hk) for a given plan π. For each site `i,
the run-time histories occurring therein are prefixes of the
histories in Hi (without framing events). Now, consider a
network with n < k clients at the first n sites, each with
its own plan πj and effect Hj . Since clients cannot invoke
each other, we have 〈〈Hj〉〉πj = (`1 : ∅, ..., `j : Hj , ..., `n :
∅, `n+1 : Hn+1,j , ..., `k : Hk,j). For each service `i, the

run-time histories at `i belong to (the prefixes of) one of
the Hi,j , with 1 ≤ j ≤ n (see Ex. 8). As usual, preci-
sion is lost when reducing the conditional construct to non-
determinism, and when dealing with recursive functions.

Theorem 1. Let {`i〈ei : τi〉}i∈I be a network, let N0 be its
initial configuration with all πi well-typed, and let ∅, Hi `
ei : τi. If N0 →∗ {`i : π′

i B ηi, e
′
i}i∈I , then:

ηi ∈











(〈〈Hi〉〉
πi@ `i)

[∂ if `i is a client

(σ〈〈Hj 〉〉πj @ `i)
[∂ if `i is a service,

for some client `j

Example 8. Consider a client e0 = α0; (req rρ)∗ at site
`0, with ρ = unit → unit , and a single service e1 =
λ. α1;ϕ[if b then α2 else α3] at site `1, with ϕ requir-
ing “never α3”. Assume that the guard b always evaluates
to true. Then, under the plan π0 = r[`1], we have the fol-
lowing computation:

`0 : π0 B ε, e0 ‖ `1 : 0 B ε, ∗

→ `0 : π0 B α0, req rρ ∗ ‖ `1 : 0 B ε, ∗

→ `0 : π0 B α0, wait `1 ‖ `1 : 0 B σ, e1∗

→ `0 : π0 B α0, wait `1 ‖ `1 : 0 B σα1, ϕ[if · · ·]

→ `0 : π0 B α0, wait `1 ‖ `1 : 0 B σα1, ϕ[α2]

→ `0 : π0 B α0, wait `1 ‖ `1 : 0 B σα1α2, ϕ[∗]

→ `0 : π0 B α0, wait `1 ‖ `1 : 0 B σα1α2, ∗

→ `0 : π0 B α0, ∗ ‖ `1 : 0 B ε, ∗

The history expression H0 extracted from e0 is:

`0 : α0 · {r[`1] B `1 : σ · α1 · ϕ[α2 + α3]}

Then, 〈〈H0〉〉π0 = (`0 : {α0}, `1 : {α1[ϕα2]ϕ, α1[ϕα3]ϕ}),
and the run-time histories generated at site `1 are
strictly contained in the set (σ〈〈H0〉〉

π0@`1)
[∂ =

{σα1[ϕα2]ϕ, σα1[ϕα3]ϕ}[∂ = {σα1α2, σα1α3}∂ =
{ε, σ, σα1, σα1α2, σα1α3}.

We can now state the type safety property. We say that
a plan π is viable for e at ` when the evolution of e within
a network, under plan π, does not go wrong at `. A com-
putation goes wrong at ` when it reaches a configuration
whose state at ` is stuck. A state ` : π B η, e is not stuck
if either e = v, or e = (req rρ)v, or e = wait `′, or
` : π B η, e → ` : π B η′, e′. Note that we do not consider
requests and waits to be stuck. To see why, consider e.g.
the network configuration `1 : r[`2] B η1, (req rρ)v ‖ `2 :
π B η2, e ‖ `3 : r[`2] B η3, wait `2. The client at `1 is not
stuck, because a fair scheduler will allow it to access the
service at `2, as soon as the client at `3 has obtained a reply.

Theorem 2 (Type Safety). Let {`i〈ei : τi〉}i∈I be a net-
work, and let ∅, Hi ` ei : τi for all i ∈ I . If Hi is πi-valid
for πi well-typed, then πi is viable for ei at `i.

Figure 1. Typing derivation for Example 7

∅, ε ``0 req rρ : τ ′ ∅, ε ``0 (λ.γ) : τ
γ
−→ τ

∅, {r[`1] B `1 : ϕ[σ · α1 · γ], r[`2] B `2 : ϕ[σ · α2 · γ]} ``0 (req rρ)(λ.γ) : τ
{r[`1]Bβ1, r[`2]Bβ2}
−−−−−−−−−−−−−→ τ

∅, {r[`1] B `1 : ϕ[σ · α1 · γ], r[`2] B `2 : ϕ[σ · α2 · γ]} · {r[`1] B β1, r[`2] B β2} ``0 (req rρ)(λ.γ)∗ : τ

∅, `0 : {r[`1] B `1 : ϕ[σ · α1 · γ], r[`2] B `2 : ϕ[σ · α2 · γ]} · {r[`1] B β1, r[`2] B β2} ` (req rρ)(λ.γ)∗ : τ

Example 9. Consider again the network in Ex. 6, where
we fix ei = λx. (αi; (x∗); (λ.βi)) for i ∈ 1..2. Assume
the constraint ϕ on the request type ρ is true. Consider now
the client e0 = ϕ0[(req rρ(λ.γ))∗] at `0, where ϕ0 requires
“never β2”. Let π = r[`1]. The history expression H0 of
e0 (inferred as in Ex. 7) is π-valid. Indeed, 〈〈H0〉〉π = (`0 :
{ϕ0[β1]}, `1 : {ϕ[α1γ]}), and both ϕ0[β1] and ϕ[α1γ] are
valid. As predicted by Theorem 2, the plan π is viable for
e0 at `0:

`0 : π B ε, ϕ0[(req rρ(λ.γ))∗] ‖ `1 : 0 B ε, ∗

→ `0 : π B ε, ϕ0[(wait `1)∗] ‖ `1 : 0 B σ, e1(λ.γ)

→ `0 : π B ε, ϕ0[(wait `1)∗] ‖ `1 : 0 B σα1, γ; (λ.β1)

→ `0 : π B ε, ϕ0[(wait `1)∗] ‖ `1 : 0 B σα1γ, (λ.β1)

→ `0 : π B ε, ϕ0[(λ.β1)∗] ‖ `1 : 0 B ε, ∗

→ `0 : π B β1, ϕ0[∗] ‖ `1 : 0 B ε, ∗

Note that we have not displayed the configurations at site
`2, because irrelevant here. Consider now the plan π′ =
r[`2]. Then H0 is not π′-valid, because 〈〈H0〉〉π

′

= (`0 :
{ϕ0[β2]}, `2 : {ϕ[α2γ]}), and the event β2 violates ϕ0. In
this case the computation:

`0 : π B ε, ϕ0[(req rρ(λ.γ))∗] ‖ `2 : 0 B ε, ∗

→∗ `0 : π B ε, ϕ0[β2] ‖ `2 : 0 B ε, ∗

is correctly aborted, because β2 6|= ϕ0.

In the following section, we shall present a verification
technique that extracts from a history expression the plans
that make it valid.

6 Orchestrating services

Once extracted a history expression H from a client e,
we have to analyse H to find if there is any viable plan for
the execution of e. This issue is not trivial, because the ef-
fect of selecting a given service for a request is not confined
to the execution of that service. For instance, the history
generated while running a service may later on violate a pol-
icy that will become active after the service has returned, as
shown in Example 10 below. Since each service selection
affects the whole execution of a network, we cannot simply

devise a viable plan by selecting services that satisfy the
constraints imposed by the requests, only.

Example 10. Let e = (λx. (req r2ρ2)x) ((req r1ρ1)∗), be
a client, ρ1 = τ −→ (τ −→ τ) and ρ2 = (τ −→ τ)

ϕ
−→ τ ,

where τ = unit and ϕ requires “never γ after β”. Intu-
itively, the service selected upon the request r1 returns a
function, which is then passed as an argument to the service
selected upon r2. Assume the network comprises exactly
the following four services:

`1〈e`1 : τ
α
−→ (τ

β
−→ τ)〉 `2〈e`2 : (τ

h
−→ τ)

h·γ
−−→ τ〉

`′1〈e`′1 : τ
α′

−→ (τ
β′

−→ τ)〉 `′2〈e`′2 : (τ
h
−→ τ)

ϕ′[h]
−−−→ τ〉

where ϕ′ requires “never β′”. Since the request type ρ1

matches the types of e`1 and e`′
1
, both these services can

be selected for the request r1. Similarly, both e`2 and e`′
2

can be chosen for r2. Therefore, we have to consider four
possible plans when evaluating the history expression H of
e:

H ={r1[`1] B `1 : σ · α, r1[`
′
1] B `′1 : σ · α′} ·

{r2[`2] B `2 : ϕ[σ · {r1[`1] B β, r1[`
′
1] B β′} · γ],

r2[`
′
2] B `′2 : ϕ[σ · ϕ′[{r1[`1] B β, r1[`

′
1] B β′}]]}

Consider first H under the plan π1 = r1[`1] | r2[`2], yield-
ing 〈〈H〉〉π1 = (`0 : ∅, `1 : {α}, `2 : {ϕ[βγ]}). Then, H
is not π1-valid, because the policy ϕ is violated at `2. Con-
sider now π2 = r1[`

′
1] | r2[`′2], yielding 〈〈H〉〉π2 = (`0 :

∅, `′1 : {α′}, `2 : {ϕ[ϕ′[β′]]}). Then,H is not π2-valid, be-
cause the policy ϕ′ is violated. Instead, the remaining two
plans, r1[`1] | r2[`′2] and r1[`′1] | r2[`2] are viable for e.

As shown above, the tree-shaped structure of planned
selections makes it difficult to determine the plans under
which a history expression is valid. Things become eas-
ier if we “linearize” such a tree structure into a set of his-
tory expressions, forming an equivalent planned selection
{π1 B H1 · · ·πk B Hk}, where no Hi has further planned
selections. For instance, the linearization of H in Exam-

ple 10 is:

{r1[`1] | r2[`2] B `1 : σ · α · (`2 : ϕ[σ · β · γ]),

r1[`1] | r2[`
′
2] B `1 : σ · α · (`′2 : ϕ[σ · ϕ′[β]]),

r1[`
′
1] | r2[`2] B `′1 : σ · α′ · (`2 : ϕ[σ · β′ · γ]),

r1[`
′
1] | r2[`

′
2] B `′1 : σ · α′ · (`′2 : ϕ[σ · ϕ′[β′]])}

We say that H is equivalent to H ′ (H ≡ H ′ in symbols)
when 〈〈H〉〉π = 〈〈H ′〉〉π , for each plan π. Also, a history ex-
pressionH is linear whenH = {π1 BH1 · · ·πkBHk}, the
plans are pairwise independent (i.e. πi 6v πj for all i 6= j)
and no Hi has planned selections. The following properties
of ≡ hold.
Equational properties of planned selections

H ≡ {0 BH} (1)
{πi BHi}i∈I · {π′

j BH ′
j}j∈J ≡

{πi | π
′
j BHi ·H

′
j}i∈I,j∈J

(2)

{πi BHi}i∈I + {π′
j BH ′

j}j∈J ≡
{πi | π′

j BHi +H ′
j}i∈I,j∈J

(3)

ϕ[{πi BHi}i∈I] ≡ {πi B ϕ[Hi]}i∈I (4)
µh. {πi BHi}i∈I ≡ {πi B µh.Hi}i∈I (5)
{πi B {π′

i,j BHi,j}j∈J}i∈I ≡
{πi � π′

i,j BHi,j}i∈I,j∈J
(6)

where both operands of (2) and (3) are in linear form, and

where 0 � π = π r[`.π′] � π = r[`.π′ � π]
(π0 | π1) � π = (π0 � π) | (π1 � π)

The side condition in equations (2) and (3) is easily ful-
filled: it suffices to apply the (oriented) equations with the
leftmost-innermost evaluation rule. The following theorem
enables us to put history expressions in linear form, preserv-
ing their semantics.

Theorem 3. The relation ≡ is a congruence, and it satisfies
the equations displayed in the table above.

Example 11. Let H = µh. {r[`1] B α1, r[`2] B α2} · h.
Then, using equations (1), (6) and (2), we obtain:

H ≡ µh. {r[`1] B {0 B α1}, r[`2] B {0 B α2}} · {0 B h}

≡ µh. {r[`1] � 0 B α1, r[`2] � 0 B α2} · {0 B h}

= µh. {r[`1] B α1, r[`2] B α2} · {0 B h}

≡ µh. {r[`1] | 0 B α1 · h, r[`2] | 0 B α2 · h}

≡ µh. {r[`1] B α1 · h, r[`2] B α2 · h}

≡ {r[`1] B µh. α1 · h, r[`2] B µh. α2 · h}

Note that the originalH can choose a service among `1 and
`2 at each iteration of the loop. Instead, in the linearization
of H , the request r will be resolved into the same service

at each iteration. A slight extension of our machinery can
manage plans that are allowed to choose among a set of ser-
vices for each request. Here, the linearization of H would
comprise also the component r[{`1, `2}]Bµh. (α1+α2) ·h,
see [4] for details.

Example 12. Consider the history expression:

H = ϕ[{r[`1] B {r1[`2] B α, r1[`3] B β}} ·
{r′[`1] B {r1[`2] B α, r1[`3] B β}}]

The linearization of H is obtained as follows:

H ≡ ϕ[{r[`1] � r1[`2] B α, r[`1] � r1[`3] B β} ·

{r′[`1] � r1[`2] B α, r′[`1] � r1[`3] B β}]

≡ ϕ[{r[`1.r1[`2]] B α, r[`1.r1[`3]] B β} ·

{r′[`1.r1[`2]] B α, r′[`1.r1[`3]] B β}]

≡ {r[`1.r1[`2]] | r
′[`1.r1[`2]] B ϕ[α · α],

r[`1.r1[`2]] | r
′[`1.r1[`3]] B ϕ[α · β]

r[`1.r1[`3]] | r
′[`1.r1[`2]] B ϕ[β · α],

r[`1.r1[`3]] | r
′[`1.r1[`3]] B ϕ[β · β]}

If ϕ asks “never αα nor ββ”, then both ϕ[α · β] and ϕ[β ·
α] are valid, and so the corresponding plans r[`1.r1[`2]] |
r′[`1.r1[`3]] and r[`1.r1[`3]] | r′[`1.r1[`2]] are viable for
H .

Given a history expressionH , we obtain its linearization
in three steps. First, we apply equation (1) to each event,
variable and ε in H . Then, we orient the equations of The-
orem 3 from left to right, obtaining a rewriting system that
is easily proved finitely terminating and confluent – up to
the equational laws of the algebra of plans. The resulting
planned selection H ′ = {π1 B H1 · · ·πk B Hk} has no
further selections in Hi, but there may be non-independent
plans πi v πj . In the third linearization step, for each such
pairs, we update H ′ by inserting πi B Hi + Hj , and re-
moving πj BHj . Note that linearization can produce com-
ponents π B H where π is ill-formed, in the sense that it
maps a request to different services, within the same con-
text. For instance, r0[`0.r1[`1]] | r0[`0.r1[`2]] is ill-formed,
while r0[`0.r1[`1]] | r2[`0.r1[`2]] is not. We always dispose
such ill-formed components.

The following result enables us to detect the viable plans
for service composition: executions driven by any of them
will never violate security.

Theorem 4. If H = {π1 BH1 · · ·πk BHk} is linear, and
Hi is 0-valid for some i ∈ 1..k, then H is πi-valid.

Summing up, we extract from an client e a history ex-
pressionH , we linearize it into {π1 BH1 · · ·πkBHk}, and
if some Hi is valid, then we can deduce that H is πi-valid.
By Theorem 2, the plan πi safely drives the execution of e,

without resorting to any run-time monitor. To verify the va-
lidity of history expressions that have no planned selections,
it suffices to apply the model-checking technique of [3].

7 Conclusions and related work

A static approach has been proposed to study secure or-
chestration of services. We have presented a distributed
calculus with primitives for invoking services that respect
given security requirements. The actual histories that can
occur at runtime are over-approximated by a type and effect
system. These approximations are model-checked to find
the plans that guarantee secure executions, without the need
of execution monitoring.

We have extended our previous work [3] in two impor-
tant directions. First, we have modelled more faithfully net-
works of clients and services, by introducing an explicit no-
tion of location and of located executions. Distribution has
offered the advantage of running several clients and services
concurrently, but it has made complex to determine and se-
lect the behaviour of the single components of the network.
Second, we have devised a way of statically constructing the
plans that drive succesful, secure executions. In [3], all the
services matching the property imposed by a request con-
tributed to the validity of the history expression. Thus, even
a single service not respecting the global security require-
ments sufficed to invalidate the overall history expression,
which could no longer be used to devise viable composi-
tions. Instead, here we consider all the plans for service
composition one-by-one, and we single out those guaran-
teeing secure executions.

A possible direction for future research is to extend the
applicability of our method, to deal with networks where
services can be discovered and deleted on-the-fly. Multi-
choice plans [4] are a first solution to deal with services that
become unavailable, because they offer many choices for
the same request. Publication of new services poses instead
a major problem. To cope with that, one has to reconfigure
plans at run-time, by exploiting the new interfaces. How-
ever, incrementally checking viability of plans is an open
problem. A possible solution is to enrich history expres-
sions with hooks where new services can be attached. The
orchestrator then needs to check the validity of the newly
discovered plans, hopefully in an incremental manner.

Related Work. The secure composition of components un-
derlies Sewell and Vitek’s box-π [23], an extension of the
π-calculus that can express safety policies in the form of
security wrappers. These are programs that encapsulate a
component to control the interactions with other (possibly
untrusted) components. A type system that statically cap-
tures the allowed causal information flows between compo-
nents. Our safety framings are closely related to wrappers.

Hennessy, Rathke and Yoshida [14] propose a language
for distributed systems, called SAFEDPI. This language
allows for processes which may migrate between sites
in a controlled manner. The protection model relies on
capability-based types. The available resources and their
usage policies are modelled respectively as channels and ca-
pability types. Process immigration is controlled by (typed)
ports on the host location: roughly, the type of a port con-
straints the resources an incoming process can use. Gorla,
Hennessy and Sassone [13] consider a similar calculus,
where each site has a membrane that represents both a secu-
rity policy and a classification of the levels of trust of exter-
nal sites. A membrane guards the incoming agents before
allowing them to execute.

Recently, increasing attention has been devoted to ex-
press service contracts as behavioural (or session) types.
These synthetise the essential aspects of the interaction be-
haviour of services, while allowing efficient static verifica-
tion of properties of composed systems. Session types [15]
have been exploited to formalize compatibility of compo-
nents [26] and to describe adaptation of web services [8].
Security issues have been recently considered in terms of
session types, e.g. in [7], which proves the decidability of
type-checking in an extension of the π-calculus with ses-
sion types and correspondence assertions [28].

Other works have proposed type-based methodologies to
check security properties of distributed systems. For in-
stance, Gordon and Jeffrey [12] use a type and effect sys-
tem to prove authenticity properties of security protocols.
Web service authentication has been recently modelled and
analysed in [5, 6] through a process calculus enriched with
cryptographic primitives.

The problem of discovering and composing Web Ser-
vices by taking advantage of semantic information has been
the subject of a considerable amount of research and de-
velopment, [2, 9, 17, 19, 22, 25] to cite a few. The idea
is to extend the primitives of service description languages
with basic constructs for specifying properties of the pub-
lished interface. We can distinguish between semantic-web
descriptions [2, 19, 22, 25] in which service interfaces are
annotated with parameter ontologies, and behavioural de-
scription [9, 17] in which the annotation details the ordering
of service actions. A different solution to planning service
composition has been proposed in [16], where the prob-
lem of composing services in order to achieve a given goal
is expressed as a constraint satisfaction problem. Our ap-
proach extends and complements those based on behavioral
descriptions, with an eye to security. Indeed, our methodol-
ogy fully automates the process of discovering services and
planning their composition in a secure way.

Acknowledgments. We thank the anonymous referees for
their insightful comments. Research partially supported by
the EU, within the FETPI Global Computing, Project IST-

2005-16004 SENSORIA (Software Engineering for Service-
Oriented Overlay Computers).

References

[1] M. Abadi and C. Fournet. Access control based on
execution history. In Proc. of 10th Annual Network
and Distributed System Security Symposium, 2003.

[2] R. Akkiraju et al. Web Service Semantics. WSDL-S
technical note (version 1.0), 2005.

[3] M. Bartoletti, P. Degano, and G. L. Ferrari. Enforcing
secure service composition. In Proc. of 18th Computer
Security Foundations Workshop (CSFW), 2005.

[4] M. Bartoletti, P. Degano, and G. L. Ferrari. Plans for
service composition. In Workshop on Issues in the
Theory of Security, 2006.

[5] K. Bhargavan, R. Corin, C. Fournet, and A. D. Gor-
don. Secure sessions for web services. In Proc. of
ACM Workshop on Secure Web Services, 2004.

[6] K. Bhargavan, C. Fournet, and A. D. Gordon. A se-
mantics for web services authentication. In Proc. of
ACM Symposium on Principles of Programming Lan-
guages, 2004.

[7] E. Bonelli, A. Compagnoni, and E. Gunter. Type-
checking safe process synchronization. In Proc. of
Foundations of Global Ubiquitous Computing, 2004.

[8] A. Brogi, C. Canal, and E. Pimentel. Behavioural
types and component adaptation. In Proc. of AMAST,
2004.

[9] A. Brogi and R. Popescu. Towards semi-automated
workflow-based aggregation of web services. In Proc.
of ICSOC, 2005.

[10] F. Curbera, R. Khalaf, N. Mukhi, S. Tai, and S. Weer-
awarane. The next step in web services. Communica-
tions of the ACM, 46(10), 2003.

[11] D. K. Gifford and J. M. Lucassen. Integrating func-
tional and imperative programming. In ACM Confer-
ence on LISP and Functional Programming, 1986.

[12] A. Gordon and A. Jeffrey. Types and effects for asym-
metric cryptographic protocols. In Proc. of IEEE
Computer Security Foundations Workshop, 2002.

[13] D. Gorla, M. Hennessy, and V. Sassone. Security poli-
cies as membranes in systems for global computing.
In Proc. of FGUC, 2004.

[14] M. Hennessy, J. Rathke, and N. Yoshida. SAFEDPI:
a language for controlling mobile code. In Proc. of
Fossacs, 2004.

[15] K. Honda, V. Vansconcelos, and M. Kubo. Lan-
guage primitives and type discipline for structures
communication-based programming. In Proc. of
ESOP, 1998.

[16] A. Lazovik, M. Aiello, and R. Gennari. Encoding re-
quests to web service compositions as constraints. In
Constraint Programming CP, 2005.

[17] S. B. Mokhtar, N. Georgantas, and V. Issarny. Ad hoc
composition of user tasks in pervasive computing en-
vironment. In Software Composition, 2005.

[18] F. Nielson and H. R. Nielson. Type and effect systems.
In Correct System Design, 1999.

[19] M. Paolucci, T. Kawamura, T. Payne, and K. Sycara.
Semantic matchmaking of web services capabilities.
In First International Semantic Web Conference on
The Semantic Web, 2002.

[20] M. P. Papazoglou. Service-oriented computing: Con-
cepts, characteristics and directions. In WISE, 2003.

[21] M. Papazouglou and D. Georgakopoulos. Special is-
sue on service oriented computing. Communications
of the ACM, 46(10), 2003.

[22] P. Rajasekaran, J. A. Miller, K. Verma, and A. P.
Sheth. Enhancing web services description and dis-
covery to facilitate composition. In Semantic Web Ser-
vices and Web Process Composition, 2005.

[23] P. Sewell and J. Vitek. Secure composition of un-
trusted code: box-π, wrappers and causality types.
Journal of Computer Security, 11(2), 2003.

[24] J.-P. Talpin and P. Jouvelot. The type and effect disci-
pline. Information and Computation, 2(111), 1994.

[25] P. Traverso and M. Pistore. Automated composition
of semantic web services into executable processes. In
Proc. of ISWC, 2004.

[26] A. Vallecillo, V. Vansconcelos, and A. Ravara. Typ-
ing the behaviours of objects and components using
session types. In Proc. of FOCLASA, 2002.

[27] G. Winskel. The Formal Semantics of Programming
Languages. The MIT Press, 1993.

[28] T. Woo and S. Lam. A semantic model for authenti-
cation protocols. In IEEE Symposium on Security and
Privacy, 1993.

