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Abstract—Current machine learning models achieve super-
human performance in many real-world applications. Still, they
are susceptible against imperceptible adversarial perturbations.
The most effective solution for this problem is adversarial
training that trains the model with adversarially perturbed
samples instead of original ones. Various methods have been
developed over recent years to improve adversarial training
such as data augmentation or modifying training attacks. In
this work, we examine the same problem from a new data-
centric perspective. For this purpose, we first demonstrate that
the existing model-based methods can be equivalent to applying
smaller perturbation or optimization weights to the hard training
examples. By using this finding, we propose detecting and
removing these hard samples directly from the training procedure
rather than applying complicated algorithms to mitigate their
effects. For detection, we use maximum softmax probability as
an effective method in out-of-distribution detection since we can
consider the hard samples as the out-of-distribution samples for
the whole data distribution. Our results on SVHN and CIFAR-
10 datasets show the effectiveness of this method in improving
the adversarial training without adding too much computational
cost.

Index Terms—Adversarial Training, Attack, Data-Centric,
Out-of-Distribution Detection

I. INTRODUCTION

In recent years, deep neural networks (DNNs) are proving
to be successful in a variety of applications, such as image
processing [1]], Natural Language Processing [2]], etc. Never-
theless, we cannot still rely on them since they are subject
to adversarial examples that cannot even be recognized by
humans [3]-[5]. Adversarial examples are generated by adding
an optimized ¢, norm-bounded perturbation to the original
samples. Perturbing a sample within an e-ball around it may
change the prediction and significantly impact the model’s
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performance while in many applications, such as autonomous
driving [6[], robustness of the models against these attacks is
critical.

In order to achieve robust models against adversarial attacks,
several approaches have been proposed, with Adversarial
Training (AT) [7] proving to be the most effective. The
purpose of this method is to learn a robust model through
solving a min-max problem. Briefly, AT first tries to find
the perturbations within the e-ball that causes the maximum
loss for each perturbed sample, which is referred as the
maximization part. Next, the model loss is minimized on the
perturbed samples rather than the original ones to learn more
robust features against the adversarial perturbations, which is
referred as minimization part. The minimization is done with
gradient descent method, while the maximization is often done
using an attack called Projected Gradient Descent (PGD) [7].

AT can be formulated as:
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where L(fo(x}),y;) is the prediction loss of model fp with
parameters 6 on the perturbed sample (z}, y;) within an e-ball
around z;.

Recently, several approaches have been proposed to en-
hance adversarial training. For instance, data augmentation
methods are used to improve robustness by applying better
augmentations or adding generated data in the training [9],
or perceptual training is suggested to cover a wider range of
training perturbation types [10].

In contrast with these methods, there are some other ap-
proaches that aim at differentiating between different samples
by changing the optimization weight in the training or the
training perturbation budget for each sample, without changing
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Fig. 1. Overview of our approach. The training set is first divided into k folds. After that, each time, we train model using k — 1 of folds, and the CCSP
scores (our measure to detect hard training samples) are calculated for samples of remaining fold using the trained model. By repeating this for all folds,
the CCSP score would be calculated for all training samples using this method. Then, we sort scores, and remove R samples with the lowest CCSP scores.
Finally, the model is trained on this new purified dataset rather than the original dataset.

the other training settings. For instance, [11] improves ro-
bustness by setting a sample-based perturbation budget during
adversarial training to move all the training samples to the
model’s decision boundaries during training.

Following these methods, we want to improve robustness
by differentiating between the samples with a new data-centric
approach. To this end, we try to modify the original training
set itself, but not by using training augmentation techniques,
or changing the training attack methods, or etc. In other words,
our efforts in this work is to fix the data which the code is
running on instead of changing the training method, which can
be classified as a data-centric approach.

For this purpose, we first note that the existing methods
that differentiate between different samples mainly try to
reduce the effect of the samples in decision boundaries in the
training process as discussed in section [[lI-A] Accordingly,
some samples in the training set are hard to learn for the
model during training. It can happen when samples are near
boundaries, or outside of their classes distributions due to
the reasons such as wrong labeling. Forcing the model to
learn these samples can reduce the generalization ability of
the model to the test samples. This problem gets even worse
in AT since an e-ball is enforced around those hard samples.

To mitigate this issue with a data-centric approach, we
propose to identify these samples, and improve the data quality
by deleting them from the dataset, regardless of the training
method and the setup. These samples can be detected before
the training process, which we call it the “offline” method, or
adaptively during training, which we call the “online” method.
Moreover, for identifying these samples, we utilize softmax
probability as a measure that can determine whether a sample
is out-of-distribution [12]]. Finally, the remaining samples are
used to train the model after the hard samples are detected

and removed from the training dataset. This method is shown
schematically in Fig. [1]

Our Results on the CIFAR-10 and SVHN datasets demon-
strate that this data-centric strategy can enhance model’s
robustness with both “offline” and “online” methods, without
significantly raising computational cost. We also point out that
softmax probability as the detection method can be substituted
with Mahalanobis distance [13]], and the findings still show
improvement. We hope this work to be a start on using data-
centric approaches in adversarial training.

II. RELATED WORKS

Deep networks are vulnerable to attacks, while defenses at-
tempt to achieve a robust model against them. In the following,
some popular adversarial attacks and defenses are explored.

A. Attack

The threat of adversarial examples was first noticed in image
classification models [4]. The accuracy of the model can be
significantly reduced when a norm-bounded perturbation is
added to the input. This perturbation can be generated with
iterative updates based on the loss function gradient [14] as:

0p = 01 + a.sign(V, J (0, z,y)), 2)

where J; is the perturbation at step ¢, and J (6, z,y)) is the cost
used to train the neural network with parameters 6. To ensure
that the perturbation is imperceptible, it can be projected to
the ¢,-norm ball which is known as the Projected Gradient
Descent (PGD) attack [8]]. There are also some other powerful
attacks, but PGD is regarded as a standard attack for training
and evaluation.
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Fig. 2. Some images from CIFAR-10 dataset whose labels are hard to recognize even by humans.

B. Defense

Several methods have tried to stand against adversarial
examples, but they mostly give a false sense of robustness due
to the reasons such as gradient obfuscation or vulnerability
against newer attacks . Still, the best existing defense is
adversarial training [8]], which trains the model with adversar-
ial examples. Due to the effectiveness of adversarial training,
recent methods have tried to improve it by methods such as
data augmentation []g[], training attack modification , and
model hyper-parameters tuning [16]).

III. METHOD
A. A new perspective on some of existing defenses

As mentioned in section [[[-B] there are different variants of
adversarial training. Taking a closer look at them from a differ-
ent angle, we can demonstrate that some of them are equivalent
to applying smaller perturbation or optimization weights to the
hard training examples in the model optimization. To this end,
a number of methods are investigated in the following.

CAT and TAAT [I1]: These methods hypothesize that
the poor generalization of adversarial training is a consequence
of uniform perturbation radius around every training sample.
They suggest a sample-specific perturbation radius that in-
creases the radius until the perturbed sample is miss-classified.
Thus, the hard training examples would have smaller pertur-
bation budgets during training to simplify the training of the
model.

MART [[18]: This method proposed to explicitly differenti-
ate the misclassified and correctly classified examples during
the training by setting lower training optimization weight for
the misclassified unperturbed samples. Misclassified samples
are presumably near the boundary, so they can be considered
hard training examples for the model, which this method
suggests assigning a lower optimization weight to.

TRADES [19]: There is a trade-off between clean and
adversarial accuracy. To mitigate this issue, TRADES suggests
to trade adversarial robustness off against accuracy by training
model on clean examples while minimizing the KL divergence
of model prediction for clean and perturbed samples. Hence,
if a sample is near boundary and have a high prediction error,
the KL divergence term would get a smaller value and the
model would focus on learning the clean example.

Early stopping [20]: It is shown that overfitting to the
training set harms robust performance in adversarially robust
training. In other words, model can learn adversarially per-
turbed training samples with a high accuracy but it does not

generalize well to the test samples. As a solution, the training
can be stopped early if overfitting occurs using a validation
set. This is equivalent to stop training before learning out-of-
distribution or hard samples.

Noisy label [21]]: Similar to standard training, adversarial
training also suffers from noisy labels during training. A
measure that can help to detect the noisy samples is the number
of PGD iterations needed to generate misclassified adversarial
examples. In other words, this measure also tries to find the
near-boundary training examples using the number of PGD
steps as a distance measure.

B. Proposed Method

When training a model, we might come across a number
of samples that are close to the decision boundaries or even
outside of the training classes distributions. These samples
might have been produced as a result of a labeling error, or
other reasons such as conceptual ambiguity in the images that
makes classifying them even difficult for humans. Examples
of such samples can be seen in the Fig. 2] that represents some
images from the CIFAR-10 dataset.

Due to the difficulty of training a model on these sam-
ples, we refer to them as Hard Training Samples (HTS).
Additionally, learning an e-ball around these samples makes
training even more challenging and raises the risk of problems
like overfitting or mixed-up decision boundaries. Therefore,
we believe that they may be better avoided during training as
discussed in previous section on the existing methods.

There are many techniques for identifying such near-
boundary or out-of-distribution samples. Detecting samples
that do not fit into the classes of the training dataset is mainly
known as out-of-distribution (OOD) detection in the literature.
A simple but effective existing method for OOD detection is
Maximum Softmax Probability (MSP) [12]. This method uses
MaTee(1,2,.. k) fe(r) as the score function that classifier f
trained on a k-class dataset returns for input x to be classified
as the in-distribution sample.

Inspired by MSP, we propose Correct Class Softmax Prob-
ability (CCSP) as our method to detect HTS samples. CCSP
for sample x with label y is defined as:

2y
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Z]‘ e’
where z is the output of classifier for the input z. CCSP score
can be used as a measure to find the hard samples in com-

parison with other ones. This method has no computational
overhead during the training, and can be used easily.

CCSP(x,y) = softmaz(z,) = 3)



Now that we are able to recognize HTS, we can improve
the training process by removing these samples before the
training procedure begins. To this end, we need to measure the
CCSP score for each sample, which is done through a k-fold
cross-validation. Accordingly, we divide training dataset into
k folds called Fi,..., Fj. Each time, a single fold F; is put
aside and the rest are considered as the training dataset for
the model to be trained. Afterward, the CCSP is calculated
for the samples in F; fold. Eventually, the CCSP will have
been calculated for all of the samples in the training dataset
and R (hyper-parameter) samples with the lowest CSSP score
can be removed from the dataset. Finally, we can re-train our
model using the new dataset that is resulted after removing
such samples. This algorithm is called “offline” modification
of samples since all the process is done before the training
starts.

Due to the changes in decision boundaries during the
training process, samples that make a model’s optimization
struggling are not constant during training. In this line of
thought, we also propose the “online” version of our method.
In this version, after each epoch in the training loop, the CCSP
scores are calculated for all of the samples in the training
dataset and R samples with the lowest scores are removed
from the training dataset just for the subsequent epoch. Note
that the CCSP scores are calculated for all the training samples
in each epoch, and we do not leave out the samples that were
eliminated in the previous epochs.

It can be vividly understood that the offline version requires
more time to be accomplished, while this has noticeably been
diminished in the online version since the CCSP scores are
calculated as a apart of the training process rather than the
k-fold trainings prior to the main training procedure.

IV. EXPERIMENTS

We conduct experiments to demonstrate how our strategy
improves model robustness. We also attempt to assess ef-
fectiveness of our method while employing online or offline
detection of hard samples. In addition, for the purpose of
an ablation study, we use Mahalanobis distance rather than
softmax probability to identify hard samples. We also design
an experiment in the last part to show that model is capable
of learning OOD samples, and conclude that these samples
should be avoided in the training.

A. Experimental Setup

Two different datasets are used for evaluations, which are
CIFAR-10 [22] and SVHN [23]. We train our model on
CIFAR-10 for 200 epochs while train it on SVHN for 100
epochs since it converges faster. Also, PreActResNet18 is used
as the base model. In the training, the initial learning rate is set
to 0.1 and it is multiplied by 0.1 after 50% and 75% of epochs.
Moreover, SGD with momentum=0.9 and weight decay=5e—4
is used for the optimization.

In adversarial training, standard PGD attack with 10 itera-
tions and a single restart is used to generate the perturbations.
The perturbation is initialized randomly in the range [—e¢, €],

TABLE I
CLEAN AND ROBUST ACCURACY OF MODELS TRAINED ON CIFAR-10
AND SVHN DATASETS USING “OFFLINE” METHOD WITH DIFFERENT
NUMBER OF DELETED SAMPLES (R).

Dataset

R CIFAR-10 SVHN
Clean Robust Clean Robust
0 84.30%  48.42% 92.27% 83.21%
100 | 84.31%  49.02% 93.13% 87.23%
200 | 82.05%  47.06% 92.90% 86.51%
300 | 82.67%  49.52% | 93.48%  88.51%
400 | 84.13%  48.72% 92.53% 84.85%
500 | 84.49%  49.74% | 92.54% 84.82%
600 | 84.10%  49.03% 91.75%  78.48%
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and bounded in an /. -ball with € = 5z=. Also, attack step
size is set according to o = 2.5 x % where N is the number
of iterations.

B. Offline

According to our “offline” proposed method, first, the
dataset is divided into four folds. Each time, one fold is
selected and the model is trained on three other folds. Then, the
CCSP score is calculated for each sample in the selected fold
using trained model. It is done once for each fold to obtain
CCSP score for all samples. After that, samples are sorted
based on their CCSP scores, and then, R samples with the
lowest CCSP scores are eliminated from the dataset. Please
note that setting R to zero is equivalent to using the base
adversarial training, which is our baseline in this work.

Results are shown for different values of R in Table[ll As we
see, robustness is increased by removing the useless samples.
On the other hand, we also note that setting R to a large value
can remove the useful samples in addition to the hard samples.
The best performance is achieved by setting R equal to 500
in CIFAR-10 and 300 in SVHN.

Please note that the results are stable and reproducible. For
instance, in multiple runs of the experiment where R = 0
samples were removed (normal adversarial training), the stan-
dard deviation of clean and robust accuracy for the CIFAR-10
dataset is 0.16% and 0.54%, respectively.

C. Online

According to our “online” proposed method, the CCSP
scores are calculated for each sample after each epoch. Then,
the scores are sorted, and R samples with lowest scores are
removed only in the following epoch. R = 100 is used in this
part to avoid removing useful samples in addition to the hard
ones. In addition, according to the adaptive removability of
samples during training, removing 100 samples is sufficient.

Results are shown in Table [l Accordingly, this method
also improves robustness over the baseline (R = 0). So, we
can conclude that employing online strategy also works well.

D. Mahalanobis Distance

In addition to the softmax-based methods, the distance
between HTS and conditional distribution of the classes can



TABLE II
CLEAN AND ROBUST ACCURACY OF MODELS TRAINED ON CIFAR-10
AND SVHN DATASETS USING “ONLINE” METHOD.

Dataset
R CIFAR-10 SVHN
Clean Robust Clean Robust
0 84.30%  48.42% | 92.27% 83.21%
100 | 84.03% 49.66% | 92.78%  88.28%

be used to identify them. Two main techniques in this regard
are the Mahalanobis distance (MD) [[13]] and the Relative MD
(RMD) [24]. These techniques fit a conditional Gaussian dis-
tribution N (1%, %) to the pre-logit features A for a distribution
with K classes. The mean vector and covariance matrix are

calculated as: 1
== h, 4
Hi N, ) 4

Y=

2= Y w0, O

k=1iy;=k

for k=1,2,..., K, where Ny is the number of samples in the
class with label k, and N refers to the number of samples in
the dataset. Please note that 3 is shared among by all classes.
Afterward, the distance of the input x with pre-logits h, is
calculated as:

MDy(hy) = (hy — pu) 'S (he — 1), (6)
RMDk(hr) = MDk(hm) — MDo(hm), @)

where M Dg(h, ) represents the Mahalanobis distance of h,, to
a distribution fitted to the entire training dataset as A (g, Xo).
o and X are calculated as:

1 N
Mo = ;h )

| N
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According to these descriptions, we can use Absolute Relative
Mahalanobis Distance (ARMD) as an alternative method to
CCSP for detecting HTS. ARMD is defined as follows for
sample = with label y and pre-logit features h,:

By determining the ARMD score for each sample, we can sort
the samples in accordance with the calculated scores. After
that, we can remove the R samples with the lowest scores to
get rid of the hard samples similar to the proposed method
with CCSP method.

The result of this approach can be seen in the Table
where a noticeable improvement over the baseline (R = 0)
can be observed in most cases. As a result, our method is not
sensitive to the detection method.

TABLE III
CLEAN AND ROBUST ACCURACY OF MODELS TRAINED WITH THE
MAHALANOBIS SCORING METHOD INSTEAD OF CCSP.

R CIFAR-10
Clean Robust
0 84.30%  48.42%
100  83.77%  49.05%
200 81.86%  43.94%
300 84.15%  47.32%
400 83.64%  48.85%
450 84.60%  48.79%
500 83.77%  49.78%
550 84.38%  49.74%
600 82.89%  47.75%
TABLE IV

CLEAN AND ROBUST ACCURACY OF MODELS TRAINED ON CIFAR-10
AND SVHN DATASETS USING “ONLINE” METHOD WITH CLEAN TRAINING
OF HARD SAMPLES INSTEAD OF REMOVING THEM FROM DATASET.

Dataset
R CIFAR-10 SVHN
Clean Robust Clean Robust
0 84.30%  48.42% | 92.27%  83.21%
100 | 84.58%  48.44% | 93.73%  88.58%

E. Clean training instead of removing

An alternative option for removing the hard samples in our
method is using them without any perturbation in training.
This can be useful if all the samples in the dataset correlate
well with their assigned label.

To investigate the effectiveness of this method, the experi-
ment in section is repeated with clean training of hard
samples instead of removing them from dataset. Results are
shown in Table According to this table, this method is
effective in SVHN dataset, but it does not improve the baseline
(R = 0) in CIFAR-10. We believe that the reason for this
observation is that the quality of some of the CIFAR-10 images
is so substandard that even their clean training can be harmful
as can be seen in Fig. [2]

F. Are OOD samples learned?

In this section, we conduct an experiment to show the
capability of model in learning the OOD samples during
training, which can cause problems in adversarial training.
For this purpose, we add 50 random samples from CIFAR-
100 dataset to the CIFAR-10 training set. These samples are
randomly chosen from classes that are not shared between
CIFAR-10 and CIFAR-100, and they are randomly assigned
to one of the ten classes in CIFAR-10. So, we can consider
these samples as OOD samples in the training set.

Afterwards, the model is trained using the updated dataset
for 50 epochs. Results show that model classifies 40 out of
these 50 samples correctly in the last epoch of training. In
other words, model can learn 80% of the OOD samples in
training, which confirms our claims in this work. As a result,



TABLE V
ACCURACY (%) OF DIFFERENT DEFENSE METHODS ON CIFAR-10.

Defense CIFAR-10
Clean  Robust

Standard 84.08 48.42
MMA 84.40 49.20
Dynamic 82.97 50.27
TRADES 82.54 51.12
Online (R=100) | 83.81 49.66
Offline (R=500) | 84.49 49.74

the dataset should be purified before training, as has been done
in this study.

G. Comparison with other defenses

We have also made a comparison with some other recent de-
fenses on CIFAR-10 dataset in Table [Vl The defense methods
in this table are Dynamic [25], TRADES [19]], MMA [26],
standard adversarial training [8]], and our online and offline
proposed methods with the best R. Considering the fact that
there is a trade-off between clean and robust accuracy [19],
the results show that our method is competitive against other
variants of AT. Please note again that our method have a
different data-centric approach than those methods.

V. CONCLUSION

Adversarial training is shown to be the most effective
existing defense. Therefore, a lot of efforts have been made
to improve its result. In this work, we first demonstrated
that some of these improvements are made by behaving
differently with the near-boundary or hard samples in the
training. Accordingly, from a data-centric point of view, we
suggested to identify these samples to ignore them during
training. For this purpose, we used probablity and distance
based methods to detect the hard samples. After that, these
samples are removed from the dataset with two “offline” and
“online” methods. The “offline” method removes the hard
samples before the training, while the “online” removing is
done after each epoch in the training. The results on both of
the methods show improvements over the baseline.
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