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Resumo

Durante a evolução de software, sua estrutura inevitavelmente se torna mais difícil de
manter, a menos que um esforço explícito de manutenção seja feito para melhorá-la.
No intuito de resolver esse problema, a recomendação comum consiste em organizar
a estrutura do software em módulos. Esse processo é geralmente realizado através da
otimização de valores de métricas estruturais de coesão e acoplamento, por exemplo.
No entanto, trabalhos recentes começam a questionar a utilidade de métricas estrutu-
rais. Mais especificamente, essas métricas não expressam integralmente a melhoria na
arquitetura resultante de um processo de manutenção. Nesta dissertação de mestrado, é
seguida metodologia existente para avaliar métricas de software considerando remodu-
larizações reais, ou seja, cuja manutenção foi realizada pelos arquitetos do software. Foi
utilizado um conjunto de métricas que consideram similaridade textual entre artefatos
de software, chamadas métricas conceituais. Para realizar essa tarefa, foi relatado um
experimento sobre o uso de Agrupamento Semântico (Semantic Clustering) para avaliar
remodularizações de software. Agrupamento Semântico é uma abordagem que se ba-
seia em recuperação de informação e técnicas de agrupamento para extrair conjuntos
de classes similares de acordo com seus vocabulários. Foi reportada a adaptação que
realizou-se nessa técnica e esta adaptação foi avaliada usando seis remodularizações
de quatro sistemas de software. Observou-se que Agrupamento Semântico e métricas
conceituais podem ser usados para expressar e explicar a intenção dos arquitetors ao
realizar operações de modularização recorrentes, como decomposição de módulos.

Palavras-chave: Arquitetura de Software, Manutenção de Software, Remodulariza-
ção, Processamento de Texto, Recuperação de Informação, Semantic Clustering, Métri-
cas Conceituais.
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Abstract

As software evolves, its structure inevitably gets harder to understand and maintain,
unless explicit effort is done to improve it. To tackle this problem, the common recom-
mendation consists in organizing the software structure into modules. This process is
often performed by optimizing the value of cohesion and coupling metrics, for example.
However, recent work question the usefulness of structural metrics. More specifically,
structural metrics do not seem to fully express the architectural improvement resulted
from software maintenance. In this master dissertation, we follow an existing method-
ology to assess software metrics regarding real remodularization cases, i.e., in which
the maintenance was performed by the software’s architects. We use a set of recently
proposed metrics, called conceptual metrics, which consider textual similarity between
software artifacts. To accomplish this task, we report an experiment on using Semantic
Clustering to evaluate software remodularizations. Semantic Clustering is an approach
that relies on information retrieval and clustering techniques to extract sets of similar
classes in a system according to their vocabularies. In fact, we adapted Semantic Clus-
tering to support remodularization analysis. We then evaluate our adaptation using
six real-world remodularizations of four software systems. As a result, we conclude
that Semantic Clustering and conceptual metrics can be used to express and explain
the intention of architects when performing common modularization operations, such
as module decomposition.

Keywords: Software Architecture, Software Maintenance, Remodularization, Text
Processing, Information Retrieval, Semantic Clustering, Conceptual Metrics.
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Chapter 1

Introduction

A critical aspect in the design of any complex software system is its architecture, i.e.,
its high-level organization as a collection of components and the interactions between
them [Garlan and Perry, 1995]. The architecture of a system prescribes the organiza-
tion and interaction of its components, and the principles that guide the design of the
system over time [Garlan, 2000]. However, as a software evolves, its structure inevitably
gets more complex and harder to understand. Modifications become more difficult to
implement, unless explicit effort is done to improve the architecture [Lehman, 1996].
Remodularization consists in a sequence of modifications restricted to the structure of
the software. Remodularization is then recommended to improve the original archi-
tecture by organizing the system’s components in a modular structure [Anquetil and
Laval, 2011].

Despite the experience and good practices in software maintenance, there is no
solid agreement on what constitutes a good architecture [Anquetil and Laval, 2011].
The perception of architectural quality is subjective and also of great importance. A
grounded definition of architectural quality would assist the developers on the design
and the evaluation of candidate architectures during software maintenance and re-
modularization. Metrics and tools would be created in order to assist developers and
architects in achieving a better design for their software.

In most cases, remodularizations are guided by structural aspects, i.e., the static
dependencies between architectural components such as method calls or attribute us-
ages [Ujhazi et al., 2010; Anquetil and Laval, 2011]. For example, a common recom-
mendation is that (structural) cohesion should be maximized and coupling should be
minimized [Stevens et al., 1974]. In other words, a good architecture is the one whose
components have more dependencies between its internal elements (i.e., the compo-
nents are cohesive) and less dependencies between elements of other components (i.e.,

1



2 Chapter 1. Introduction

the components have low coupling). This recommendation can be manually followed
or with the help of metrics and refactoring tools [Mancoridis et al., 1999].

On the other hand, recent research proposes the use of lexical information from
source code [Corazza et al., 2011]. This information is often applied to concept loca-
tion and program comprehension. This lexical information, described for example in
identifiers and comments, can express the intention of developers [Kuhn et al., 2007;
Abebe et al., 2009]. Such approach is promising since it is estimated that up to 70%
of the source code (in number of characters) consists of identifiers [Abebe et al., 2009].
Recent work also proposes cohesion and coupling metrics, based on textual similarity
of software entities such as classes and methods [Marcus et al., 2004; Ujhazi et al.,
2010; da Silva et al., 2012].

1.1 Problem Description

After decades in software measurement, a variety of metrics have been proposed in the
literature. However, there is little evaluation of these metrics [Briand et al., 1998]. For
example, recent work question the structural cohesion/coupling dogma, stating that
“coupling and cohesion do not seem to be the dominant driving forces when it comes to
modularization” [Abreu and Goulão, 2001; Anquetil and Laval, 2011]. In other work,
Taube-Schock et al. [2011] stated that structural coupling metrics follow a power-
law distribution and, therefore, components with very high coupling are inevitable.
Another work showed that structural cohesion metrics usually present divergent results
when used to evaluate the same refactoring actions [Ó Cinnéide et al., 2012].

Anquetil and Laval [2011] conducted an empirical study with structural metrics
of cohesion and coupling, and real remodularization cases. This study contradicted
the cohesion/coupling dogma, by observing an increase in coupling after the remod-
ularizations. Therefore, it raises doubts about the use of traditional metrics to assist
software maintenance. More specifically, conventional cohesion and coupling metrics
do not fully represent the particular concepts behind them, as stated (in particular for
cohesion) by Ó Cinnéide et al. [2012]; or the cohesion/coupling dogma is not sufficient
to assess architectural quality, as stated by Abreu and Goulão [2001].

The study conducted by Anquetil and Laval [2011] motivated this master thesis
since it proposes the evaluation of quality metrics in real remodularization cases. It
provided insight on how software maintenance, as performed by developers, does not
follow the cohesion/coupling dogma, at least as expressed by structural metrics. This
fact needs attention because previous work relied on this dogma to propose new re-
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modularization by improving structural cohesion and coupling [Mancoridis et al., 1999;
Mitchell and Mancoridis, 2001].

Anquetil and Laval also discuss that other properties are overlooked by this type
of metrics. For example, an aspect of cohesion might be the degree that the compo-
nents of a software implement the same purpose [Sindhgatta and Pooloth, 2007; Kuhn
et al., 2007; da Silva et al., 2012]. Recently proposed metrics capture this property
by calculating the similarity of the text described in the source code. However, to the
best of our knowledge, there is also little evaluation work in the literature on concep-
tual metrics applied to software maintenance. In a recent work, Bavota et al. [2013a]
stated that semantic information, as captured by conceptual metrics, are more likely
to express the developers’ perception of identifying coupling between classes. Their
work is one of a few that analyzes the relevance of quality metrics, such as coupling,
according to the point of view of developers.

1.2 Goals and Contributions

The main goal of this master dissertation is to investigate the approach proposed
by Anquetil and Laval [2011] for evaluating real remodularization cases and struc-
tural metrics. Basically, we extend this approach by considering conceptual metrics,
i.e., metrics that analyze the information embedded in the comments and identifiers
in software [Ujhazi et al., 2010]. Conceptual metrics do not consider the hierarchy
of software artifacts nor the similarity of code fragments, unlike concern-based met-
rics [da Silva et al., 2012]. The similarity of software artifacts is computed only on the
textual information provided by developers.

The first conceptual metric, Conceptual Cohesion of a Package, calculates the
average similarity of all classes in a given package. The other two metrics we use in
this dissertation rely on the notion of concepts, i.e., groups of entities that share the
same purpose in the system [Ducasse et al., 2006; Kuhn et al., 2007]. Thus, Spread
measures the number of packages which contains a given concept. On the other hand,
Focus measures the concentration of a concept in the packages that it appears. In
order to extract these concepts, we use Semantic Clustering, an approach that relies
on information retrieval and clustering techniques to extract groups of classes with
similar vocabulary [Kuhn et al., 2005, 2007].

Figure 1.1 presents an overview of our approach. Following the methodology pro-
posed by [Anquetil and Laval, 2011], given a remodularization case, i.e., two versions
of a system with an explicit remodularization effort, we execute Semantic Clustering



4 Chapter 1. Introduction

in order to extract the concepts in each version (Semantic Clustering process in Fig-
ure 1.1). Then, we compute the conceptual metrics for both versions and we check
whether the metric values improved after the remodularization (Conceptual Metrics
Measurement step).

Regarding remodularization analysis, we analyze the occurrence of basic modu-
larization operators by correlating major changes in conceptual metric values to the
operators that were applied (Modularization Operators step). Previous work catego-
rize the operations more likely to occur in remodularizations [Rama and Patel, 2010].
For example, modularization operators may include the decomposition of modules, the
transferral of entities such as files and operations, and the creation of a module from
smaller ones.

The study proposed in this master dissertation has the distinguishing contribution
of analyzing how conceptual metrics evolve after an explicit remodularization effort.
This evaluation is not based on the perception of developers over a metric [Bavota et al.,
2013a], but rather on how these metrics reveal this perception when improving the
architecture. Moreover, we analyze the consequences of applying basic modularization
operators according to conceptual metrics.

We also propose the adaptation of Semantic Clustering to support the comparison
of two versions of a system. We force the number of generated clusters to be the same in
both versions, in order to facilitate their comparison by means of conceptual metrics.
Moreover, we propose the visualization analysis, using Distribution Maps [Ducasse
et al., 2006], to verify the evolution of the clusters after the remodularization. Finally,
we present a tool that supports our adapted methodology.

1.3 Organization

This master dissertation is organized in four chapters, which are described as follows:

• Chapter 2 presents related work to the central theme of this master dissertation.
More specifically, this chapter addresses the main goals of remodularizations,
provides an introduction on information retrieval applied to software engineering,
and discusses the evaluation of metrics that are applied to software architecture.
We also present Semantic Clustering, a visualization approach that extracts sets
of similar classes in a system according to their textual information [Kuhn et al.,
2007].
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System before System after
Semantic Clustering

Conceptual Metrics
Measurement

Concepts before Concepts after

Conceptual Metrics Assessment

Information Retrieval

Hierarchical Clustering

Conceptual Cohesion

Spread

Focus

Modularization Operators

Module Decomposition, Union

File, Function, Data Transferral

Promote Function

Figure 1.1. Overview of the proposed approach
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• Chapter 3 presents the improvements we proposed to Semantic Clustering, in
order to extract a feasible number of clusters and to support remodularization
analysis. This chapter also presents the tool support of our approach.

• Chapter 4 presents the evaluation we conducted with conceptual metrics and
real remodularization cases (Eclipse, JHotDraw, NextFramework and Vivo). We
discuss the most common remodularization operators and whether conceptual
metrics are able to express the architectural improvement in the systems under
analysis.

• Chapter 5 concludes this dissertation and presents the contributions of the work.
We also discuss the limitations of the proposed approach and directions for future
research.



Chapter 2

Background

This chapter presents the related work to this master dissertation. Section 2.1 presents
the definition of remodularization and challenges in this area. Section 2.1.1 reports
recent work on categorizing the operators most likely to occur in remodularizations.
Section 2.2 and Section 2.3 presents recent work in Software Architecture Reconstruc-
tion. Section 2.4 presents the basis of Information Retrieval techniques, as well as its
application in Reverse Engineering; and Section 2.5 presents Semantic Clustering as
the main technique that was applied in this dissertation. Section 2.6 and Section 2.7
reports recent work in evaluation of structural and conceptual metrics, respectively.
Section 2.8 presents final remarks of the literature review.

2.1 Software Remodularization

Refactoring, as proposed by Fowler et al. [1999], is defined as “a change made to the
internal structure of software to make it easier to understand and cheaper to modify
without changing its observable behavior”. Basically, it is performed as a series of small
changes that modify the structure of the code and improve it for further modifications.
On the other hand, the definition also emphasizes that the new software must have the
same functions as before. Therefore, refactoring is not applied to correct faults, or to
add new features.

Although the definition explicitly cites maintainability as the main goal of refac-
toring, it is also used to achieve other goals. Demeyer et al. [2002] list other factors,
as organizing a former monolithic system into modules, porting a system to a new
platform, or supporting a new technology. In general, refactoring is a means to mod-
ify the code in order to provide some aspect in quality that it did not provide before
(comprehensibility or portability, for example) [Fowler et al., 1999].

7



8 Chapter 2. Background

Fowler et al. [1999] also introduce the definition of Big Refactorings, also referred
as Large Scale Refactorings, Architectural Refactorings or Remodularization in the lit-
erature. Big Refactoring is a major change in design and implementation that impacts
the architecture. It is referred as “re”-engineering by the fact that one is rewriting
parts of a system without changing its behavior. Only the design and implementation
is changed [Bird, 2012].

Prior to re-design the existing code, it is necessary to understand how the design
decisions are actually reflected in the source code. Architecture conformance tech-
niques aim to discover the gap between concrete and planned architectures [Knodel
and Popescu, 2007; Passos et al., 2010]. The motivation of such analysis rely on the
fact that software architecture documentation is seldom maintained, if available at
all [Bayer, 2004]. The main goal of architecture conformance is to prevent the accumu-
lation of deviations from planned architecture by source code, a phenomenon known
as architectural erosion [Perry and Wolf, 1992].

Knodel and Popescu [2007]; Passos et al. [2010] conducted a literature review on
conformance checking techniques. These techniques include the extraction of static
dependencies through search queries [Verbaere et al., 2008], checking architectural de-
viations by defining design rules [Murphy et al., 1995; Terra and Valente, 2009], or by
mining design rules from software repositories [Maffort et al., 2013].

Thus, remodularizations are applied to improve the architecture in order to con-
form to the implemented design [Anquetil and Laval, 2011; Terra et al., 2014]. It is
worth noting that remodularizations are not necessarily applied in the context of ar-
chitectural erosion only, but also to improve other properties in the architecture, such
as adaptation, portability, or evolution. The benefits of remodularization relates to
software architecture benefits itself. New components can be built from well-defined
interfaces and other projects can use these components. In this case, it is easy to lo-
cate and comprehend a refactored entity to be modified (i.e., maintainability increases).
Moreover, remodularization provides a support for extensibility. The new components
can be easily extended to support new capabilities.

However, remodularizations come with a price. They require the comprehension
of the system as a whole in order to define the new structure. Program comprehension
on legacy systems and architectures in some stage of erosion becomes a challenge. For
example, Sarkar et al. [2009] report their experience in the remodularization of a legacy
banking system, which had more than 25 MLOC. The project took two years, involving
hundreds of developers.

In such a long period, it is difficult to keep enhancements or bug corrections out
of the remodularization. In the context of agile development, one may keep adding
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functions or correcting bugs for upcoming deadlines and further releases. Murphy-
Hill et al. [2009] refer to this kind of activity as floss refactor, as opposed to root-canal
refactor referring to exclusive refactoring changes. Such problem relates to Kent Beck’s
metaphor of Two Hats [Fowler et al., 1999]: developers perform small refactorings to
provide support to a new function, as well as they refactor a new function to make
it easier to maintain. During software development, it is common to switch hats and
include both refactorings and enhancements.

Other challenge of remodularizations is the scope of their applicability. There
are a growing number of tools supporting small refactorings. Some tools—such as the
Smalltalk Refactoring Browser [Roberts et al., 1997] and the refactoring menu in Eclipse
[Eclipse, 2013]—support small refactorings proposed by Fowler et al. [1999]. Even
though these transformations are not totally safe [Soares et al., 2013] and developers
do not fully take advantage of refactoring tools [Vakilian et al., 2012], they facilitate
the process of applying refactor changes.

However, at the architectural level, there is a need for automation of remodular-
izations [Fowler et al., 1999; Lippert and Roock, 2006; Bourqun and Keller, 2007; Terra
et al., 2012, 2014]. In the remodularization of the banking system reported by Sarkar
et al. [2009], some analysis tools were proposed to extract static dependencies such
as function calls, but the changes performed in this remodularization were completely
manual.

When applying code refactoring, there is a catalog of small scale examples to
follow [Fowler et al., 1999; Demeyer et al., 2002]. But in remodularizations, there
are few guidelines or patterns to follow when starting to modularize a legacy system.
Because of this drawback, remodularization is often applied in an advanced stage of
architectural erosion [Anquetil and Laval, 2011].

2.1.1 Modularization Operators

Rama and Patel [2010] formalized six elementary operations that are likely to occur in
any remodularization, called modularization operators. These operators were recurring
in three remodularization cases, including Linux and Mozilla. They also discuss specific
situations to which every operator was applied. A short description of each operator
is given as follows:

• Module Decomposition (MD): the most recurring operator consists in par-
titioning a big module into smaller ones. Files are distributed over these new
modules to create groups of high-related files.
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• Module Union (MU): the opposite operator of Module Decomposition consists
in creating a bigger module from smaller ones. It is often applied when files have
similar responsibilities, but they are placed in different modules.

• File Transferal (FT): this operator consists in transferring a file to another
module. It is similar to a Move Class refactoring in Fowler’s catalog [Fowler et al.,
1999]. Module Union and Module Decomposition are then a composition of File
Transferal operators: new modules are created and existing files are transferred
to these modules.

• Function Transferal (FuT): similar to Move Method [Fowler et al., 1999], this
operator moves one function from one file to another. It is often applied when a
function is misplaced in its current file.

• Promote Function to API (PF): this operator defines a “promotion” of a
function in its scope. As an example in object-oriented systems, a method is
changed from private to public. It is the less common operator in the toolkit. It
is applied if a function is generic and it can be required by other classes.

• Data Structure Transferal (DT): basically, this operator moves one attribute
to another file. It is often performed in conjunction with Function Transferal,
sharing similar goals.

Although the authors described algorithms to identify the proposed operators,
they do not provide tool support for this purpose. Thereupon, they do not evaluate
the benefits (in terms of quality) of applying the proposed operators.

2.2 Software Architecture Reconstruction

It is estimated that up to 60% of software maintenance effort is spent on understanding
the code to be modified [Abran et al., 2001]. Particularly in open-source systems, there
are few or even no documentation available and updated. All of the knowledge about
the system is described in source code. Therefore, understanding the system in order
to apply changes becomes a challenge.

There are many approaches that extract a high-level model of software, most of
them rely on the reverse engineering of the source code. These approaches are catego-
rized in the literature as Software Architecture Recovery [Ducasse and Pollet, 2009].
By extracting an updated model from the source code, SAR techniques improve the
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comprehension of how the code was implemented, the design decisions, and potential
architectural problems [van Deursen et al., 2004].

On the other hand, SAR techniques can help architects to propose new architec-
tures based on properties of the source code artifacts. These properties might consider
different aspects of relationships: common change [Zimmermann et al., 2003; Beyer
and Noack, 2005], high-coupling [Mitchell and Mancoridis, 2006], or implementation of
a common concern [Bavota et al., 2013b]. A recent work relies on Information Retrieval
techniques to group these artifacts by their textual content [Pollet et al., 2007].

After applying a SAR technique, each artifact is assigned to a property or group.
Manual SAR approaches rely on the generation and visualization of properties in source
code, rather than propose a new organization of architectural entities. Therefore, after
applying these approaches, the expertise of the architect is still necessary to conduct
architectural decisions.

2.3 Distribution Map

Distribution Map is a generic visualization approach to visualize source code artifacts
according to a given property [Ducasse et al., 2006]. Given two partitions of the same
entities set, the reference partition denotes a well-known partition, and the comparison
partition is the one that is discovered by SAR. Typically, the reference partition relates
to the namespace organization (or packages, for some object-oriented languages).

In a distribution map, the reference partition is represented as rectangles con-
taining filled squares. Each square represents a source code artifact, generally a file or
a class. Finally, the color of a square denotes the property its represented artifact was
assigned. Therefore, in our further experiments with software systems, we consider
that a class belongs to a package and it is also assigned to a given property. The dis-
tribution map shows how the comparison partition (i.e., the class properties) matches
the reference partition (i.e., the package distribution).

Figure 2.1 illustrates a simple distribution map generated by the Moose platform
[Nierstrasz et al., 2005], from the source code of the Colt project.1 This map has
five properties which relate to the number of lines of code: lighter colors (i.e., yellow,
orange, and cyan) denote classes with few lines of code; on the other hand, darker colors
(i.e., blue and red) denote classes with more than 75 and 100 lines of code, respectively.
From the visualization, we conclude that most of the smaller classes are concentrated

1http://acs.lbl.gov/software/colt/
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Figure 2.1. Distribution Map of Colt

in the function package. In general, most classes of this project are large, as red is
used to fill classes with more than a hundred lines of code.

Ducasse et al. [2006] also proposed two metrics—spread and focus—to calculate
the concentration of a property over the reference partition. These metrics are later
described in Section 2.7.

2.4 Information Retrieval

Information Retrieval (IR) deals with the representation, storage, organization, and
access to information items, usually unstructured documents specified in natural lan-
guage [Baeza-Yates and Ribeiro-Neto, 2011]. The goal is to provide easy access to
information of the user’s interest. Research in information retrieval includes modeling
high performances algorithms to process data and language analysis in order to provide
relevant query results.

The basic core of any IR system is presented in Figure 2.2. At the preprocessing
level (left), the system gathers data in documents. The IR system extracts and
filters information in each document, which results in a collection of terms for each
document. Terms and documents are then indexed to facilitate the retrieve terms
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Documents

Terms Collection
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Query Results
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Document Indexing

Retrieval Process

Term Processing

Figure 2.2. Components of an Information Retrieval System

of a given document. Meanwhile, at the user level, the information retrieval begins
when a user enters a query into the system. The same filtering process can be done
for queries to improve their relevance. The retrieval process consists in gathering the
most relevant documents that fits the given query. Each module is detailed as follows:

Crawling is the process of gathering data. In Web applications, this is a complex pro-
cess that handles with pages, relevance indexes, and hyperlinks. Basically, it involves
the selection of relevant documents for the database to build a search engine upon it.
This process is out of the scope of this dissertation.

In order to assist the understanding of how an IR system works, we present a
small example. Suppose we want to extract information from software written in a
particular language (for example, Java). In the Web or in private repositories, there
are a lot of projects that we need to filter. In the crawling process, a decision is made to
determine (i) from which repositories the information will be extracted and (ii) which
content of the selected repositories are considered as documents. For example, we
should decide to extract information from open source projects in the Qualitas Corpus
[Tempero et al., 2010; Terra et al., 2013]. A document will then represent a class of
each project.
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Definition I — Document is a unit of retrieval [Baeza-Yates and Ribeiro-Neto,
2011]. Documents are anything from which one can extract information. They can
be Web pages, books, images, or source code files, for example.

Corpus Creation is the process of extracting content from documents as a sequence
of characters. The text extraction process relies on the format of each document. For
example, source code in a given programming language or XML files have different
ways to extract text. The result of this stage is the representation of each document
of the database in plain text.

Following the example, the database comprises all classes from each project in
the Qualitas Corpus. In order to illustrate how text extraction is performed in each
class, we use one class from the Colt project as example: SparseDoubleMatrix2D. A
summary of this class’ source code is shown in Code 2.1.

Code 2.1. Summary of SparseDoubleMatrix2D’s source code.
public class SparseDoubleMatrix2D extends DoubleMatrix2D {

protected AbstractIntDoubleMap elements ;
protected int dummy;

public SparseDoubleMatrix2D (double [ ] [ ] va lue s ) { . . . }
public SparseDoubleMatrix2D ( int rows , int columns ) { . . . }
public SparseDoubleMatrix2D ( int rows , int columns , . . . ) { . . . }
protected SparseDoubleMatrix2D ( int rows , int columns , IntDoubleMap . . . ) { . . . }

public DoubleMatrix2D as s i gn (double value ) { . . . }
public DoubleMatrix2D as s i gn ( DoubleFunction func t i on ) { . . . }
public DoubleMatrix2D as s i gn ( DoubleMatrix2D source ) { . . . }
public DoubleMatrix2D as s i gn ( DoubleMatrix2D y , DoubleFunction func t i on ) { . . . }
public int c a r d i n a l i t y ( ) { . . . }
public void ensureCapacity ( int minCapacity ) { . . . }
public DoubleMatrix2D forEachNonZero ( IntIntDoubleFunct ion func t i on ) { . . . }
public double getQuick ( int row , int column ) { . . . }
protected boolean haveSharedCellsRaw ( DoubleMatrix2D other ) { . . . }
protected int index ( int row , int column ) { . . . }
public DoubleMatrix2D l i k e ( int rows , int columns ) { . . . }
public DoubleMatrix1D l ike1D ( int s i z e ) { . . . }
protected DoubleMatrix1D l ike1D ( int s i z e , int o f f s e t , int s t r i d e ) { . . . }
public void setQuick ( int row , int column , double value ) { . . . }
public void tr imToSize ( ) { . . . }
protected DoubleMatrix2D v i ewSe l e c t i onL ike ( int [ ] rowOffsets , int [ ] . . . ) { . . . }
public DoubleMatrix1D zMult ( DoubleMatrix1D y , DoubleMatrix1D z , . . . ) { . . . }
public DoubleMatrix2D zMult ( DoubleMatrix2D B, DoubleMatrix2D C, . . . ) { . . . }

}

For corpus creation, we consider the identifiers in this class, including the name
of the class and names of its methods and attributes. After creating the corpus,
SparseDoubleMatrix2D is represented as the text described in Figure 2.3.
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assign assign assign assign cardinality dummy elements ensureCapacity
forEachNonZero getQuick haveSharedCellsRaw index like like1D like1D

setQuick SparseDoubleMatrix2D SparseDoubleMatrix2D SparseDoubleMatrix2D
SparseDoubleMatrix2D trimToSize viewSelectionLike zMult zMult

Figure 2.3. Text extraction of the identifiers of class SparseDoubleMatrix2D.

However, the resulting text does not have relevant tokens yet. Tokenization is the
process of separating entire texts in a set of tokens. Therefore, this process depends on
the language the text is described, as each language has its own set of rules for token
separation.

Definition II — Token is a sequence of characters in particular documents that are
grouped together as a useful semantic unit for processing [Manning et al., 2008]. A
token might not have meaning until it is properly processed.

For example, in English there are rules to separate tokens with hyphenation and
quotation marks, such as don’t. In programming languages, which does not allow
spaces in entity names, identifiers with more than one word are often represented in
camelCase or under_score notation. When applying tokenization in the identifiers
from the example class, each word in the camel case notation is separated as depicted
in Figure 2.4. For example, the name of the class SparseDoubleMatrix2D is separated
in the following terms: sparse, double, matrix, and d

assign assign assign assign capacity cardinality cells d d d d d d double
dummy each elements ensure for get have index like like like like matrix
matrix matrix matrix mult mult non quick quick raw selection set size

shared sparse sparse sparse sparse to trim view z zero

Figure 2.4. Tokenization of the text in SparseDoubleMatrix2D.

Common words that do not add meaning to the text, called stopwords, are also
excluded. Some IR systems consider removing small words as well. Text Normalization
consists in canonicalizing tokens that might be different in form, but have the same
meaning. Stemming is a common way to normalize tokens, by removing affixes and
suffixes of each token. For example, select, selected, and selection have the same
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stem select. Figure 2.5 shows the result of stemming the text in our example class.
For example, the stemming process removes the plural of cells and the conjugation
of the verb ensure (see Figure 2.4 and Figure 2.5 for comparison).

Definition III — Stem is the root or main part of a word.

Definition IV — Term is a normalized word that is included in the IR sys-
tem’s vocabulary [Manning et al., 2008].

Definition V — Vocabulary is the set of all distinct terms in a document
[Baeza-Yates and Ribeiro-Neto, 2011].

assign assign assign assign capac cardin cell d d d d d d doubl dummi each
element ensur for get have index like like like like matrix matrix matrix
matrix mult mult non quick quick raw select set size share spars spars

spars spars to trim view z zero

Figure 2.5. Stemming of text in SparseDoubleMatrix2D.

TermWeighting is the process of assigning a weight for a term in a document. Most of
the proposed weighting functions rely on both the term frequency in a document (term
frequency, or TF) and the frequency of the term in the whole document set (document
frequency, or DF) [Baeza-Yates and Ribeiro-Neto, 2011]. Luhn [1957] proposed that the
more the term occurs in a document, the greater its weight must be in this document.
Therefore, the search of a term in the vocabulary will result in the documents that
have higher amount of this term.

Definition VI — Term Frequency is the sum of occurrences of one term in the
document, optionally divided by the amount of terms in the document.

Definition VII — Document Frequency is the amount of documents in the
database in which a given term occurs at least once [Baeza-Yates and Ribeiro-
Neto, 2011].

In the SparseDoubleMatrix2D example, the term matrix has its frequency equal
to 4/49, since it occurs four times in this document with 49 terms. Since we are working
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with only one document in this example, the document frequency of all terms is equal
to one.

Zipf [1932] proposed that the document frequency of terms follows a power-law
distribution. Thereby, it is common to have terms that occur in most documents of the
dataset. These terms are not necessarily relevant to the vocabulary, since they do not
distinguish the documents of the dataset [Linstead et al., 2009]. In order to normalize
the weight of a term based on its frequency, an inverse document frequency is proposed
to penalize frequent terms.

Definition VIII — Inverse Document Frequency: given the number N of documents
in the dataset and the document frequency df t of a term, IDF is defined as:

idft = log
N

dft

where log is the logarithm function at base 2.

Definition IX — TF-IDF is the multiplication of the term frequency of the
given term in the document and the inverse document frequency of this term in
the dataset [Manning et al., 2008].

tf -idf t,d = tft,d × idft

Therefore, IDF returns greater values to rare terms in the dataset. On the other
hand, the more a term occurs in most of the documents of the dataset, the closer to
zero its IDF will be. Finally, TF-IDF returns greater values to terms that most occur
in a few set of documents. There are a lot of term weighting functions described in the
literature. Most of them are variations of the term and inverse document frequencies
[Salton, 1971; Baeza-Yates and Ribeiro-Neto, 2011].

Document Indexing consists in representing the whole database in a search space.
The most common way to store this information is in a Term-Document Matrix. Each
column of this matrix represents a document and each row represents a term in the
vocabulary. Therefore, each cell of the matrix represents the weight of the term in the
document.

The content of a document can be easily retrieved by a simple extraction of its
column in the matrix. Similarly, it is possible to retrieve the collection of documents
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that contains a given term, simply by extracting the term’s row in the matrix. This
process is called inverted indexing because we can reconstruct the text (without order)
in the documents using the vocabulary and the term-document matrix [Baeza-Yates
and Ribeiro-Neto, 2011].

The resulting matrix of term weights is also called Vector Space Model. Each
column of the matrix is a vector in a multidimensional space. The dimensionality of
this space is equal to the number of terms in the vocabulary. In this case, the direction
of a vector is defined by the weights of the terms in its representing document. Weights
in a vector space model are usually measured with TF-IDF.

Finally, a search query is programmatically processed and compared to every
document of the database; the most similar documents are returned as the query
result [Baeza-Yates and Ribeiro-Neto, 2011]. A simple measure of similarity calculates
the cosine of the smaller angle between two vectors: a document in the database, by
extracting its column in the term-document matrix; and the query as a collection of
weighted terms. We can also use a document as a query, in order to return a list of the
most similar documents to the given document.

Definition X — Cosine Similarity measures the cosine of the angle between two
vectors in the same vector space, that is:

sim(−→vi ,−→vj ) =
−→vi • −→vj
|−→vi | × |−→vj |

where |−→v | is the norm of the vector and • is the vector internal product operator.
The cosine similarity values vary from 0 to 1.

2.4.1 Latent Semantic Indexing

In the last section, we presented how an Information Retrieval system represents a
database as term-document matrices. Although text processing reduces the required
space for representation significantly, the resulting matrix might still have hundreds of
terms even for few documents. Regarding this issue, Beyer et al. [1999] presented the
dimensionality problem: distance measures in vector spaces tend to lose significance
when the space has many dimensions (i.e., terms and documents). Moreover, classic
algebraic models—such as Vector Space Model—do not consider correlation of terms.
Terms are assumed to be mutually independent [Baeza-Yates and Ribeiro-Neto, 2011].
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This assumption is not a realistic approximation since terms such as tv or television
are related to the same concept.

Latent Semantic Indexing (LSI) is an IR technique that represents a vector model
in a smaller number of terms [Deerwester, 1988]. This dimensionality reduction is pro-
vided by a linear algebra technique called Singular Value Decomposition (SVD), which
groups terms that occur in the same documents. The term-document matrix is then re-
duced with minimal loss of information, tackling in this way two linguistic phenomena:
different terms with the same meaning (synonymy) and terms with multiple meanings
(polysemy) [Deerwester et al., 1990; Baeza-Yates and Ribeiro-Neto, 2011].

Given a term-document matrix, SVD decomposes it in three matrices. We de-
scribe the properties of this decomposition as follows:

A = U.S.V T

• U is a square matrix, which columns are eigenvectors of A.AT

• S is a diagonal matrix with the eigenvalues (or singular values) of A, in decreasing
order

• V is a square matrix, which columns are eigenvectors of AT .A

LSI is not an automated technique because it relies on the number of terms of the
reduced matrix, called k. However, Manning et al. [2008] suggest a number in hundreds
for a collection of thousands of documents. They also state that the consequences of
choosing small values for k do not compromise the similarity between the original and
the reduced matrices. Kuhn et al. [2007] propose a method to calculate k as a function
of the dimensions of the original matrix. Assuming a given k as input, LSI reduces the
original term-document matrix in the following steps:

• Calculate r as the rank of S

• Derive Sk, replacing by zero the (r − k) values from S

• Derive Ak, calculating Ak = U.Sk.V
T and removing the (r − k) last rows of A

The transformation of matrix A is also called the low-rank approximation of A.
Any query in the original space must be transformed to the new one by using the
decomposed and the reduced matrices. Similarity between documents in the reduced
space are calculated in the same way. Basically, a query vector −→q in the vector space
defined by matrix A is represented in the new space as follows:

−→qk = S−1k .UT
k .
−→q



20 Chapter 2. Background

2.4.2 Information Retrieval Techniques in Reverse Engineering

Anquetil and Lethbridge [1997] proposed one of the first approaches for software ar-
chitecture recovery using textual information. They extract n-grams as subsets of
characters from file names, and they apply clustering to group files with n-grams in
common. The goal of their work was to evaluate what software engineers consider as
subsystems. Other criteria are also considered, such as routine names and comments.
The study included one system with 140 files, separated in 10 subsystems by four de-
velopers. After that, the clustering result for a given criterion was compared with the
developer’s configuration. They concluded that the file name criterion is more likely
to discover subsystems in a legacy system according to developers.

Maarek et al. [1991] extracted information from attributes in software components
to build libraries. They proposed that terms have an “affinity” and build groups of terms
with similar meanings. This concept relates to the classification in LSI that is based
on co-occurrence. It was also one of the first work to apply hierarchical clustering
for classification of software entities. In an experiment with Unix users, the authors
compared search query results generated by the proposed approach and by a tool
that does not provide term classification. The evaluation provided indications that,
according to the user needs, term classification during indexing process provides better
precision in search queries without loosing recall.

Maletic and Marcus [2000] were among the first to propose the use of LSI and
software entities classification with clustering. Their approach was able to retrieve
significant groups of files using only textual analysis. Maletic and Marcus [2001] also
proposed the comparison between the system’s physical structure and the clusters gen-
erated from text analysis. In a experiment with a 95 KLOC system with no external
documentation, they evaluate how clusters help to improve comprehension and main-
tenance tasks. They concluded that, although clusters represent specific concepts in
the system’s domain, they are often spread over multiple files and procedures.

In a second experiment, Marcus et al. [2004] evaluated the precision and recall
of user queries over the same system. They concluded that grouping classes or terms
outperforms dependency-based approaches and basic text retrieval tools, such as grep.
However, a combination of concept location approaches with structural and textual
information is needed in order to provide better results.

Corazza et al. [2011] analyzed the importance of different lexical information from
source code to clustering quality. They propose the use of zones, in which terms from
different sources of the vocabulary have distinct weights. For example, the vocabulary
associated with class names and method names has different weights in the overall
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vocabulary. They compare this approach with existing dependency-based clustering
approaches with non-extremity and authoritativeness metrics. The approach presented
better results with both metrics in 13 systems. However, the weight of each zone is
different for each system.

Applications of information retrieval techniques are not only related to architec-
ture recovery. Poshyvanyk et al. [2013] proposed the use of LSI and Formal Concept
Analysis to build a search engine applied to source code. The developer describes a
search query in natural language and the approach returns a list of source code ele-
ments that are more similar to such query. In a recent work, Dit et al. [2013] combined
dynamic analysis and web-based IR techniques—such as Page-Rank—to improve the
search engine. In an experiment with three real-world systems, the query results had
an average effectiveness reaching to 87% above the state of the art.

Gethers et al. [2011] proposed CodeTopics, a tool that relies on information re-
trieval to support program comprehension. The tool needs a set of high level artifacts
(such as requirements or use cases) as input. These artifacts are described in nat-
ural language text by developers. Based on the text similarity between high level
artifacts and the source code, CodeTopics shows how much the artifacts are actually
implemented in the code. In two controlled experiments with students, the authors
concluded that this similarity can help developers to improve the quality of source
code identifiers, nearing them to the natural language artifacts.

Also regarding program comprehension, Silva et al. [2014] proposed an approach
to assess software modularity based on co-change graphs. Basically, the approach
defines clusters of classes that are frequently changing together. These clusters are
compared to the package distribution in a Distribution Map. The authors also analyzed
the correlation between the conceptual cohesion of a co-change cluster, as extracted
from the issue description, and its distribution in the packages, as calculated by spread
and focus. Although the results are not conclusive to all systems under analysis, they
observed that the higher the similarity of the issues in a cluster, the more likely the
clusters concentrate inside the packages.

2.5 Semantic Clustering

Semantic Clustering is an architecture recovery technique originally proposed by
Kuhn et al. [2005, 2007] that extracts sets of classes in a system. These sets are
called semantic clusters. Classes are grouped according to the similarity of their
vocabularies. Although the term semantic is used, the technique originally only
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considers the co-occurrence of terms, i.e., a lexical-based relation. Figure 2.6 was
extracted from Kuhn et al. [2007] and presents an overview of Semantic Clustering
processing. Three main functions are proposed to generate semantic clusters and they
are detailed as follows:

vectors, while collapsing them into a much smaller set of dimensions.

SVD decomposes matrix A into its singular values and its singular vectors,
and yields – when truncated at the k largest singular values – an approxima-
tion A′ of A with rank k. Furthermore, not only the low-rank term-document
matrix A′ can be computed but also a term-term matrix and a document-
document matrix. Thus, LSI allows us to compute term-document, term-term
and document-document similarities.

As the rank is the number of linear-independent rows and columns of a matrix,
the vector space spanned by A′ is of dimension k only and much less complex
than the initial space. When used for information retrieval, k is typically about
200-500, while n and m may go into millions. When used to analyze software
on the other hand, k is typically about 20−50 with vocabulary and documents
in the range of thousands only. And since A′ is the best approximation of A
under the least-square-error criterion, the similarity between documents is
preserved, while in the same time mapping semantically related terms on one
axis of the reduced vector space and thus taking into account synonymy and
polysemy. In other words, the initial term-document-matrix A is a table with
term occurrences and by breaking it down to much less dimension the latent
meaning must appear in A′ since there is now much less space to encode the
same information. Meaningless occurrence data is transformed into meaningful
concept information.

3 Semantic Clustering: Grouping Source Documents

The result of applying LSI is a vector space, based on which we can com-
pute the similarity between both documents or terms. We use this similarity
measurement to identify topics in the source code.
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Fig. 2. Semantic clustering of software source code (e.g., classes, methods).

Figure 2 illustrates the first three steps of the approach: preprocessing, ap-
plying LSI, and clustering. Furthermore we retrieve the most relevant terms
for each cluster and visualize the clustering on a 2D-map, thus in short the
approach is:

6

Figure 2.6. Semantic Clustering overview, extracted from Kuhn et al. [2007].

Information Retrieval: As exemplified in Section 2.4, Semantic Clustering consider
classes as documents. The vocabulary of a class is extracted from its name, the
identifiers of attributes and methods, and the content of comments. Therefore,
programming language keywords are discarded. Stopwords removal and stemming are
also performed. Terms are weighted with TF-IDF and organized in a term-document
matrix. LSI is then performed to reduce the term-document matrix, as well as to
group terms that occur together in the same documents.

Clustering: After reducing the term-document matrix with LSI, Semantic Clustering
calculates the cosine similarity of each pair of documents in the system and builds
a correlation matrix. Using an agglomerative hierarchical approach, the clustering
algorithm initially considers each class as a cluster and, at each step, the pair of
clusters with the highest average similarity between their elements is merged into a
new cluster. Each class is assigned to a single cluster that represents a domain concept.

Visualization: Semantic Clustering uses the semantic clusters and the package
distribution to provide a Distribution Map visualization (refer to Section 2.3). The
semantic cluster to which a class is assigned denotes the property, i.e., the color of
this class in the visualization. An additional information is also provided: a short list
of the most relevant terms from the classes in a cluster, called semantic topics, which
represents the meaning (or intention) of each cluster.
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Kuhn et al. [2007] reported experiments with jEdit and JBoss that investigate
whether semantic clusters actually express the meaning of the code. Since Semantic
Clustering is a visualization technique, the experiments were restricted to nine clusters
for each system. The authors concluded that semantic clusters are more likely to dis-
cover application, domain-independent concepts, and layers. Moreover, the approach
has a tendency to return larger domain-specific clusters. We report in Chapter 3 our
adaptation in Semantic Clustering in order to assist remodularization analysis.

2.6 Structural Metrics

An extensive number of software metrics has been proposed in the literature. Regarding
software architecture, most of the metrics rely on static and structural aspects, such
as method calls or use of attributes. In this section, we report studies concerning the
evaluation of the applicability of such architectural metrics.

Abreu and Goulão [2001] proposed a procedure to improve modularity using clus-
tering techniques and coupling metrics. A good modularity is the one whose classes
are highly-coupled in the proposed modules. They observed that the improved mod-
ularization differed from the original one in the number of modules. Therefore, the
authors concluded that practitioners do not seem to use only cohesion and coupling as
the driving forces when it comes to modularization.

Counsell et al. [2005] formulated a study with 24 developers with different pro-
gramming experience. These developers evaluated randomly selected classes from real-
world applications concerning their cohesion. The goal of the study was to verify
whether the perception of cohesive unit agrees with size and coupling metrics. The
results suggest that class size does not impact such perception. Moreover, not only
coupling is considered, but also a conjunction of number of comments and how the
methods of a class implement a given concept in common.

Ó Cinnéide et al. [2012] reported a comparative and quantitative evaluation of
software metrics that measure the same aspect of quality: cohesion. They selected
five widely used structural cohesion metrics in the literature. After an automated
refactoring operation, all metrics are calculated. The goal was to verify whether the
value of these metrics evolve together, given the same refactoring. Considering eight
systems and over three thousand refactorings, in 38% of the cases at least one metric
disagree with each other, i.e., one metric value increased while the other metric value
decreased. This fact is an indicative that the structural cohesion metrics measure
different and conflicting aspects of the same property.
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Regarding real remodularization cases, Anquetil and Laval [2011] used cohesion
and coupling metrics over three remodularizations of Eclipse to verify whether the
metrics follow the widely recommended quality guideline of high cohesion and low
coupling. However, the coupling values increased in most of the packages and the
cohesion metric presented a flaw in the experiments. They concluded that either the
structural metrics or the cohesion/coupling dogma fails in representing architectural
quality.

2.7 Conceptual Metrics

This section presents the conceptual metrics used in this master dissertation. Two of
these metrics were proposed by Ducasse et al. [2006] and are applied to Distribution
Maps (refer to Section 2.3).

• Conceptual Cohesion of a Cluster (CCCluster): This metric is a straight-
forward extension of the Conceptual Cohesion of a Class (C3) metric, proposed by
Marcus and Poshyvanyk [2005]. C3 is calculated as the average cosine similarity
of each pair of methods in a given class. Similarly, CCCluster is the average co-
sine similarity of each pair of classes in a cluster. Moreover, the internal cohesion
of a clustering is the average CCCluster of all generated clusters.

• Conceptual Cohesion of a Package (CCP): This metric is similar to CC-
Cluster metric, but it is defined as the average cosine similarity of each pair of
classes in a given package.

• Spread: Given two multi-sets of classes, the package distribution P , and the
collection C of semantic clusters (refer to Section 2.5), we calculate the touch
of a cluster in a package as the percentage of classes in this package that were
assigned to the cluster:

touch(c, p) =
|c ∩ p|
|p|

where c ∈ C and p ∈ P . Basically, spread computes the number of packages in
which at least one class is covered by a given cluster, or more formally:

spread(c, P ) =
∑
p∈P

1, touch(c, p) > 0

0, touch(c, p) = 0
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where P denotes the set of all packages. We expect a decrease in this metric after
a remodularization. It is related to change impact, in the sense that a concept
must be less scattered to reduce future maintenance work.

• Focus: Similarly, the touch of a package in a given cluster is the percentage of
classes in the cluster that belong to the package. Therefore, focus measures the
percentage of classes one cluster touched in their respective packages.

focus(c, P ) =
∑
p∈P

touch(c, p)× touch(p, c)

Focus is a number between 0 and 1 and measures the distance between the
clustering and package distributions [Ducasse et al., 2006]. Thus, if the focus is
close to one, then the cluster covers the majority of classes in the packages it
touches. After a remodularization, we expect an increase in focus. The rationale
is also related to change analysis: if we have a concept that is concentrated in
few packages, then it will be easy to maintain it.

Ducasse et al. [2006] provided a short example of a Distribution Map with five
packages, presented in Figure 2.7. Considering the property in red, it covers two
packages. Therefore, its spread is equal to two. However, this property does not cover
all classes of these two packages. It covers three classes in the package 3, which has
five classes, from total 15 classes that were attibuted to this property. On the other
hand, the property in red also covers 12 classes in the package 4, which has 14 classes,
from total 15 classes covered by this property. Thereby, the focus of the property in
red is calculated as follows:

focus(red, P ) = touch(red, P3)× touch(P3, red) + touch(red, P4)× touch(P4, red)

focus(red, P ) =
3

5
× 3

15
+

12

14
× 12

15
= 0.80

Wong et al. [2000] also proposes metrics to measure the proximity of a reference
partition and the package partition. In their case, the disparity metric relates to Spread
by penalizing packages which classes are related to different features. Similarly, the
concentration metric relates to Focus, but it only considers the intersection between
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custom stopword list. However this cannot be done without prior knowledge
about the system, which is more work and contradicts our objectives. Further-
more, this ranking formula is much smoother than the strict opt-out logic of
a stopword list.

4 Analyzing the Distribution of Semantic Clusters

The semantic clusters help us grasp the topics implemented in the source code.
However, the clustering does not take the structure of the system into account.
As such, an important question is: How are these topics distributed over the
system?

To answer this question, we use a Distribution Map [31,14]. A Distribution
Map visualizes the distribution of properties over system parts i.e., a set of
entities. In this paper, we visualize packages and their classes, and color these
classes according to the semantic cluster to which they belong.

For example, in Figure 5 we show an example of a Distribution Map represent-
ing 5 packages, 37 classes and 4 semantic clusters. Each package is represented
by a rectangle, which includes classes represented as small squares. Each class
is colored by the semantic cluster to which it belongs.

package 1 package 2 package 3

package 4package 5

Fig. 5. Example of a Distribution Map.

Using the Distribution Map visualization we correlate linguistic information
with structural information. The semantic partition of a system, as obtained by
semantic clustering, does generally not correspond one-on-one to its structural
modularization. In most systems we find both, topics that correspond to the
structure as well as topics that cross-cut it. Applying this visualization on
several case studies, we identified the following patterns:

• Well-encapsulated topic – if a topic corresponds to system parts, we call this
a well-encapsulated topic. Such a topic is spread over one or multiple parts

12

Figure 2.7. Example of a Distribution Map

the classes that were covered by a feature and the classes of a given package. The
number of packages to which one property (or feature) spreads or concentrates is not
taken into account in both metrics.

Regarding the evaluation of conceptual metrics, Ujhazi et al. [2010] proposed an
empirical study with both structural and conceptual coupling metrics to evaluate their
accuracy in predicting bugs in Mozilla. The results showed that the proposed concep-
tual metrics are strongly correlated with the structural metrics, unlike a traditional
conceptual metric like C3 [Marcus and Poshyvanyk, 2005]. Also in comparison with
C3, the combination of conceptual and structural metrics provided better accuracy and
precision than combining C3 with structural metrics.

Recent work in architectural recovery comprise the combination of structural
and conceptual metrics. Scanniello et al. [2010] proposed the use of structural links—
such as static dependencies—to derive architectural layers. Lexical information is then
analyzed to decompose each layer into modules. This decomposition is based on the
cosine similarity of the classes’ vocabulary and on the k-means clustering algorithm.
In comparison with widely used clustering algorithms, this approach outperformed
those algorithms in authoritativeness, i.e., considering the current partition as the
authoritative one.

In a simpler approach, Bavota et al. [2010, 2013b] proposed a method to identify
Module Decomposition opportunities. Given one module, chains of classes with high
coupling are found and a new package is proposed for each chain. Coupling is measured
by a combination of a structural and a conceptual metric. They applied the approach
in five systems and concluded that the refactoring suggestions are meaningful from the
perspective of developers.
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2.8 Final Remarks

There is a growing research in program comprehension and software metrics, both with
same goals regarding maintenance. However, the challenges in such areas are separated
in two main items:

• At the architectural level, there are few findings or lessons learned of how to
perform remodularization in real software systems. There is still a lack of knowl-
edge of how real remodularizations happen and which patterns developers tend
to follow in order to improve the architecture.

• Recent work questions the use of traditional structural metrics to measure ar-
chitectural quality. These metrics either do not agree with each other or do not
reflect the improvement of remodularizations performed by developers.

We observed in the literature that, concerning both challenges, there is a trend
in analyzing the vocabulary of a system to (i) extract and propose a conceptual ar-
chitecture; or (ii) measure the conceptual quality of the architecture. In this master
dissertation, we rely on semantic clustering and conceptual metrics to evaluate real
remodularizations at the level of modularization operators performed by developers.





Chapter 3

Improvements to Semantic
Clustering

This chapter presents our improvements to Semantic Clustering in the following as-
pects: (i) a set of strategies to filter text that might not add information to the software
vocabulary (Section 3.1); (ii) a clustering stop criterion that is not based on a fixed
number of clusters (Section 3.2); and (iii) a strategy to generate the same number of
clusters of two versions of a software’s remodularization (Section 3.3). This chapter
also presents tool support both to Semantic Clustering and the improvements proposed
in this chapter (Section 3.4).

3.1 Text Filtering Strategies

Most IR techniques filter out content from their documents in order to obtain a collec-
tion of relevant terms. We presented in Section 2.4 the stopwords filtering, a recurrent
strategy to remove terms that do not add meaningful information. When working with
source code, we also have to handle programming language keywords. This process is
already addressed since we only extract the text in identifiers and comments.

However, the content described in comments contains natural and unstructured
language. Originally, Semantic Clustering treats every non-letter character as a word
separator. Nevertheless, other information should also be removed. In our experi-
ments with Java systems, we observed that developers often use HTML and annota-
tion tags to insert meta-data. Code 3.1 presents the first lines of source code of class
ControlContribution extracted from Eclipse. JavaDoc allows the developer to insert
metadata in the documentation, e.g., by the tag @param, and HTML tags, e.g., by
the tag <code>. We consider this information as a keyword of the JavaDoc language,
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therefore we discard it. Only information about the context of a class (i.e., what does
this class do?) is considered.

Code 3.1. Summary of ControlContribution’s source code.

/∗∗
∗ An ab s t r a c t con t r i bu t i on item implementation fo r adding an a r b i t r a r y
∗ SWT con t ro l to a t o o l bar .
∗ Note , however , t ha t t he se i tems cannot be con t r i bu t ed to menu bars .
∗ <p>
∗ The <code>createContro l </code> framework method must be implemented
∗ by concre te s u b c l a s s e s .
∗ </p>
∗/

public abstract class Contro lContr ibut ion extends Contr ibut ionItem {
/∗∗
∗ Creates a con t ro l c on t r i bu t i on item with the g iven id .
∗ @param id the con t r i bu t i on item id
∗/
protected Contro lContr ibut ion ( S t r ing id ) {

super ( id ) ;
}
[ . . . ]

}

For this purpose, we defined a set of regular expressions to filter out meaningless
terms, particularly in JavaDoc comments. The regular expressions are described in
Table 3.1. For example, we defined filters to treat external content, such as information
about the class author (Filter 1) or external URLs (Filter 2). One last filter removes
words with less than four characters, which typically denote acronyms, abbreviations,
and small (and therefore less significant) words.

The second improvement to text filtering is the definition of a stopword list.
In the literature, there is no authoritative stopword list that is applicable to all IR
techniques. We propose the use of a stopword list derived from the SMART project.1

SMART is an information retrieval system developed in the 60s, used as reference by
modern search machines [Salton, 1971].

Furthermore, a preliminary study revealed a set of common words specific to
Java. For example, classes often overwrite the hashCode method. Therefore, this
method adds little information about classes. To address this issue, we added 12 words
obtained from all public methods in the Object class and primitive constants, such as
true and null. These additional stopwords are presented in Table 3.2, resulting in a
stopword list with 583 words (i.e., including the SMART list).

1http://jmlr.csail.mit.edu/papers/volume5/lewis04a/a11-smart-stop-list/english.stop
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Table 3.1. Regular Expressions for Java Source Code Filtering

1 JavaDocs’ author, version and since information
@(author|version|since).*\n

2
URLs
(http|ftp|https)://[\w-_]+(\."[\w-_]+)+([\w-\.
,@?^=%&amp;:/~+#]*["\w-@?^=%&amp;/~+#])?

3 XML’s special characters like &amp;
&[a-z]*;

4 HTML tags like <body></body>
</?[a-z ]*>

5 Java class declarations
java\.[a-z]*\.+[a-zA-Z]*

6 Parameter, exception and reference info
@(param|throws|see|exception) [^]*

7 ’@’ annotations
@[a-z]*

8 Hexadecimal numbers
0x[^]*z

9 Words with less than four characters
∧[a-zA-Z]{1,3}$

Table 3.2. Additional Stopwords

object clone equals finalize hash code
notify string wait null true false

3.2 Semantic Clustering Stop Criterion

By originally proposing Semantic Clustering as a visualization technique, Kuhn et al.
[2007] presented a case study in which they propose a fixed number of nine clusters for
analysis. Clearly, this number does not scale for large systems. Considering hundreds
of classes, the semantic clusters will most likely contain many classes and therefore they
will be difficult to analyze. To address this issue, we propose to stop the hierarchical
clustering described in Section 2.5 using a similarity threshold. In this case, the most
similar pair of clusters is merged at each step of the algorithm, until no pair has its
similarity greater than a given threshold.

This strategy ensures that different number of clusters can be extracted from
different systems. Moreover, it only relies on the similarity between the vocabularies
of the classes. For example, if one executes Semantic Clustering in a system whose
class vocabularies are loosely similar, a high threshold will make the clustering stop
earlier, generating a large number of clusters. On the other hand, lower thresholds
underestimate the similarity of classes and therefore tend to generate large clusters,
covering most of the system’s classes.
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Even though we modified the clustering stop criterion, Semantic Clustering still
needs an input parameter. We propose to execute the clustering algorithm several
times, changing the similarity threshold value. Finally, we recommend to select the
threshold that produces highly cohesive clusters and a plausible number of clusters. In
Section 4.3, we define the methodology for threshold selection in our experiments.

3.3 Semantic Clusters Generation

As described in Section 2.5, Semantic Clustering uses a distribution map visualization
to compare the semantic clusters and the organization of packages of a system. In our
approach, we want to compare two architectures, before and after a remodularization,
under a conceptual point of view. In this case, the number of clusters must be the same,
so that we can verify whether conceptual aspects can explain the applied refactorings
in the architecture.

A naive solution would be to extract the semantic clusters separately from each
version and to compare the generated clusters. However, refactoring activities, such as
the creation or deletion of classes, modify the database. Therefore, the vocabulary is
not the same, which creates new similarities between the documents. Consequently, the
number of clusters before and after a remodularization are not likely to be the same.
In this case, the semantic clusters from two versions of a remodularization might not
be comparable.

In order to extract the same conceptual architecture from both versions, we pro-
pose an algorithm that supports the generation of semantic clusters after the remodu-
larization. Semantic Clustering is applied only to the earlier version of the system. Each
class from the newer version (i.e., the version after the remodularization) is mapped to
a semantic cluster that was previously calculated. The algorithm assigns the class to
its most similar cluster, in terms of cosine similarity.

We present the algorithm in Figure 3.1. Basically, it receives as input (i) the
semantic clusters from the earlier version of the remodularization (Clustersbefore); and
(ii) the classes in the newer version (Cafter). The algorithm generates as output a
new list of semantic clusters (Clustersafter), in which each class in the newer version is
mapped to one of the original clusters.

For each new class, we calculate its representing vector in the Vector Space Model
(line 6) by extracting its column in the term-document matrix (refer to Section 2.4).
Similarly, the algorithm calculates the vector of a cluster as the sum of the vectors of
its classes (line 7). Then, the algorithm tests the cosine similarity of a class and each
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Require: Clustersbefore,Cafter
Ensure: Clustersafter
1: Clustersafter = ∅
2: for c ∈ Cafter do
3: bestSimilarity = −∞
4: bestCluster = −1
5: for cluster ∈ Clustersbefore do
6: ~vclass = classAsVector(c)
7: ~vcluster = clusterAsVector(cluster)
8: s = cosineSimilarity(~vcluster, ~vclass)
9: if s > bestSimilarity then

10: bestSimilarity = s
11: bestCluster = cluster.index
12: end if
13: end for
14: assign(Clustersafter(bestCluster), c)
15: end for

Figure 3.1. Semantic Clusters Generation Algorithm

cluster (line 8). Finally, the new class is assigned to the cluster that returns the highest
similarity in the computed tests (line 14). With this strategy, it is possible that no
class from the newer version will be assigned to one particular cluster. However, in our
experiments, this situation did not occur.

3.3.1 Visualization Support

The semantic clusters comparison algorithm also provides the visualization in distribu-
tion maps, as presented in Figure 3.2. In this visualization, there are two distribution
maps, for the earlier and newer versions. The location of the classes and packages is
fixed. If a package (or class) was created after the remodularization, then it is displayed
as blank in the first distribution map. Similarly, if a package or class was removed after
the remodularization, it is displayed as blank in the second distribution map.

Figure 3.2 displays three packages in the remodularization of JHotDraw. The Fig-
ure does not show all packages and clusters of each version. The first column represents
the packages before the remodularization and the second column represents the same
packages after the remodularization. Eleven classes were created in org.jhotdraw.app

package, and twelve classes were removed. The org.jhotdraw.draw.tool package was
created with twenty classes. And finally, org.apache.batik.ext.awt was completely
removed in this remodularization.
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(a) Before (b) After

Figure 3.2. Distribution Maps in the remodularization of JHotDraw

At this point, we only consider creation, transferral, and removal operations.
The concentration of semantic clusters after a remodularization is measured by the
conceptual metrics, previously described in Section 2.7.

3.4 Tool Support

3.4.1 Topic Viewer

We implemented a prototype tool, called TopicViewer [Santos et al., 2013], that sup-
ports our improvements to Semantic Clustering. TopicViewer is a desktop application
implemented in Java that provides:
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• Text Extraction from Java source code;

• Semantic Clustering operations, i.e., LSI indexing and hierarchical clustering
with similarity threshold;

• Distribution Map displaying, including the comparison view, in which the user
can navigate through packages and classes;

• Conceptual Metrics measurement for the metrics we use in this master disserta-
tion.

Figure 3.3 shows the user interface for TopicViewer. In Figure 3.3a, the user
provides as input the folder in which the source code is stored (right panel). Finally,
Figure 3.3b shows the Distribution Map Viewer, in which the user interacts with the
map structure and inspects the conceptual metrics results.

The current TopicViewer implementation follows a Model-View-Controller archi-
tectural pattern, as presented in Figure 3.4. The Extraction view (as displayed in
Figure 3.3a) is responsible for the extracting, filtering, and indexing terms from source
code. For this purpose, the tool reuses basic IR functions from VocabularyTools [Santos
et al., 2012], developed with the Software Practices Laboratory of Federal University of
Campina Grande (UFCG). The functions supported by VocabularyTools include text
extraction, filtering, and LSI operations. The Semantic Clustering view provides a con-
figurable environment for the user to set the similarity thresholds. The tool can also
estimate the best threshold, following the methodology that will be described later in
Section 4.3. Finally, the Distribution Map view (as displayed in Figure 3.3b) provides
the visualization, interaction, and metrics measurement of the generated clusters in a
Distribution Map.

TopicViewer’s architecture provides an extensible interface for representing term-
document matrices. Although we focused on text extraction from source code, other
textual documents such as bug reports can also be processed. In order to integrate
new text extractors to the tool, one only needs to implement how these sources are
translated into rows and columns of the matrix. For example, TopicViewer was recently
used in another work to support the visualization of co-change clusters [Silva et al.,
2014]. Moreover, the operations in the term-document matrix are executed in file,
which scales for large collections of documents. The latest version of TopicViewer is
available at GoogleCode.2

2http://code.google.com/p/topic-viewer.
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(a) Java Vocabulary Extraction

(b) Distribution Map View

Figure 3.3. TopicViewer’s User Interface
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Figure 3.4. TopicViewer’s Architecture

3.4.2 Hapax 2.0

In comparison with the state of the practice, TopicViewer is similar to Hapax, a plug-in
for the Moose platform [Nierstrasz et al., 2005]. Hapax supports Semantic Clustering as
originally proposed by Kuhn et al. [2007]. However, since its first release, Hapax was
discontinued due to maintenance in Moose and Pharo—a Smalltalk dialect. During
a two-months internship at RMoD/INRIA Lille, we upgraded Hapax to the latest
configuration of Moose and Pharo (5.0 and 3.0, respectively).

We also improved Hapax with text filtering and similarity threshold strategies,
both described in this chapter, in order to generate feasible clusters for analysis. Fig-
ure 3.5 presents the visualization of semantic clusters in a distribution map with Hapax.
The latest version of Hapax is available at SmalltalkHub.3

3http://smalltalkhub.com/#!/ GustavoSantos/Hapax
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Figure 3.5. Distribution Map visualization in Hapax 2.0

3.5 Final Remarks

In this chapter, we proposed a collection of improvements to Semantic Clustering, a
technique originally proposed to support program comprehension [Kuhn et al., 2005,
2007]. Our improvements included a set of text filtering strategies, the clustering
stop criterion based on the similarity of the vocabulary, and a strategy to support the
analysis of two versions of a system, under a conceptual point of view.

The contributions of our work also include tool support with prototypes in two
environments: (i) TopicViewer, a desktop tool which supports our improvements to
Semantic Clustering in order to assist remodularization analysis; and (ii) Hapax 2.0,
a Moose plug-in which supports the original Semantic Clustering approach, currently
available as a plug-in for the latest version of Moose.
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Evaluation

In this chapter, we report on a case study in which we analyze the remodularizations
of real software systems using the proposed improvements to Semantic Clustering. We
follow a comparative and quantitative methodology proposed by Anquetil and Laval
[2011]. According to this methodology, we assume that real remodularizations improve
the internal quality of a software system, i.e., the newer version is “better” than the
previous one. We stand in this assumption because the analyzed remodularizations
were performed by the system’s developers for a considerable amount of time. More
important, the resulting architecture was adopted for the newer versions. This fact
means that the new architecture is at least “as good as” the previous one.

Section 4.1 presents the remodularizations under analysis in our study and Sec-
tion 4.2 describes the preparation and cleaning of our dataset. We separate our eval-
uation of Semantic Clustering and conceptual metrics in two parts. The first part
describes the methodology we followed to configure the parameters of Semantic Clus-
tering (Section 4.3). Finally, the second part presents the study on the remodulariza-
tions and conceptual metrics (Section 4.4). We also report on threats to validity of our
approach in Section 4.5 and final remarks on the evaluation in Section 4.6.

4.1 Target Systems

Anquetil and Laval [2011] evaluated two remodularizations of Eclipse regarding struc-
tural metrics for cohesion and coupling. In our study, we added remodularizations
of three Java-based systems by recommendation. After that, our study totalizes six
remodularization and four case systems:
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• Eclipse went through a substantial remodularization to integrate the OSGi tech-
nology. Existing features of Eclipse were separated into new components during
two remodularizations: from version 2.0.1 to 2.1 and from 2.1 to 3.0. The Eclipse
case consists in a major and global remodularization. For example, the compo-
nent responsible for providing programming interfaces, named ui, was separated
into five components in version 3.0.

• JHotDraw also had two remodularizations: from version 7.3.1 to 7.4.1 and
from 7.4.1 to 7.5.1. The first remodularization is global, which comprised the
separation of two packages into 16 new packages. On the other hand, the last
one is local because it impacted only two packages.

• NextFramework is a web-based development framework.1 The system’s re-
modularization is very similar to Eclipse since it also happened to move to the
OSGi technology. The remodularization was globally applied to the system’s
architecture.

• Vivo is an open-source researcher networking and collaborative platform.2 The
remodularization we considered was restricted to the subsystem Vitro, from
version 1.4.1 to 1.5. The main changes in this remodularization comprised
the specification of web items and the separation of two packages, named
util.pageDataGetter and search.solr. Thus, this remodularization is similar
to JHotDraw’s one: a local restructuring changing a small number of packages.

Table 4.1 provides descriptive statistics of these systems and their versions. For
each one, we calculated the vocabulary considering identifiers, i.e., class, attributes, and
method names, and also comments and documentation (Vall). Moreover, we calculated
the average number of terms per class (Vall/NOC).

4.2 Methodology

This section details the methodology we followed in the preparation of each remodular-
ization of our dataset. Other analysis—such as the comparison of semantic clusters—is
specific to each case study.

1http://www.nextframework.org.
2http://vivoweb.org.
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Table 4.1. Vocabulary Data (NOC= number of classes; NOP= number of pack-
ages)

System Release Date KLOC NOP NOC Vall Vall/NOC
Eclipse 2.0.1 29/08/2002 420 104 2,331 3,414 1.46
Eclipse 2.1 27/03/2003 494 110 2,620 3,771 1.44
Eclipse 3.0 25/06/2004 599 142 3,138 3,741 1.19
JHotDraw 7.3.1 18/10/2009 126 46 715 1,878 2.63
JHotDraw 7.4.1 17/01/2010 125 62 715 1,807 2.53
JHotDraw 7.5.1 01/08/2010 134 64 748 1,856 2.48
Next 12-08-07 07/08/2012 56 52 536 1,449 2.70
Next 12-08-22 11/12/2012 67 73 607 1,487 2.45
Vivo 1.4.1 07/02/2012 142 91 899 1,902 2.12
Vivo 1.5 12/07/2012 147 95 940 1,920 2.04

Isolating the remodularization: In order to attend the definition of remodulariza-
tion proposed in Chapter 2, we first isolated the modifications restricted to architecture
from enhancements or new features. Therefore, we manually inspected each package
that was created after the remodularization. New packages that introduce new fea-
tures were discarded from our analysis. Test classes were discarded as well. The data
presented in Table 4.1 refer to the systems after this filtering process.

For example, in Eclipse and Next, we observed the creation of plug-ins to inte-
grate these systems to OSGi technology. Particularly in the Next, external libraries
were also transformed into new components. Naturally, the integration of a new tech-
nology can impact in the architecture for it to adapt to this technology. However, this
integration was well organized in packages, which we discarded from our analysis. In
the OSGi case, one entire package was responsible for the configuration of this technol-
ogy, i.e., the definition of components and the connection between them. In this case,
the changes in the architecture of Eclipse and Next for them to use OSGi included
the remodularization of these systems. In other words, the remodularization in these
systems was a means for them to attend to OSGi specifications. On the other hand, in
the Next’s libraries case, all packages of each library were transferred as new packages
of Next. The dependencies to these libraries stayed the same.

However, we could not apply such filtering at the level of classes, e.g., a class
that includes a new feature and it is placed in an existing package. This kind of
inspection requires the expertise of a developer to manually pinpoint which features
are implemented in the source code.
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Semantic Clustering: After preparing the dataset, we executed Semantic Clustering
to measure the conceptual metrics. In order to configure Semantic Clustering, a
distinct similarity threshold was selected for each system. This threshold selection is
later described in Section 4.3. After that, the semantic clusters generation algorithm
was performed to retrieve the same number of clusters from two versions of a system
(refer to Section 3.3). As originally proposed by [Kuhn et al., 2007], we consider the
reference partition—to which the semantic clusters will be compared in a Distribution
Map—as the distribution of packages. Although this distribution might not be consid-
ered as architecture, we emphasize that we focused on finding real remodularization
cases. Moreover, in open-source systems, the distribution of packages is the closest
and the most current to structural design one can find. However, it is in our interest
to provide the definition of architectural components as input to Semantic Clustering.

Computing conceptual metrics: For each remodularization, we calculated the con-
ceptual metrics in the versions before and after the remodularization. The metrics have
already been described in Section 2.7 and our analysis is further reported in Section 4.4.

4.3 First Study: Semantic Clustering Setup

In Chapter 3 we described our improvements to semantic clustering in order to apply
this technique on remodularization analysis. However, it is crucial to our approach to
select the similarity thresholds used by the clustering algorithm. We also discussed
the importance of this threshold to correctly estimate the similarity of the classes’
vocabulary. Particularly, we want to avoid the occurrence of few large clusters or a
large number of small clusters.

To address this issue, we propose to execute the clustering algorithm several
times, changing only the similarity thresholds in increments of 0.05. More specifically,
we executed the algorithm with five thresholds: 0.55, 0.60, 0.65, 0.70, and 0.75. After
that, the quality of the resulting clusters should be evaluated to balance two measures:

• Internal Cohesion: The goal is to extract highly cohesive clusters. For this
purpose, in Section 2.7 we describe an internal cohesion metric that can be applied
to evaluate the clusters generated by Semantic Clustering. The clusters that
maximize this metric value are candidates for the analysis.

• Number of Clusters: On the other hand, cohesion is not the only criterion
to evaluate cluster quality, otherwise we can foster the generation of many small
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clusters. It is not reasonable to require software maintainers to analyze hundreds
of clusters, even when they are highly cohesive. For this reason, we must choose
a similarity threshold that minimizes cohesion, but at the same time produces a
reasonable number of clusters.

We applied this methodology to each system of our dataset. The first criterion—
internal cohesion—is automated and basically selects the threshold which generated
the most cohesive clusters in average. The second criterion (i.e., consider the number
of generated clusters) was manually followed, based on the experience of the authors
and also on the average number of classes per cluster. Figure 4.1a shows the number
of clusters for each tested threshold. Then, Figure 4.1b shows the average internal
cohesion of the resulting clusters, calculated according to the CCCluster metric. Our
findings in this study are reported as follows:

High Thresholds, More Clusters: As expected, the higher the similarity threshold,
the larger the number of clusters. For example, from threshold 0.70 to 0.75, we obtained
a difference from 80 to 107 clusters with JHotDraw-7.3.1. We also observed that this
difference correlates with the vocabulary size and the number of classes. For example,
also from threshold 0.70 to 0.75, we obtained a difference from 358 to 497 clusters with
Eclipse 3.0, and from 357 to 505 clusters with Eclipse 2.1. These systems are exactly
the ones with more classes and larger vocabulary in our dataset (refer to Table 4.1).
Although they differ considerably in the number of classes, they are similar regarding
the size of vocabulary and also in the number of generated clusters.

The diversity of the vocabulary (i.e., the number of distinct terms) tends to
increase the dissimilarity of the classes because there are more terms that distinguish
one class to another. Therefore, a high threshold overestimates the similarity of the
vocabulary. In this case, when the classes are loosely similar, a slight adjustment in
the similarity threshold may abruptly change the number of clusters.

Different Versions, Different Number of Clusters: Even with almost the same
number of classes from version 7.3.1 to 7.4.1 (see Table 4.1), the number of clusters
in these two versions of JHotDraw are not the same. For example, with threshold
0.65, the number of clusters decreased from 63 to 55. This difference is an indicative
that a significant change happened in the vocabulary of JHotDraw, at the point of
modifying the similarity between its classes. This fact emphasizes the importance of
our algorithm to generate semantic clusters to the version after the remodularization
(as described in Section 3.3).
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Figure 4.1. Number of clusters (a) and Internal Cohesion (b) of clusters for
similarity thresholds ranging from 0.55 to 0.75 (discrete intervals of 0.05)
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Different Versions, Different Degree of Similarity: Similar to the number
of clusters, the average cohesion of clusters also differs considerably with different
versions of a system. For example, with threshold 0.65, we obtained an increase in
cohesion from 0.74 to 0.78 in JHotDraw 7.3.1 and 7.4.1, respectively. This difference
means that the classes are more similar inside their clusters. This fact also explains
why there are less clusters in JHotDraw 7.4.1.

As a result of this first study, Table 4.2 presents the thresholds we recommend
for each system in our dataset. In eight out of ten systems, the thresholds are lower
or equal to 0.60. Although we cannot generalize these results, we claim that thresh-
olds respecting this range are at least the first values that should be considered when
applying Semantic Clustering in other systems.

Regarding the number of generated clusters, we only applied this criterion to one
case. In Eclipse 3.0, a similarity threshold of 0.65 resulted in the best cluster cohesion,
but also in 247 clusters. We then chose the second best threshold, 0.60, which resulted
in 175 clusters. The first configuration generated many small and highly cohesive
clusters, which is justified by the 247 clusters that were generated. This amount is
more than the double the number of cluster in version 2.1 (109), and an average of 12
classes per cluster. In the second configuration, the average cluster cohesion is equal
to the previous version (0.68), but resulted in larger clusters: an average of 18 classes
per cluster. In Section 4.4.2, we analyze the classes of a set of semantic clusters for
manual inspection of code. In this case, we decided that around 20 classes per cluster
is a reasonable number for qualitative analysis.

Table 4.2. Threshold Selection (Clu= # clusters)

System Threshold Clu CCCluster NOC / Clu
Eclipse 2.0.1 0.60 132 0.71 18
Eclipse 2.1 0.55 109 0.68 25
Eclipse 3.0 0.60 175 0.68 18
JHotDraw 7.3.1 0.60 44 0.79 17
JHotDraw 7.4.1 0.60 43 0.80 17
JHotDraw 7.5.1 0.65 57 0.78 14
Next 12-08-07 0.60 27 0.80 20
Next 12-12-11 0.60 22 0.83 28
Vivo 1.4.1 0.55 34 0.75 27
Vivo 1.5 0.65 75 0.76 13
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4.4 Second Study: Remodularization Analysis

The goal of this study is to verify whether conceptual aspects, as expressed by seman-
tic clusters and conceptual metrics, actually express an increasing in quality after real
remodularizations. Thereby, we analyze the remodularizations by (i) identifying major
changes in conceptual metric values and (ii) explaining these changes under the per-
spective of typical modularization operators (refer to Section 2.1.1). More specifically,
we intend to provide insights for the following research questions:

• RQ #1: What is the impact of remodularizations in the clusters generated by
Semantic Clustering? Basically, we aim to compare the semantic clusters before
and after remodularizations, using focus and spread. Section 4.4.1 provides our
answers and insights regarding this question.

• RQ #2: What are the modularization operators that have more impact in the
clusters generated by Semantic Clustering? In the first question, we identify the
major impacts in spread and focus. Therefore, in this question we intend to
classify which modularization operators were responsible by such impact. Sec-
tion 4.4.2 provides our answers and insights regarding this question.

• RQ #3: What is the impact of module decomposition in terms of conceptual co-
hesion? We intend to establish correlations between the most recurrent remod-
ularization operator—Module Decomposition—and conceptual cohesion. Sec-
tion 4.4.3 provides our answers and insights regarding this question.

4.4.1 Impact of Remodularizations on Semantic Clusters

After setting the parameters up of Semantic Clustering for our dataset in Section 4.3, we
performed the semantic clusters comparison algorithm for each remodularization. We
restricted this analysis to global remodularizations (refer to Section 4.1) because they
provided the major changes in terms of clusters. After executing the algorithm, we were
able to compare the semantic clusters for the versions before and after remodularization.
Therefore, for each cluster we calculated its spread and focus in both versions.

Figures 4.2 and Figure 4.3 present the values of spread and focus, before and after
each global remodularization. Each point in the scatterplots represents a semantic
cluster. The horizontal axis represents the metric values before the remodularization
and the vertical axis represent the values after the remodularization. A point above
the diagonal line means that the metric value for its representing cluster increased after
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Figure 4.2. Spread results (the spread of the concepts above the diagonal in-
creased after the remodularization)

the remodularization. On the other hand, a point below the diagonal line means that
the metric value decreased.

For most clusters, spread increased after the remodularization, as most of the
points are above the diagonal line. This fact seems counter-intuitive, since we expected
that the concepts would be more organized (i.e., covering less packages) after the
remodularization. However, this increasing is natural given our data setting. The
number of clusters is the same before and after the remodularization, and new packages
were created in all cases (see Table 4.1). Therefore, we naturally observe that existing
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Figure 4.3. Focus results (the focus of the concepts above the diagonal increased
after the remodularization)

clusters will appear in more packages after the remodularization. We do not consider
that an increase in Spread express also an increase in quality. However, Spread was able
to express that, in the package creation, the concepts are not completely transferred
from one package to another. They split into more packages.

Concerning focus, we observe in Figure 4.3 that the distributions are not clear,
since we have a considerable number of clusters both above and below the diagonal
line in all remodularizations under analysis. Therefore, the results for focus are not
conclusive in this experiment setting.
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We applied a nonparametric Wilcoxon test to compare the remodularizations,
according to both metrics. This test calculates whether two numerical populations of
the same size are nonidentical. In this case, we compare the semantic clusters before and
after a remodularization, according to spread and focus separately. After the Wilcoxon
test, if the p-value is lower than 0.05, then the clusters are statistically nonidentical
and we can claim that the remodularization actually changed the conceptual structure
of the system, in terms of the metric under analysis.

Table 4.3 presents the Wilcoxon test results. Values in bold denote that the
calculated p-value is lower than the threshold and therefore a statistically significant
value. The results show that the increasing of spread is statistically significant in the
entire dataset. On the other hand, confirming our previous observation, we cannot
assure the same regarding focus. The Wilcoxon results only provide statistical support
to the last remodularization of Eclipse and the first remodularization of JHotDraw, in
which there was an increase in focus in both cases.

Table 4.3. Wilcoxon test results for spread and focus of clusters

Metric Remodularization Mean Increase p-value

Spread

Eclipse 2.0.1→2.1 1.61 <0.001
Eclipse 2.1→3.0 2.82 <0.001
JHotDraw 7.3.1→7.4.1 0.98 <0.001
Next 12-08-07→12-12-11 2.04 0.001

Focus

Eclipse 2.0.1→2.1 0.01 0.408
Eclipse 2.1→3.0 0.02 <0.001
JHotDraw 7.3.1→7.4.1 0.09 0.008
Next 12-08-07→12-12-11 -0.02 0.518

Summary: Remodularizations tend to consistently increase the spread of the exist-
ing semantic clusters among the new package structure when considering the same
number of clusters. Regarding focus, there is no clear tendency, and it is possible
to have clusters both with an increase or with a decrease in focus. Therefore, focus
is not an appropriate quality metric to support remodularization analysis.

4.4.2 Remodularization Operators with the Highest Impact in

Semantic Clusters

In order to address this research question, we focused on the modularization operators
proposed by Rama and Patel [2010] (see Section 2.1.1). For each remodularization, we
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collected the three clusters with the highest increase and decrease in spread and focus,
separately. We aim to identify which modularization operators are able to explain the
change in spread or focus. Thus, we carefully analyzed the source code of the classes in
each selected cluster and we mapped source code changes to modularization operators,
when possible.

To reduce the amount of manual analysis, we decided to inspect one remodular-
ization of each system. For this reason, we removed two remodularizations: (i) Eclipse
2.0.1→2.1 because it presented the highest p-value regarding the global results, as
showed in Table 4.3; and (ii) JHotDraw 7.4.1→7.5.1 because it consisted in just local
and minor remodularizations.

Table 4.4 summarizes the results of our analysis of 47 clusters (2 metrics vs 6
clusters vs 4 systems). A description of each cluster is detailed in [Santos et al., 2014].
We only found two clusters with bottom results for spread in JHotDraw, i.e., the spread
of the other clusters remained constant or increased after the remodularization. For
each cluster, we present a brief description of the concepts behind the cluster and
the remodularization operator responsible for the change under analysis, when it was
possible to identify such operator. For example, we were not able to explain the bottom
results for focus in JHotDraw in terms of modularization operators.

We also applied a Pearson chi-squared test to analyze the association of (a)
the occurrence of a modularization operator and (b) an increase or decrease in one
metric, considering the 47 cases in Table 4.4. After the test, if the p-value is lower
than 0.05, these two descriptive variables a and b are dependent. We only applied
this test for Module Decomposition because it was the most recurrent operator in the
experiment. Other operators have few occurrences, which it is not recommended for a
the chi-squared test. Our main findings when investigating this research question are
described as follows:

• Module Decomposition (MD) was the operator responsible for most distin-
guished changes in spread and focus, covering 24 out of 47 clusters we selected
for analysis. The operator was responsible for an increase in spread in 9 out
of 12 clusters. Regarding focus, the operator explains the observed increments
in focus in 10 out of 12 clusters we manually inspected. The chi-squared test
showed that the occurrence of module decomposition (a) has statistic association
with the Top-3 increasing of spread (b1) and focus (b2), with p-values 0.022 and
0.001, respectively.
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Table 4.4. Modularization operators responsible for the Top-3 and the Bottom-3
changes in spread and focus (MD= module decomposition; MU= module Union;
FT= file transferal; DT= data structure transferal; RN= rename; PF= promote
function; MR= module removal; FR= file removal)

Metric Ranking System Cluster id Operators

Spread

Top 3

Eclipse 2.1→3.0
105 MD
14 MD, FT, DT
61

JHotDraw 7.3.1→7.4.1
27 MD
34 MD
40 MD

Next 12-08-07→12-11
26 MD
25
12 MD

Vivo 1.4.1→1.5
18 MD
16 MD
29 MD

Bottom 3

Eclipse 2.1→3.0
101 FT, DT
54 MD
38

JHotDraw 7.3.1→7.4.1
17
38 MR

Next 12-08-07→12-11
1 MD, FT
3 FR
8

Vivo 1.4.1→1.5
33 RN, FR
10 MU
5 MU, MD

Focus

Top 3

Eclipse 2.1→3.0
51 MU, MD
33 MD, FT
12 MD, PF

JHotDraw 7.3.1→7.4.1
34 MD
12 MD
16 MD

Next 12-08-07→12-11
14 MD
9

22 MD

Vivo 1.4.1→1.5
18 MD
9

22 MD

Bottom 3

Eclipse 2.1→3.0
39 FT, DT
94 MD
6

JHotDraw 7.3.1→7.4.1
20
23
32

Next 12-08-07→12-11
4 RN

21
16 RN, MU

Vivo 1.4.1→1.5
32 FR
13 RN
28
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• The transferal of files (FT) and data structures (DT) was identified in five cases.
In two of them, there was a decrease in spread. This fact confirms the motivation
of these operators: moving one entity that is misplaced in the architecture to a
more similar module.

• Rename (RN) was performed in Next and Vivo to correct typos, e.g., Sumary
and PropStmt, to Summary and PropertyStatement, respectively. There was a
decrease in focus in three out of four rename operations because new similarities
were built with other classes in which the terms are correctly spelled.

• Module Union (MU) occurred along with an increase (with Module Decomposi-
tion) and decrease in Focus (with Rename). Promote Function (PF) was applied
only once, with an increase in focus also with Module Decomposition.

• We also identified other operations: file (FR) and module (MR) removal in four
cases. They were necessary to provide a better interface for color gradients in
JHotDraw and code loaders in Next. In these specific cases, there was a decrease
in spread.

Summary: Module decomposition is commonly the operator behind the top in-
creasing in spread and focus. This fact means that the semantic clusters cover
more packages, but they are also more concentrated inside these packages. For
other operators, we cannot draw statistic relationship between the operator and an
improvement or decline of a metric.

4.4.3 Impacts of Module Decomposition in Conceptual

Cohesion

In the last research question, we aim to investigate the impact of the module decom-
position operator in the conceptual cohesion of packages. We focus on this operator
because it was the most recurrent operator regarding the highest increase of spread and
focus. When performing module decomposition, an original package P is decomposed
in new packages P1, P2, . . ., Pn. Some of the classes in P are distributed among the
new packages, but part of them remain in the restructured package P ′. We analyzed all
21 distinct module decompositions in Table 4.4 (one decompostition can impact more
than one cluster). We analyzed them under two aspects:
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• Paired Comparisons: We compared the original package with its restructured
version. Figure 4.4a reports a scatterplot with the values for CCP. Each point in
the scatterplot represents one module decomposition. The horizontal axis shows
the cohesion of the original packages (P ) and the vertical axis shows the cohesion
of the restructured packages (P ′). A point above the diagonal means that the
cohesion of the restructured packages is greater than the cohesion of the original
ones, i.e., the cohesion improved after the remodularization.

• New Packages: We compared the average cohesion of the new packages with
the original package in Figure 4.4b. Similar to Figure 4.4a, each point in the
scatterplot represents one module decomposition and the horizontal axis shows
the cohesion of the original packages (P ). The vertical axis shows the average
cohesion of the new packages (P1, P2, . . ., Pn) in each module decomposition. A
point above the diagonal means that the average cohesion of the new packages is
greater than the cohesion of the original package, i.e., the module decomposition
improved the cohesion, comparing to the former modularization.

For most decompositions, the cohesion of the restructured package improved.
We applied Wilcoxon test to compare the two populations of packages—original and
restructured—and concluded that there is a significant increase in cohesion of the re-
structured packages, with p-value equals to 0.002 (<0.05). As well as for the global
results, the first remodularization of JHotDraw (i.e., from version 7.3.1 to 7.4.1) pre-
sented the best results in both comparisons. For example, the package draw had the
best improve in conceptual cohesion (+0.111); moreover its ten new subpackages have
an average cohesion of 0.818, which is also a very good measure. A similar case occurred
in Eclipse, in which a decomposition in the ui.ide plugin involved moving classes to
the packages in the ui.workbench plugin. As a result, these packages increased their
cohesion in 0.016 and 0.048, respectively.

Regarding the new packages, the cohesion improved in most of the cases (15 out
of 21), but we observed more decreases in cohesion. According to Wilcoxon test, the
two populations of packages—original and average cohesion of the new ones—are sta-
tistically different and, therefore, the increasing in conceptual cohesion is significant
with p-value equals to 0.002 (>0.05). Vivo was one of the systems with significant de-
crease in conceptual cohesion after module decompositions (−0.084). For example, the
new dataGetter package is less cohesive than its original package, pageDataGetter.
This fact is explained by the use of a new interface in the restructured package, which
has more utility classes and therefore a larger vocabulary. Thus, the similarity between
the classes changed to use this new interface and the rest of the package has decreased.
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The same action happened with the package context in Next, which resulted in
the highest decrease we observed in cohesion considering the new packages (−0.219). In
both cases, CCP was able to express that not every module decomposition conceptually
improves the packages. In particular cases, when developers generalize interfaces, they
directly impact the cohesion in the packages. The cohesion metric might relate to the
size of vocabulary and the number of classes in a package, i.e., the more classes in
a package, the less cohesive it will be. However, such study is not the scope of this
dissertation.

Summary: After module decompositions, the new packages have better conceptual
cohesion than the original ones. CCP is an adequate metric to express a quality
improvement, but some care must be taken in interpretation (e.g., Next and Vivo
cases).

4.5 Threats to Validity

We organized the threats to the validity of our evaluation in four categories, as
proposed by Wohlin et al. [2000]:

Construct Validity: The first assumption of our study is that the architecture re-
sulted by the remodularizations we observed is always better than the previous one.
This assumption is very strong and also very hard to formally prove. The analysis of an
expert would be extremely time-consuming, subjective, and non replicable. However,
we followed the reasoning discussed by Anquetil and Laval [2011], in which we consider
the effort of the developers in an widely-used, open source code, and a considerable
amount of time to perform the remodularization (refer to Table 4.1). Therefore, it is
hard to consider that, after months of structural refactoring, the new architecture is
worse than before. In fact, in all cases, the resulted architecture was followed by the
following versions.

When collecting the code for our dataset, we do not consider the correction of bugs
between two versions. We argue that bug corrections usually impact small portions
of code—such as the body of a method, whose vocabulary is not extracted—and,
therefore, are not likely to significantly modify the vocabulary. We focused on removing
new features because we wanted the two versions of a remodularization to have the
same number of features (or concepts). In this case, it is also noteworthy that this
process was made manually, which is prone to errors and incompleteness.
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Figure 4.4. Conceptual Cohesion results of restructured packages (a) and new
packages (b). The cohesion of the packages above the diagonal line increased after
the remodularization

Also regarding the data collection, we rely on the basic definition of architecture
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as the distribution of packages. Although we recognize that this distribution might not
correspond to a well-defined architectural design, such discovery task would require
the evaluation of experts of each system, which we do not have access. The package
distribution is then the closest to a structured design in systems with few (or no)
external documentation.

Finally, as any information retrieval technique, Semantic Clustering relies
on vocabulary quality. Thus, we assume that terms are well described in the
system’s identifiers and comments. Naming conventions other than camelCase and
under_score will certainly compromise the vocabulary. The representativeness of the
terms in the vocabulary can also impact on our results. We identified in previous
studies the existence of methods like “kaboom” or “nothing”. In Section 4.4.2,
we also report the refactoring of classes to remove typos in identifiers. In both
cases, the vocabulary is polluted with terms that do not often appear and also do
not have proper meaning. In this work, we selected systems with a considerable de-
veloper community. Therefore, we consider these issues an exception in the vocabulary.

Internal Validity: In our evaluation, we only consider remodularization the ones
responsible for the conceptual metrics results. Other actions should be considered.
For example, the cohesion of a package can increase if the developer improves the
vocabulary of its classes. Section 4.4.2 describes the case in which a rename refactoring
decreased the focus when correcting typos. In the absence of a metric that quantifies
the quality of the vocabulary, we discard this measure from the variables of our study.
However, it is in our interest to analyze the meaning of terms in the vocabulary and
whether they are also considered when performing remodularizations.

External Validity: In this dissertation, we focused on remodularization cases that
were performed by their own developers. Although we report the difficulty in finding
remodularization cases, the fact that we collected widely-used systems distinguishes
the contribution of this study.

Conclusion Validity: Regarding the analysis of the results, we do not consider the
creation of semantic clusters from one version to another. In order to analyze the
impact in Spread and Focus, we generated the same number of clusters for the version
before and after the remodularization. In this case, we needed to automate the process
of mapping the same clusters in both versions. A manual mapping would likely be
biased and error prone.

Regarding the metrics we used, no study has been done to analyze the reliability



4.6. Final Remarks 57

of these metrics. We already discussed that there is few evaluation on the relevance of
conceptual metrics applied to software maintenance. Therefore, we chose the metrics
that were more easy to explain their variations.

Finally, we manually identified the modularization operators that were performed
in the clusters with highest increase and decrease of Spread and Focus. This task is bi-
ased and prone to errors. We recognize that these operations are not easy to automate.
They also require an advanced knowledge of each system, being a time spending task
to perform manually. However, we did make an effort to follow a methodology, and
we also tried to isolate the remodularizations from bug corrections and enhancements,
in order to gather convincing results from our study with conceptual metrics.

4.6 Final Remarks

In this chapter, we reported our case study with real remodularizations and conceptual
metrics. As already discussed in related work, module decomposition is the most
common operator when performing remodularizations. Regarding this operator only,
it increases the focus of the semantic clusters and the conceptual cohesion of the new
packages. This fact reveals that developers organize the system’s classes in packages
according to a common intent, or concept.





Chapter 5

Conclusion

5.1 Contributions

After decades of research on quality measurement in software engineering, a vast num-
ber of quality metrics have been proposed in the literature [Anquetil and Laval, 2011;
Ó Cinnéide et al., 2012]. However, there are still few evaluation of these metrics [Briand
et al., 1998; Abreu and Goulão, 2001; Ó Cinnéide et al., 2012]. More specifically, we
lack an evaluation on their ability to express the architectural improvement after a
remodularization effort, under the developers’ point of view. Clearly, translating a
mental model of what constitutes architectural quality to a developer is complex and
subjective. Yet, metrics that approximate this perception are important to assist on
time-consuming maintenance tasks.

In this work, we selected a subset of recently proposed metrics, named conceptual
metrics [Marcus and Poshyvanyk, 2005; Ujhazi et al., 2010]. We also proposed and
implemented adaptations to Semantic Clustering in order to support the comparison of
clusters, before and after a remodularization. We implemented a visualization support
to our approach with: (i) TopicViewer, which provides the comparison of two versions of
a system according to text analysis, including the measurement of conceptual metrics;
and (ii) Hapax 2.0, which supports Semantic Clustering as originally proposed.

After implementing our methodology, we measured spread and focus over a
dataset of six remodularizations of four real-world software systems. We observed
an increase in spread, which means that the concepts cover more packages after the
considered remodularizations. As stated in previous work [Bavota et al., 2010; Rama
and Patel, 2010], module decomposition is the most common remodularization oper-
ator. The observed increase in spread only confirmed the consequences of using this
operator in the distribution of concepts.

59
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However, considering only module decomposition, it was also responsible to the
top increases in focus. In other words, the concepts are more spread, but they are also
more concentrated in the new packages. We also observed that conceptual cohesion
increased in the restructured and in the new packages after the remodularizations. This
fact reveals that developers organize the system’s classes in packages according to a
common intent or concept, resulting in more cohesive packages.

The conceptual metrics we used were able to describe an improvement in most
of the cases in which module decomposition was performed. Other modularization
operators were also analyzed, but they did not have enough occurrence for a proper
statistical analysis. Our results reinforce previous work in suggesting module decom-
position operations based on conceptual metrics [Bavota et al., 2010, 2013b]. They
also reinforce the usefulness of conceptual metrics on expressing the developers’ intent
when performing remodularizations.

5.2 Publications

This master thesis generated the following publications:

• Gustavo Santos, Marco Tulio Valente, and Nicolas Anquetil. Remodularization
Analysis using Semantic Clustering. In 1st CSMR-WCRE Software Evolution
Week, pages 1-10, 2014.

• Gustavo Santos, Katyusco de Farias Santos, Marco Tulio Valente, Dalton Serey,
and Nicolas Anquetil. Topicviewer: Evaluating Remodularizations using Seman-
tic Clustering. In IV Congresso Brasileiro de Software: Teoria e Prática (Sessão
de Ferramentas), pages 1-6, 2013.

5.3 Future Work

When investigating the modularization operators [Rama and Patel, 2010], we had the
limitation of performing the inspection manually. As future work, we recommend a tool
to automatically inspect two versions of a system and to emulate this transformation
as basic modularization operators. This approach would present more findings about
the modularization operators and the consequences of applying them according to
conceptual quality.

The findings of our study also encourage us to extend it at the point of designing
a tool to recommend modularization operations based on conceptual metrics. Similar
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to previous work on module decomposition, the developer would select which parts of
the system are candidates to maintenance. The tool would then calculate a set of con-
ceptual metrics in order to identify remodularization opportunities that might improve
the underlying system’s concepts. Based on the results, the tool should recommend
a set of modularization operators to restore the conceptual quality. For example, the
tool may recommend to move a class to a package with a more similar vocabulary.
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