
How the Sando Search Tool Recommends Queries

Xi Ge∗, David Shepherd†, Kostadin Damevski‡, Emerson Murphy-Hill∗
∗NC State University, Raleigh, NC, USA

xge@ncsu.edu, emerson@csc.ncsu.edu
†ABB Inc, Raleigh, NC, USA
david.shepherd@us.abb.com

‡Virginia State University, Petersburg, VA, USA
kdamevski@vsu.edu

Abstract—Developers spend a significant amount of time
searching their local codebase. To help them search efficiently,
researchers have proposed novel tools that apply state-of-the-art
information retrieval algorithms to retrieve relevant code snippets
from the local codebase. However, these tools still rely on the
developer to craft an effective query, which requires that the
developer is familiar with the terms contained in the related code
snippets. Our empirical data from a state-of-the-art local code
search tool, called Sando, suggests that developers are sometimes
unacquainted with their local codebase. In order to bridge the
gap between developers and their ever-increasing local codebase,
in this paper we demonstrate the recommendation techniques
integrated in Sando.

I. INTRODUCTION

Software is hard to maintain. One cause for the difficulty
lies in the increasing complexity of software systems. To
accomplish a software maitenance task, a developer needs
to explore the information space of a software system and
comprehend all relevant parts of the codebase. This exploration
is both tedious and time-consuming. According to Singer et
al., developers spend over 40% of their time in navigating,
searching and reading source code [11].

Due to the overwhelming complexity of software systems,
developers often start maintenance tasks by searching for a
starting point in the local codebase. A recent study conducted
by Ko et al. indicates that most (9 out of 12) software
maintenance tasks start with local code search [10].

To help developers search their codebase, researchers have
proposed several local code search tools that are integrated into
popular IDEs. For instance, Sando enhances the Visual Studio
IDE and InstaSearch is aimed for Eclipse developers [6], [5].
Both of these search tools significantly improve upon the built-
in search tools available in these IDEs in the following aspects:
(1) they retrieve different levels of software entities, such as
fields, methods, and classes, as search results, instead of re-
trieving lines of text; (2) they rank the search results according
to their relevance to the given search query; and (3) these
tools support multi-word searches, that is, querying by space-
separated terms and retrieving software entities containing any
of these terms.

Regardless of their sophistication, all search tools require
developers issuing both specific and relevant queries to pro-
duce useful results. However, the size of the codebase under
search as well as the vocabulary mismatch problem, where

a domain concept is expressed differently in the code, often
make this requirement unreasonable. Empirical data collected
from Sando usage in the field further substantiates this con-
jecture. Specifically, about 20% of all Sando queries fail,
returning no results at all, which suggests developers in the
field are facing difficulties in writing effective queries.

To solve this problem, we improve Sando by a set of
query recommendation techniques. These techniques fall into
two categories: pre-search recommendations and post-search
recommendations. The former recommends queries before a
developer starts searching and the later recommends queries
after a developer’s search fails, that is, when the search returns
no results. Below, we present how these recommendation
techniques assist developers to compose queries in a semi-
automatic fashion that are better at finding the relevant code
snippets.

II. APPROACH

Before detailing the recommendation techniques, we first
briefly introduce the local code search tool called Sando, the
platform on which our query recommendation techniques are
implemented and evaluated. Sando is a state-of-the-art code
search tool for Visual Studio developers [5], which up to
this point has been downloaded over three thousand times.
According to our usage data collected from Sando users,
roughly forty developers use Sando on a daily basis. Figure 1
presents the user interface of Sando. Sando supports multiple
programming languages including C#, C++, C and XML.

After installing Sando, a developer can issue queries in the
search box at A, press the button on the right, and be presented
by search results at B. Next, the developer can examine the
search results in one of two ways: by single clicking on a
search result or by double clicking the search result. A single
click triggers a pop-up menu that summarizes the search result,
as illustrated by C and D in Figure 1, where C shows the
entire software entity, which can be the declaration of a class,
a method, or a field; and D shows the lines of code containing
the search query; the developer can also double click the search
result to open the containing file in the Visual Studio editor.

A. Components

To recommend queries, our recommendation techniques
rely on five different data source components, namely the

ar
X

iv
:1

40
1.

69
31

v1
 [

cs
.S

E
]

 2
7

Ja
n

20
14

Fig. 1: Sando screenshot after retrieving search results.

local dictionary, the term co-occurrence matrix, the verb-
direct-object pairs, the software engineering thesaurus, and the
general English thesaurus, which we will explain next.

1) Local Dictionary: The first component used by our
recommendation techniques is the local dictionary of the
codebase under search. Specifically, the local dictionary con-
tains terms that appear in the codebase at least once. To
construct the dictionary, we reuse the indexing performed by
the Sando search engine. The indexing process breaks each
software entity from the codebase into terms; later, after a
developer issues a search query, the search engine retrieves
the software entities whose indexed terms match with the
given query as search results. Taking the following code
snippet as an example, the Sando search engine indexes the
method Perform to the terms of “perform”, “output”, “func”,
“invoke”, “input”, “finished”, “event”, and “finishedevent”. In
addition to indexing raw identifiers, Sando indexes the terms
that result from splitting the identifiers that are in camel case
or underscore delimited format.

void Perform()
{

var output = func.Invoke(input);
if(FinishedEvent != null)

FinishedEvent(this, output);
}

Sando performs either a entire indexing or an incremental
indexing: entire indexing, performed when a developer opens
a new project that Sando has no cached index, traverses and
collects terms for the entire project; incremental indexing, on
the other hand, monitors the changed part of a cached project
and re-indexes that part. Indexing the entire project of 10K
LOC takes about 30 seconds to finish; incrementally indexing

an updated C# file takes about 30 milliseconds.

The local dictionary consists of all the terms collected
from indexing without redundancy. To facilitate searching this
dictionary, we construct a binary search tree on these terms.
Taking the codebase of Sando as an example, the local dic-
tionary contains about two thousand different terms. Finding
a given term in the local dictionary costs trivial time to finish.
Using the local dictionary, our recommendation technique can
ensure that the recommended queries actually appear in the
local codebase under search.

2) Term Co-occurrence Matrix: In addition to the local
dictionary, we maintain the collected terms from the local
codebase through a co-occurrence matrix. The matrix has an
equal number of rows and columns; each column or row repre-
sents one term appearing in the local dictionary. Each element
in the matrix saves the count of two terms, as represented by
the row and the column that occur together in the codebase. For
instance, the element at [red, blue] is the count of occurrences
of “red” and “blue” together. By appearing together, we mean
these two terms appear in the same software entity. Again
taking the method Perform in Section II-A1as an example,
because the method is an independent software entity, any two
of the indexed eight terms appear together.

Literally keeping the full co-occurrence matrix in memory
is inefficient due to the observation that the matrix is usually
sparse. To improve the memory-efficiency, our technique keep
the matrix by using Yale format, a data structure that maintains
a sparse matrix using three rows of integers [12].

3) Verb-direct-object Pairs: Many code snippets concep-
tually correspond to performing certain actions on certain
objects, such as “open file”, “close stream” and “create in-
stance”. Based on this observation, Fry et al. proposed a

text mining technique that collects these concepts, or verb-
direct-object pairs, from a given codebase [7]. Applying this
technique, Sando mines the verb-direct-object pairs from the
code base under search, and caches them for recommending
either the verb or the object when the developer queries the
other part. For instance, supposing Sando mined the verb-
direct-object pair “open file” from the codebase under search.
If the developer queries “open”, Sando recommends “file” to
the search query. Similarly, if the developer queries “file”,
Sando recommends “open” to the original query.

4) Software Engineering Thesaurus: Sando’s recommen-
dation techniques also tries to solve the vocabulary mismatch
problem, which happens when a developer queries terms that
do not appear in the codebase, however semantically relate to
some terms that do. For instance, if the codebase under search
uses “retrieval” consistently, then the developer’s querying of
“search” are unlikely to return useful results. To solve this
problem, we applied a thesaurus-based technique. Taking a
term as input, the thesauri return synonyms that appear in the
codebase as recommended queries. Only using general English
thesaurus is not enough because software development has
developed many field-specific synonyms, such as “instantiate”
to “create” and “update” to “refresh”. Therefore, we apply
the work of Gupta et al. that mined the source code of
open software projects, generating 1724 pairs of related terms.
Among these pairs, about 91% are field-specific [8].

5) General English Thesaurus: In addition to the field-
specific thesaurus, we also include a general English thesaurus
to help the developer when the field-specific thesaurus fails.
We derive the general English thesaurus from WordNet, which
is database of English words with the relationship between
them [9]. Keeping the entire WordNet in memory is costly;
hence we only include the top 100k most frequent terms in
the English language.

B. Pre-search Recommendations

Based on the aforementioned components, we next detail
how Sando computes and presents the recommended queries.
The first category of our recommendation techniques assists
developers before they query. These pre-search recommenda-
tions allow developers to select terms that are either frequent
in the local codebase or closely related to the input. More
precisely, the recommended queries originate from the fol-
lowing three sources: (1) the verb-direct-object pairs, (2) the
identifiers, and (3) the co-occurring terms.

When the developer inputs a verb or a noun in the search
box, a drop-down menu presents the verb-direct-object pairs
which contain the term given in the search box. For instance,
as illustrate in Figure 2a, when the developer inputs “parse” to
the search box, the drop-down menu lists pairs such as “parse
file” and “parse method”.

When the developer inputs the prefix of cached identifiers,
the drop-down menu presents the identifiers starting with the
given prefix. For instance, the drop-down menu in Figure 2b
shows identifiers starting with “create”, which is the devel-
oper’s input in the search box. These identifiers could be
method names, class names, and field names. Sando retrieves
these identifiers from the local dictionary.

(a) Recommending verb-direct-object pairs.

(b) Recommending identifiers.

(c) Frequently co-occurring terms.

Fig. 2: UI of pre-search recommendations.

The third source of the recommended terms is the co-
occurrence matrix. After the developer inputs a term in the
search box, she can view the terms that co-occur with the term.
Different from the aforementioned two sources, Sando presents
the co-occurring terms through a tag cloud. The size of a term
in the tag cloud indicates the comparative co-occurrence count.
The bigger the font size of a term, the more frequent the term
co-occurs with the term in the search box.

For instance, after the developer inputs “program” in the
search box and clicks the cloud button near the search box,
a tag cloud appears as illustrated in Figure 2c. From the
tag cloud, the developer can infer that “code” appears with
“program” more frequently than “data” does. Furthermore,
each term in the tag cloud is a hyper link, the click on which
adds the term to the original query. The reason for using the tag
cloud instead of the drop-down menu is that the co-occurring
terms significantly outnumber the identifiers and the verb-
direct-object pairs; presenting the co-occurring terms through
the drop-down menu may be inconvenient for the developer to
browse.

C. Post-search Recommendations

The second category of the recommendation techniques
helps developers when their manual queries fail, which hap-
pens when the queries contain terms not appearing in the local

Fig. 3: Post-search recommendations.

codebase. The post-search recommendation assumes that the
failure is either due to the vocabulary mismatch problem or
to misspelling. Hence, the recommended terms are either the
synonyms to the original terms or the original terms with
corrected typos. Figure 3 depicts the UI of the post-search
recommendations after searching “choice” fails.

For a query leading to no search results, the recommen-
dation technique first pre-processes the query by splitting it.
Using the terms in the local dictionary, we greedily extract
the terms of the query that appear in the local codebase. Our
recommendation technique does not recommend replacements
for these terms. For the remaining terms that do not appear
in the local dictionary, the post-search recommendation goes
through the following steps to compute the recommended
replacements:

Step 1: For a term that does not appear in the local dictio-
nary, Sando first queries the Software Engineering thesaurus to
find the synonyms of the term. After finding several synonyms,
Sando recommends them to the developer. Sando filters the the
recommended sysnonyms with the local dictionary to ensure
that every recommended term appears in the local codebase at
least once.

Step 2: When finding no field-specific synonyms, our tech-
nique queries the general English dictionary to find synonyms.
After finding several synonyms, Sando recommends them to
the developer. Similar with Step 1, Sando also filters these
sysnonmys.

Step 3: If neither thesauri contains the synonyms of the
given term, Sando considers the term a typo. Therefore, Sando
corrects the typo by using the terms in the local dictionary.

III. RELATED WORK

A large body of existing research relates to ours. We briefly
summarize them according to two aspects: search tools and
recommendation techniques.

Search Tools. Similar to Sando, researchers have pro-
posed multiple tools allowing developers to efficiently access
the enormous information space. For instance, Grechanik et
al. proposed a search engine called Exemplar that retrieves
function-level code elements from the web and also visualizes
them [1]. Bazrafshan et al. presented a search tool that can
retrieve code across the boundary of versions and branches
in the source control system [2]. Differing from these tools,
Sando searches code snippets from the local codebase.

Recommender Systems. Recommender systems play an
important role in the software engineering research. For in-
stance, Thummalapenta and Xie presented PARSEWeb that
recommends method invocations sequence that bridges the
starting object with the destination object [3]. Ankolekar et
al. proposed Dhruv to recommend reusable artifacts to open
source developers [4]. Differing from these techniques, the rec-
ommendation techniques adopted by Sando assist developers
in composing promising queries.

IV. CONCLUSION

Facing an ever-increasing codebase, developers often start
tasks with searching their local code. However, even the state-
of-the-art code search tools require developers’ recalling the
text of the intended code snippets. To further bridge the
gap between developers and their intended code snippets, we
demonstrate a set of recommendation techniques integrated
into Sando. Issuing recommendations both before and after a
developer’s search, our technique potentially mitigates devel-
opers’ cognitive burden when using local code search tools.

ACKNOWLEDGMENT

This research was conducted during the first author’s
internship at ABB Research. We thank the help from Vinay
Augustine, Patrick Francis, and Will Snipes. We also thank
the comments from the Development Liberation Front group
members Titus Barik, Michael Bazik, Brittany Johnson, Kevin
Lubick, John Majikes, Yoonki Song and Jim Witschey.

REFERENCES

[1] C. McMillan, M. Grechanik, D. Poshyvanyk, C. Fu, and Q. Xie.
Exemplar: A Source Code Search Engine for Finding Highly Relevant
Applications. In TSE, 38(5):1069–1087, 2012.

[2] S. Bazrafshan, R. Koschke, and N. Gode. Approximate code search in
program histories. In Proc. WCRE, pages 109-118, 2011.

[3] S. Thummalapenta and T. Xie. Parseweb: a programmer assistant for
reusing open source code on the web. In Proc. ASE, pages 204-213,
2007.

[4] A. Ankolekar, K. Sycara, J. Herbsleb, R. Kraut, and C. Welty. Supporting
online problem-solving communities with the semantic web. In Proc.
WWW, pages 575-584, 2006.

[5] D. Shepherd, K. Damevski, B. Ropski, and T. Fritz. Sando: an extensible
local code search framework. In Proc. FSE, pages 15:1-15:2, 2012.

[6] InstaSearch: Eclipse plug-in for quick code search. https://code.google.
com/a/eclipselabs.org/p/instasearch/, 2013.

[7] Z.P. Fry, D. Shepherd, E. Hill, L. Pollock, and K. Vijay-Shanker.
Analysing source code: looking for useful verb-direct object pairs in
all the right places. IET Software, 2(1):27-36, 2008.

[8] S. Gupta, S. Malik, L. Pollock, and K. Vijay-Shanker. Part-of-speech tag-
ging of program identifiers for improved text-based software engineering
tool. In Proc. ICPC, 2013.

[9] G. A. Miller. Wordnet: A lexical database for english. Communications
of the ACM, 38:39-41, 1995.

[10] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung. An exploratory
study of how developers seek, relate, and collect relevant information
during software maintenance tasks. IEEE TSE, 32(12):971-987, 2006.

[11] J. Singer, T. Lethbridge, N. Vinson, and N. Anquetil. An examination
of software engineering work practices. In Proc. CCASCR, pages 21-36,
1997.

[12] M. H. Schultz S. C. Eisenstat, M. C. Gursky and A. H. Sherman. Yale
sparse matrix package i: The symmetric codes. Journal of Numerical
Methods in Engineering, 18:1145-1151, 1982

https://code.google.com/a/eclipselabs.org/p/instasearch/
https://code.google.com/a/eclipselabs.org/p/instasearch/

	I Introduction
	II Approach
	II-A Components
	II-A1 Local Dictionary
	II-A2 Term Co-occurrence Matrix
	II-A3 Verb-direct-object Pairs
	II-A4 Software Engineering Thesaurus
	II-A5 General English Thesaurus

	II-B Pre-search Recommendations
	II-C Post-search Recommendations

	III Related Work
	IV Conclusion
	References

