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Abstract In this article we propose a new C++ schema—called
Columbus—as a candidate for such exchange. The pro-
To successfully carry out a software maintenance or posed schema satisfies some important requirements of an
reengineering task, a suitably assembled set of tools is re-exchange format. It reflects the low-level (AST) structure
quired, which interoperate seaminglessly. To achieve this of the code, as well as higher level semantic information
goal, an exchange format is needed that can be used to(e.g. semantics of types). Furthermore, the structure of the
represent the facts extracted from a software system in aschema and the used standard notation (UML Class Dia-
standardized way; serving as an output of one tool and asgrams [14]) make its implementation straightforward, and
an input for other tools. In this paper we propose a mod- what is even more important, an APl is very simple to issue
ular schema for C++, called the Columbus Schema. The as well. Therefore, the Columbus schema is a good can-
schema has been implemented in the Columbus/CAN frontlidate for exchanging information among tools of various
end framework tool and is already utilized in several us- nature, e.g. a C++ parser front end and code-rewriters, met-
ages, one of which is its representation in the GXL form. rics tools, documentation tools, and even compilers. This is
already supported by several use cases, where the Colum-
bus schema has been successfully used for data exchange.
The most important of these applications is probably GXL,

Keywords an already accepted medium for information interchange in
reengineering [9, 10].

Tool interoperability, standard exchange format, C++ In the following, we present our schema in detail, fol-
schema, front end, AST, Columbus/CAN, GXL lowed by an example. In Section 3 we give details about
the implementation and report our experience in recent use
cases of the schema’s application and finally we conclude
our paper.

1 Introduction

Inrecentyears it became increasingly apparent thatin or-
der to successfully perform a real-life software maintenance2 Columbus Schema for C++
or reengineering task, a suitably assemisletbf toolds re-
quired. This is in contrast with a popular belief from prior The project team at the University of Szeged (in cooper-
times that one integrated tool must be found which suits all ation with Nokia Research Center and FrontEndART Ltd.
of the needs of a reverse engineering project. However, thig[7]) created a C++ schema for various reengineering and
has as a consequence that in order to retain the flexibility ofreverse engineering tasks such as creating UML class di-
these tools’ interchange, one must have alsmtchange agrams and calculating metrics [17]. The ISO/IEC C++
formatfor these tools. standard of 1998 [11] served as the basis for all design de-
Recently, many researchers indeed realized the impor-cisions. More precisely, the schema models the “clean”
tance of such interoperability of tools and a common ex- C++ language syntax (preprocessed source code), it does
change format; and this became an active research topic asot deal with macros and other preprocessor issues.
well (e.g. [1, 2], [3], [6] and [12]). However, for the C++ The Columbus schema is also used as the internal rep-
language no such schema has been proposed until now thaesentation in the C/C++ extractor module of @@umbus
is accepted as a standard (or at least reference) descriptioreverse engineering tool call€@RAN[5] (see Section 3). The
of C++ for interchange purposes among reverse engineeringschema evolved into its current state in parallel with its im-
tools. plementation and is used also for analysis (e.g. resolving
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Figure 1. Class diagram of the basepackage

type names and scopes), as well as data exchange. e statm: the package contains classes modelling the
We present the Columbus C++ schema using UML statements.

Class Diagram notations [14], which has several advan- o )

tages. Firstly, it uses a standard notation; secondly, at the ® €XPr: the classes in this package represent all kinds of

same time it is close to implementation level and sufficiently expressions.

abstracts the language. Thirdly, the schema can be used as R
. ' Pack tat d t ted in th
a basis for an API to such a tool that uses the schema. Ad- ackagestatmandexprare not presented in tis paper

. . . ) .~ because of space constraints. However, the schema without
ditionally, an implementation of the schema might define

. S i these packages is still a rounded whole, especially for cer-
Izgf;irhse?nn;arr:]tloc;econstr_alnts_rlgll the CII‘ZS.S dllagraTs that ma}ke[ain applications where higher-level models are sufficient
X precise. 1nis could include, for examp e’(te.g. extracting UML Class Diagrams).
certain cases when an attribute of some base class is no
used by one of its derived classes.

Externally, the model of a software system using this

schema can be stored in various physical formats, includ-

2.2 Thebasepackage

ing GXL [9, 10]. The base package (Figure 1) contains the abstract class
Base which is the base class of all classes in our schema.
21 The structure of the Schema A singly rooted hierarchy has many advantages (e.g. all

classes have a common interface). It has one attribute: the
node identifieid. The second class in this package is called
Positioned This abstract class extenBsisewith location
(path, line, column, ...) andommentnformation. This
class is the base class of all classes that represent source
code elements, which have a position in the code. The third
classNamedextends the previous one wittameinforma-

e base:the base package containing the base classes an#on. . .
data types for the remaining parts of the schema. Apart from these classes the package contains dif-
ferent enumerationsA¢cessibilityKing StorageClassKind
e struc: this package models the main program elements ClassKind etc.) used by the schema.

according to their scoping structure, such as objects,

Because of the high complexity of the C++ language, we
have modularized our schema similarly to the proposal in
the discussion part of our previous work [6]. This opens
up also the possibility for its extension/modification. We
divided the schema into seven packages:

functions and classes. 2.3 struc— the structure package

e type: the classes in this package are used to represent i i i
the types of the elements in tiseruc, templandexpr This package contains classes that model the main pro-
packages. gram elements and their scoping structure, which are or-

ganized aroundlember the most important child class of
e templ: the package covers the representation of tem- base::Namedsee Figure 2). This abstract class is the par-
plate parameter and argument lists, and is used by theent of all kinds of elements, which appear in a scope (we use
strucandtypepackages. the term “member” in a more general way than usual). It has



the propertiesiccessibility(private , protected , ...), defined by the function, whileasBodyand hasLabelare
storageClasgstatic , extern ,...) andnonlSOSpefor used to model the body (block scope with statements) and
capturing any non-1SO specifiers from different language the jump labels of the function. The schema makes no dif-
dialects. In addition, member declarations can refer to theirference in representing class attributes and local variables
definition. (these are alDbjects). Typedefs are special because they

The first child of theMemberclass is the abstract class are not “real members” in the usual sense (just type aliases),
Scope which is a member as well, because it can be con- but syntactically they look almost exactly the same as ob-
tained by another scope. The composition frBeopeto jects. Note, that the clag@arameteris not a member (it is
Memberenables the class to store other members in an or-derived from the classase::Name}l Instead of being con-
dered way, which is a natural representation of the scopetained by a scope, it can be a child of a function, object (if
nesting in the C++ language (i.e. it iscamposity This  itis a pointer to a function), typedef (type alias of a pointer
recursive containment along with the other compositions to a function) or another parameter (if the parameter is a
named-“contains” builds the basiskeleton structuréree  pointer to a function).
of the modelled system. The Using and NamespaceAliaslasses are special as

The Namespacelass is used to represent C++ names- yvell, because they have a position in the code, but neither
paces. In a schema instance there must always exist at leadt & real member. Thelsing class refers to a namespace
one namespace object, which is callgtbbal namespace” thse symbols can be used from the point of definition, or
Our schema is basically designed in a project-oriented view@ Single namespace member or a base class member that
that gives namespace scopes priority over file scopes (botrf@n be used with e.g. a modified accessibility. Nenes-
cannot be represented in an AST at the same time, bepaceAIia_scIass (efers to a namespace and defines a new
cause namespaces can be defined across files/compilatiof@me (alias) for it.
units). However, the original path information is stored in  Similarly to scopes, th&numeratiorclass is a compos-
the schema and the files can be restored from there. ite, which stores an arbitrary numberBfumerators.

The class nameClassis similar to Namespacebe- _ Our schema makes no difference in representing the two
cause both represent scopes. It has the fidhts(class | kinds of templates of C++ (class- and _functlon-templates)
struct  or union ) and if it is abstract and defined or DY Separating the template representation (the template pa-
not. Additionally, it is composed with two classes that rep- F@meters) from the actual template object, similarly to the
resent the base classes and friends. The first one is th&/P€ representation. This template representation is called
classBaseSpecifiewhich models the inheritance relation- FarameterLisand is located in theemplpackage (see Sec-
ship between two classes or between a class and a templafi® 2-5). The two template classes atassTempand
instance. The additional information of accessibility and FunctionTemplwhich represent class templates and func-
virtuality is stored as attributes. The second one is the clasdioN templates, respectively.

FriendSpecifier which models the friend relationship be- _ Template specializations (class€assTemplSpeand
tween two classes, between a class and a function, or beFunctionTemplSpgare handled in a similar way as tem-
tween a class and a template instance. In the case of modPlates: they are composed with theggumentListiass from
elling these two relationships among classes and templatdh€ templpackage, which is representing the template spe-
classes/functions, these classes are also composed with tenfialization arguments. In addition, the template specializa-
plate argument lists that represent the actual template arfion is referring to the template, which is being specialized.
guments used for the instantiation of the referred template. Teémplate instances can also be considered as mem-
E.g. in the case of deriving clagsfrom the template class ~ Pers, although they do not have an exact position (they
C, which is nested in template claBsthe base specifier will ~ &ré not present in the source code directly but are gener-
contain the argument listsnt> and<D,char> : ated by the front end). Similarly to the template specializa-
class A : public B<int>::C<D,char> _ tions, theTemplinstancelass is composed with the class
templ::ArgumentListand it is referring to the template it is

The classed$-unction Object Typedefand Parameter
n Object Typ being instantiated from.

are very similar, so they will be described together. Basi-
cally, these are the language elements that have a type. Our

schema represents this with aggregations witilygeRep ~ 2.4 Thetypepackage

class from thetype package (see Section 2.4 for more on

this). All these classes have some custom attributes that The type representations (cla8gpeRepare stored com-

are needed for storing special information like functiamd pletely separated from the language elements, which are us-
(constructor, destructor, etc.) or if the object ibiield or ing them (e.g. functions or objects, see Section 2.3). This
not. In the case of functions there are additional associa-opens the possibility for storing each type only once, and
tions: throwsmodels the eventual exception specifications referring to them from multiple nodes (see Figure 3).
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Figure 3. Class diagram of the typepackage

The type representation cla$gpeReps composed of  template. The type name parameter is represented with the
small parts that we callypeFormers. These can be sim- classParameterTypawhich can possibly refer to a type rep-
ple type formers like arraysTypeFormerAry and point- resentation as its default value. The non-type parameters are
ers/referencesTypeFormerPty; or type referencesT{pe- modelled with the clasParameterNonTypewhich repre-
FormerTypg, which can refer to simple (built-in) types sents its type the same way as, e.g., the function parameters.
(classSimpleTypgor some other elements that represent It can have a default value, so it may refer to the correspond-
types, like classes or typedefs. ThgpeFormerFunds a ing expression. Finally, the parameter that is another tem-
special type former, which is present if we are representingplate is represented with the claBarameterTemplwhich
the types of functions or parts of a more complex type rep- simply stores its template parameter list with a recursion: it
resentation containing pointers to functions. It refers to the is composed with th®arameterListclass. Additionally, it
type representations of the function’s parameters and its re-can have a default value, so it may refer to the appropriate
turn type. Eventual const-volatile qualifiers that belong to a ClassTempbr FunctionTemptlass.

type are represented by an attribute in TypeReElass. Every template parameter has its corresponding template
The order of the type formers captures how the type is argument when the template is instantiated: the daga-

built up semantically. For example, the declaration mentTyperepresents a reference to a concrete type repre-

int *array[SIZE] is represented with thiSypeRep  sentation for the type parameter. Similarly, thgument-

(1) array of (2) pointers to (pt -s. NonTypeclass refers to a concrete expression andAthe

Note, that this type representation allows an arbitrary gumentTemptlass refers to the concrete class or function
number of recursions in representing the types of e.g. pa-template.
rameters that are pointers to functions that have parameters
that are in turn pointers to functions. 26 Example schema instance
2.5 templ-the template package

We illustrate the use of our schema through an example

There are two special language elements that class andnstance of it. We use a slightly simplified version of the
function templates and template specializations have: theexample in [6] (see Figure 5). The AST for the example is
template parameter list (represented with the cReam- given in Figure 6. We use an Object Diagram-like notation,
eterLis) and the template argument list (represented with where the object instances of the schema’s classes are rep-
the classArgumentLis}, see Figure 4. Both are composites, resented and the links that connect them clearly show the
which storeParameters andArguments, respectively. instances of various association and aggregation relations.

In C++ there are three kinds of template parameters: theThe ordered associations are represented by numbering the
“usual” type name, the non-type (e.g. value) and anotherlinks. We have simplified the diagram for clarity by omit-
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Figure 4. Class diagram of the templpackage

ting attributes, such as line numbers, which are not necesthe type itself. The first one is a pointer (reference) for-
sary for the description. mer (TypeFormerPtr27), which means that the return type
The schema uses integers as unique identifiers for nodeds a reference to a node that represents a type. The second
so the key of the topmost node is “1.” The class of each type former is aypeFormerTypénode 28), which refers to
node is given to the right of the key number; for example, template parameter 13. So the overall meaning of the type
the class of node 1 struc::NamespaceThe schema uses a  representation is: a reference to template pararieter
nameattribute in some nodes to give the name of the source
item be?ng represented; for example, the name attribute of3 Implementation experiences
node 1 is‘global namespace.”
We will use the example to explain how the template
class, the types, the object and function in it are representedS c

in the AST according to the Columbus schema. tioned in the Introduction—in parallel to the schema a re-

The template clasArray is represented by node 11. It erse engineering tool also called Columbus [5] has been
contains a template parameter list (node 12), which has tWOdeveIoped. lts C/C++ extractor module uses the schema as

children (the order is shown on the connecting edges) thatis internal representation. Because the schema description
represent the two template parameters. The first one is &g i form of UML Class Diagrams the implementation of
type nameT that it is referred from two other nodes. The e extractor is rather close to the schema. This opens also a
second one is the non-type parameter (valbiegl which 1 ogipility to issue a schema-conforming API for accessing
has a type. This type is representedlypeRemode 18. the internal representation. The second application is that

The template clasArray has two children (ordered): ob-  the final result of the extraction can be presented according
jectarr (node 15) and functioget(node 16). The type of g the schema in various formats, such as GXL.
objectarr is represented byypeRemode 20. The Columbus tool implementsgeneral frameworkor

The facts that functiogetis virtual and const are stored combining a number of reverse engineering tasks and pro-
as attribute fields in node 16. The function has one param-vides a common interface for them. It supports project han-
eter with the namédx (node 17). The type of this node is  dling, data extraction, data representation, data storage, fil-
the same as the type of template param8tee so it refers tering and visualization. Extractors for different program-
to the sam@ypeRed.8. We will present the type represen- ming languages can be integrated into the Columbus frame-
tation of functiongetin detail (node 24). work using aplug-in APL The current version has a C/C++

The TypeRe4 contains daypeFormerFunaode (25), extractor and a Java extractor is under development. The
which refers to thelTypeRepof the function’s return type  Columbus tool is available on the web, and it is free for sci-
(node 26) and th@ypeRepf the parameteidx (node 18). entific and educational purposes [7].
The return type representation (node 26) stores the const- During extraction Columbus produces separate internal
ness of the return type and contains two type formers for representations for each precompiled compilation unit and

We will provide a two-fold application of the Columbus
hema in our implementation. Firstly—as already men-



template <class T, int Size>
class Array {
T arr[Size];
public:
virtual const T& get(int idx) const;

k
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The example implements a generic array, which expects two parameters
(the type of the stored elements and the size of the array) and has a
public functionget

Figure 5. Example
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Figure 6. AST for the example



the linker plug-in merges these units into a unified AST. this, we wish to publish the details of tretatmand expr

During linking duplicated elements, such as declarations in packages.

header files, are removed. After linking the extracted data
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