
Evaluating an Embedded Software Reference Architecture
– Industrial Experience Report –

Bas Graaf and Hylke van Dijk
Delft University of Technology

The Netherlands
{b.s.graaf, h.w.vandijk}@ewi.tudelft.nl

Arie van Deursen
CWI and Delft University of Technology

The Netherlands
arie.van.deursen@cwi.nl

Abstract

In this paper, we discuss experiences gained during
evaluation of the maintainability of a reference architec-
ture in use at Océ, one of the world’s leading copier man-
ufacturers. The evaluation is conducted using an approach
based on SEI’s Software Architecture Analysis Method
(SAAM). The paper proposes a variant of SAAM that helps
to reduce the organisational impact of architecture evalu-
ations. Second, we analyse the implications of evaluating
reference architectures as opposed to single-product archi-
tectures. Furthermore, we share our experience of con-
ducting the evaluation, draw lessons for practitioners, and
propose new research topics.

1. Introduction

In industry new products are rarely developed from
scratch. Most products are based on previous generations
of similar products. Therefore, the capability of reusing
large parts of earlier development efforts when develop-
ing new products can increase the development efficiency
of companies tremendously [1]. However, currently many
companies have no structured approach for reuse, as a re-
cent inventory conducted among several companies devel-
oping embedded software confirmed [2].

One way to arrive at structured reuse, is to adopt ar-
chitectural concepts, including product-line approaches,
during the software development process. Architecture-
based development increases the development efficiency
and makes system more easy to maintain and evolve. It
does so by increasing the conceptual integrity [3] of soft-
ware systems and by providing a common software infras-
tructure which makes it easier to understand systems and
to integrate new components. A product-line architecture
extends these ideas beyond single-product developments to
a whole generation of products and thus enables the reuse
of components in new product-line members.

At Océ, one of the world’s leading copier manufacturers,
every couple of years a new product generation is launched,
comprising a family of similar products. To make develop-
ment and maintenance of these generations more effective
and efficient Océ decided to define a reference architecture
for a part of its products, that establishes a common soft-
ware infrastructure for different generations, thus facilitat-
ing reuse across generation boundaries.

Since the reference architecture will potentially impact
all embedded software to be developed at Océ, the archi-
tecture team at Océ decided to conduct an evaluation of
the quality of this reference architecture, using an approach
based on SEI’s Software Architecture Analysis Method
(SAAM [4, 5]). In this paper we report on this evaluation.

The contributions of this paper are threefold. First, we
propose a variant of SAAM that reduces the organisational
impact of architecture evaluations. Second, we analyse the
implications of evaluating reference architectures as op-
posed to product architectures. Last but not least, we share
our experience with conducting an evaluation of a real-life
reference architecture that is actually used in industry. The
lessons learnt are useful for practitioners, and lead to new
research questions related to architecture evaluation.

In order to protect Océ’s interests, we cannot discuss
Océ-sensitive details of the reference architecture. Instead,
we will discuss a modified version, which we will call the
Reference Architecture for Copier Engines (RACE). We be-
lieve that the architectural issues and the evaluation method
are not materially affected by these changes.

This paper is organised as follows. In Section 2 we
summarise the content and context of the RACE embedded
software reference architecture. In Section 3, we describe
why we selected SAAM to conduct the RACE evaluation
and why Océ’s situation required some modifications to it.
In Section 4 we explain how the actual evaluation was car-
ried out and how practical problems were solved. Then, in
Section 5 we reflect on the evaluation and identify future
work. We conclude with a discussion of related work and a
summary of the paper’s contributions.

Proceedings of the Ninth European Conference on Software Maintenance and Reengineering (CSMR’05)

1534-5351/05 $20.00 © 2005 IEEE

2. An overview of RACE

RACE addresses the engine software for Océ document
processing systems (copiers). The engine is the part of the
system that handles either the scanning, or the printing of
documents, as illustrated in Figure 1. A scanner engine
extracts an image from the original sheet, whereas a printer
engine reproduces the image data on blank sheets. RACE

describes an abstract engine that can potentially be used for
any Océ copier.

Controller

Scanner Printer

image data & info

original

sheets

blank

sheets

printed

sheets

original

sheets

print data
network

scanned data

Figure 1. Main flows in a copier.

2.1. Business drivers

RACE serves several purposes, of which the most im-
portant are:

Knowledge base RACE provides common terminology
for software architects that is applicable to several
products. The shared terminology together with the
regular RACE meetings enable architects to share ex-
periences more efficiently.

Starting point The RACE documentation can be used by
new projects as a starting point for Océ’s iterative de-
velopment process. This greatly reduces the effort re-
quired for designing an engine architecture for a new
product.

Reuse RACE describes the generic structure and behaviour
of the engine software components. This makes inte-
grating existing ’RACE-compliant’ software compo-
nents easier, and thus increases the reuse potential of
those components. This not only includes binary com-
ponents, but also designs, requirements and other soft-
ware artifacts.

In fact the three points above are all related to reuse (knowl-
edge, documentation, and other software products). There-
fore RACE eventually should make it possible to speed

up the development (fast prototyping) and maintenance of
products significantly.

2.2. Reference architecture

The RACE architecture defines the fundamental ele-
ments, relations between these elements, and properties of
other, product-specific elements of Océ’s copier engines.
These will be part of any future copier developed by Océ.

RACE is used to derive a software architecture for en-
gines incorporated in a specific series of Océ printers. From
this software architecture, individual engines can be config-
ured to be integrated in Océ’s products. In this way RACE

defines a family of copier engines.
Deelstra et al. give a classification of product families

with respect to level of reuse [6]. We use this classifica-
tion and the accompanying terminology to position RACE.
Four (ordered) levels are identified: 1) standardised in-
frastructure, 2) platform, 3) software product line, and 4)
configurable product family. These levels denote to which
extent the commonalities between related products in the
product family are exploited. RACE can be positioned as
a platform, since it provides RACE-compatible reusable
components that are developed by a separate reuse group
(see Sec. 2.4). RACE defines a standardised infrastructure
by prescribing how components should interact and what
functional components should look like. Additionally it of-
fers a platform that realizes common functionality, such as
error handling and scheduling.

As all business drivers of RACE are related to reuse, Océ
is particularly interested in investigating whether it is possi-
ble and worthwhile to raise the current reuse level of RACE

to that of a product line. However, in order to qualify as a
product-line architecture RACE must define the functional
variability between different engines.

2.3. Structure

RACE is extensively documented using text illustrated
with UML diagrams in more than 500 pages. The docu-
mentation is structured according to the Architecture Meta-
Model (AMM) developed by ATOS Origin [7]. AMM builds
upon the Siemens four-views model [8] and Kruchten’s 4+1
View Model [9]. It is organised around three views: the
conceptual, logical, and physical view. For each view, a
static and a dynamic perspective is offered. This gives rise
to six views, as illustrated in Table 1.

The RACE documentation includes one overview docu-
ment of approximately 50 pages, and a dozen documents
describing the architecture for specific concerns, such as
status control, software downloading, data persistence, and
diagnostics. Each of these documents is organised accord-
ing to AMM. The views are illustrated with diagrams ex-

Proceedings of the Ninth European Conference on Software Maintenance and Reengineering (CSMR’05)

1534-5351/05 $20.00 © 2005 IEEE

Table 1. Views used in in the RACE documentation.

View Static Dynamic
Conceptual System context, stakeholders, key requirements,

external interfaces
Use cases, user visible states, configura-
tions, variants

Logical System components and dependencies, subsystem
decomposition, persistent data, internal interfaces

Behaviour, component connection and
disconnection, startup, key algorithms.

Physical Files, directories, code, build rules Threads, tasks, scheduling, interrupts.

pressed in UML-RT, a real-time extension of UML widely
used at Océ [10]. In particular, many use cases are elabo-
rated in sequence diagrams.

2.4. Usage

Currently the use of RACE is voluntary. However, archi-
tects that want to use RACE for their project are supposed
to first participate in the RACE meetings for some months
to get the same shared understanding of the reference ar-
chitecture as the other RACE-architects. This ensures that
RACE is more than a pile of documents. These meetings
are very important as they provide a communication plat-
form which is essential for meeting the initial objectives of
RACE (Sec. 2.1).

In agreement with the objectives of RACE, there is a log-
ical link between the RACE group and the group that de-
velops reusable software components for the engine soft-
ware. In the current situation, only the reusable compo-
nents refer to the RACE documentation, which means that
the RACE documentation does not show what components
can be used to implement the different elements of the ar-
chitecture.

The actual usage of RACE leads to refinements of and
additions to RACE. This interplay between usage and evo-
lution of RACE is depicted in Figure 2. The horizontal
line represents the evolution of RACE. Each pi represents
a project in which an engine is developed based on RACE

for a series of Océ copiers. A project can join RACE for
some time, contribute to its development, and benefit from
modifications made to RACE. This is indicated by the
oblique lines for projects p1, p2, and p4. After a while,
such projects may decide to leave RACE, and continue on
their own using a fixed version of RACE (the lines become
vertical). Other projects (p3) may decide to use a fixed ver-
sion of RACE right from the start, extracting just whatever
is necessary from that version of RACE.

RACE came into existence based on the documentation
and experience of several previous projects. In fact it was
developed largely in parallel with one specific project. As
such RACE can currently be understood as the common de-
nominator of several product specific architectures.

As said RACE’s use is voluntary and it is not yet known

p1 p3 p4p2 Race evolution

P
roduct developm

ent

Figure 2. RACE and derived projects.

to all potential stakeholders. Therefore we can say that
RACE is currently in an emerging phase. So besides con-
firmation that its reference architecture is suitable for its
intended purpose, now and in the future, the RACE team
also may raise the RACE awareness within Océ by doing
this evaluation.

3. Evaluation approach

The initial question that triggered this work was “How
good is RACE?” Additionally another important and re-
lated question was asked: “Does RACE have a reason to
exist?” The RACE team mainly wanted to get confirmation
that RACE is useful and that it is of good quality.

We first define what the terms ‘quality’ and ‘good’ mean
in relation to RACE. As ‘good’ is always relative to particu-
lar requirements, the first step is to determine these require-
ments for RACE, which were unknown since their defini-
tion was neglected during development.

As RACE is intended to be used for several years and
product generations, it is essential that RACE can support
future changes to its environment and new product require-
ments. This is the main type of quality under consideration
in the evaluation. Furthermore, in view of the fact that the
objectives of RACE as presented in Section 2 are centred
around reuse, the impact that future changes will have on
the reuse potential offered by RACE is essential. In the rest
of this paper we will use the term maintainability to refer
to the type of quality required for a reference architecture
described above.

Proceedings of the Ninth European Conference on Software Maintenance and Reengineering (CSMR’05)

1534-5351/05 $20.00 © 2005 IEEE

Thus, the central question is: “How well is RACE pre-
pared for the future?” As this future is not always known at
the time of evaluation, the selected method must explicitly
address specification of possible extensions. Next to this
technical view the evaluation also serves an organisational
purpose: that of creating awareness.

3.1. Selection of evaluation method

A literature overview of architecture evaluation meth-
ods [11] was used to select an appropriate approach to an-
swer the central question above. Besides addressing main-
tainability as we described it in the previous paragraphs,
Océ further required the method to be lightweight and well-
documented. The method must have a low organisational
impact because, as RACE is still in an emerging phase, its
evaluation must not affect other processes at Océ. Addi-
tionally the method must be executable without additional
training. This requires that a clear procedure for doing an
evaluation based on the selected method is available. These
constraints imply the exclusion of many of the inventoried
methods because these either focus on a different quality
attribute or lack sufficient detail, e.g. many methods are
defined in only one published article.

The most suited methods described in the inventory
seem to be SAAM and its successor, the Architecture
Tradeoff Analysis Method (ATAM [5, 12]). Both address
maintainability and are extensively documented. Although
ATAM is likely to produce more objective and accurate re-
sults, it also seems more difficult to apply for unexperi-
enced assessors. The use of attribute-based architecture
styles and their associated quality attribute characterisa-
tions for analysis of architectural decisions is not straight-
forward. Also the identification of sensitivity and tradeoff
points and the generation of a utility tree requires more ef-
fort and experience. Due to Océ’s requirements with re-
spect to the need for training (no need) and organisational
impact (low) of the method, SAAM was selected.

In a SAAM evaluation, scenarios are developed to assess
a software architecture’s support for maintainability. The
scenarios are used to express the required type of maintain-
ability and thus SAAM can also be used to evaluate the type
of maintainability we described previously. The developed
scenarios represent possible future changes to the software
system. An important aspect of SAAM is that it involves all
stakeholders of a software architecture in a joint evaluation
session, which results in a better appreciation and a more
widely shared understanding of the software architecture.

The different phases of SAAM are presented in Figure 3.
A SAAM evaluation session starts with scenario develop-
ment and description of the architecture. These are iterative
activities. New scenarios can make it necessary to describe
the architecture further, so that the architects can analyse

Describe
Architecture Scenarios

Develop

Classify / prioritise
scenarios

Individually evaluate
indirect scenarios

Assess scenario
interaction

Create overall
evaluation

Figure 3. SAAM steps [5].

them, while describing aspects of the architecture forces to
think about possible scenarios addressing these aspects.

Next, the scenarios are prioritised and classified, and the
so-called indirect scenarios (those that require changes to
the architecture) are analysed for their impact. Further-
more, the scenario interaction is determined. Two scenar-
ios interact when they require changes to the same archi-
tectural component. Information on scenario interaction is
indicative of the quality of the decomposition.

Finally, the classification, prioritisation, analysis of the
individual scenarios, and the scenario interaction are used
to create an overall evaluation.

A SAAM evaluation session typically takes two days
and involves an external evaluation team of 3 to 4 people.
A session also involves system architects and other stake-
holders. The type of stakeholders involved is very diverse:
architects, developers, maintainers, integrators, managers,
customers, end users, and so on.

3.2. Tailoring SAAM

SAAM has been selected as the method for evaluating
RACE, yet it had to be tailored to Océ’s situation. The cur-
rent situation at Océ makes it necessary to modify SAAM

for two reasons: 1) organisational impact of SAAM and 2)
level of abstraction of RACE.

In the situation of Océ the impact of gathering all poten-
tial RACE stakeholders (Table 2), was considered too great
for two reasons.

First, the stakeholders of a software architecture typi-
cally include some of the important members of an organ-
isation that usually have very busy schedules. For RACE

this is especially true as it is the RACE group’s ambition
to make it a reference architecture that will impact devel-
opment of many of Océ’s copiers for years. Furthermore,
the scope of a reference architecture is larger than that of
a single-product architecture and therefore, next to a group

Proceedings of the Ninth European Conference on Software Maintenance and Reengineering (CSMR’05)

1534-5351/05 $20.00 © 2005 IEEE

of direct stakeholders a large group of indirect stakeholders
(Table 2) exist, which makes the complete group of people
with an interest in a reference architecture much larger.

Second, because of the current status of RACE (emerg-
ing) and the resulting RACE awareness within Océ (low),
many of its stakeholders are not prepared to spent much
effort on an evaluation or change their schedules.

The increased number of stakeholders and their willing-
ness to participate made it impossible to find a date that
suited all stakeholders and undesirable to take one or two
full days of each stakeholders’ time.

Besides the number of stakeholders the fact that we are
studying a reference architecture also has an impact on the
evaluation. It affects the level of abstraction; a reference
architecture is more abstract than a single-product archi-
tecture.

The characteristics of the situation as found at Océ that
we discussed above have several implications for the evalu-
ation. Below we will discuss how these issues lead to mod-
ifications to the typical SAAM process as described in [4].

Table 2. RACE stakeholders.

Stakeholder Interest
Architects RACE architects
Users Product architects
Management Sponsors and decision makers
Potential users Product architects not in RACE

Reuse group Provider of RACE components
Indirect Stakeholders of RACE based products

The proposed tailored version is a distributed implemen-
tation of SAAM (D-SAAM), that implements parts of the
SAAM activities off-line, apart from the joint session. For
instance, in preparation to the evaluation session, stake-
holders are consulted individually. The joint D-SAAM ses-
sion itself involves only participants fully aware of and
well-informed on the reference architecture. The advantage
of this approach is that the organisational impact is much
smaller. Off-line consultation of individual stakeholders
takes less time than a joint SAAM session. Additionally
these consultations can be scheduled fitting the stakehold-
ers’ agenda’s. Of course this approach increases the effort
required by the assessors involved in these preparations.
However, because we tried to minimise organisational im-
pact, we aimed at reducing the required stakeholder effort.

An additional advantage is that smaller gatherings po-
tentially induce less ambiguity, leading to a more efficient
joint session. Therefore the actual D-SAAM evaluation ses-
sion lasts half a day instead of the usual two days. This fur-
ther decreases the organisational impact of the RACE eval-
uation.

4. Conducting the evaluation

The evaluation consisted of roughly three phases. First,
the joint D-SAAM session had to be prepared. Second, the
D-SAAM evaluation session itself was executed. And fi-
nally an overall evaluation of RACE was created. Three
RACE architects and two external observers participated in
the joint session. One of the RACE architects played the
role of evaluation leader and prepared, chaired, and eval-
uated the joint session of D-SAAM. For each SAAM step
in Figure 3, we explain below how it was included in the
different phases of the D-SAAM assessment.

4.1. Preparation

In preparation to the execution of the joint D-SAAM ses-
sion the available documentation (on RACE and SAAM)
was distributed among the participants. The RACE docu-
mentation was especially useful for the external observers
as it explains the architecture and the applied architectural
mechanisms. The documents on SAAM were only used by
the evaluation leader.

The step ‘develop scenarios’ was carried out in two
stages. During the preparation phase, the evaluation leader
consulted stakeholders off-line. This resulted in an ini-
tial set of high-level scenarios representing possible futures
from a stakeholder’s perspective. The set of stakeholders
included the sponsor of RACE, members of the software
reuse group, and hardware and domain experts. Unfor-
tunately, the marketing and maintenance groups were not
consulted, which limited the view on the road maps for Océ
copier machines. The scenarios were related to either ex-
isting products or foreseen products. Whether RACE was
based on these products is irrelevant. The evaluation leader
then added more detail to these scenarios according to a
template for scenarios based on [13].

4.2. Scenarios

In total sixteen scenarios were developed off-line. The
majority of the scenarios aimed at reducing material costs,
for example by sharing resources, using low-power de-
signs, or offloading or re-mapping functionality. One sce-
nario, for instance, aimed at moving functionality from the
engine software to the main controller, another subsystem
of a complete document processing system.

A second kind of scenarios was developed to reduce de-
velopment costs. For instance, introduction of code gen-
eration for controllers of sensors and actuators based on
mathematical models of those hardware devices. These
scenarios were especially targeted at interactions which go
beyond the domain level, such as communications with the
mechatronics, testing, and manufacturing groups.

Proceedings of the Ninth European Conference on Software Maintenance and Reengineering (CSMR’05)

1534-5351/05 $20.00 © 2005 IEEE

Finally, a minor source of scenarios involved an upgrade
of the functionality, such as colour and wide-format print-
ing. An example scenario is depicted in Table 3 in a format
described by Bass et al. [13].

Table 3. An example scenario.
Stimulus Reduce power consumption by

turning off parts of the copier
machine during low-power mode

Response Solve in engine specific projects
Source Electronics department
Environment Engine development time
Stimulated
artifact

RACE documentation

Response
measure

Reuse percentage remains on same
level

4.3. Execution

In the joint session each architect represented a product,
as a user of RACE. Additionally all architects played the
role of assessor. As some of the participants had no expe-
rience in SAAM evaluations and to explain the steps of the
D-SAAM process, the session started with a brief introduc-
tion of the process. For the process observers also the role
of RACE in the organisation of Océ was explained.

The step ‘describe the architecture’ was largely omitted
during the D-SAAM session, since the D-SAAM session
only involved people that are well-informed with respect to
RACE, and extensive documentation was already available.

The second part of the step ‘develop scenarios’ was done
during the D-SAAM session. This involved only architects
of products on which RACE was based. However, since
soliciting for extra scenarios gave no results, the scenarios
gathered and elaborated by the evaluation leader were used.

Scenarios were classified, prioritised, and evaluated as
in SAAM, during the session itself. The scenarios were
classified and evaluated one by one, bypassing prioritisa-
tion (Fig. 3). Figure 4 gives an impression of the final result
of the SAAM session. Scenarios were classified in directly
and indirectly supported scenarios.

In general, first the impact of a scenario on a specific
product was evaluated, and then its impact on RACE. Clas-
sification and evaluation required a different attitude be-
cause we were evaluating a reference architecture instead
of a product architecture. The difficulty lied in the fact that
while scenarios are concrete, representing future function-
ality, or the quality of actual products, the reference archi-
tecture is abstract. The question:“What is the impact on
the reference architecture?” needed to be answered consis-
tently for all scenarios. Therefore we defined two types of

description
characterisation

scenario ID
description
characterisation

scenario ID
description
characterisation

scenario ID

description
characterisation

scenario ID
description
characterisation

scenario ID

description
characterisation

scenario ID

description
characterisation

scenario ID

description
characterisation

scenario ID

floatingconcrete low impact high impact

1

Direct scenarios Indirect scenarios

3

2

P
rio

rit
y

description
characterisation

scenario ID

description
characterisation

scenario ID

description
characterisation

scenario ID

description
characterisation

scenario ID

Figure 4. SAAM results.

direct scenarios:

1. Scenarios that are supported by the reference architec-
ture as is and for which it provides concrete guidelines
on how to realize them in product instantiations, and

2. Scenarios that can be realized by systems based on the
reference architecture, but for which it does not (yet)
provide detailed information on how to realize them
(floating).

The class of floating scenarios calls for a cookbook with
recipes that describe solutions for variation points in the
reference architecture. Cookbook recipes describe how
RACE can be used to realize a specific (floating) scenario.
For example, it might be necessary to describe what kind
of components need to be defined or how some of the al-
ready defined components should cooperate to implement
the desired behaviour. This information can be included in
RACE in a separate document without affecting the exist-
ing RACE documentation. By realizing scenarios this way
the scope of reuse for RACE is extended and RACE’s clas-
sification moves from platform towards product line (see
2.2). An example of such a cookbook recipe was the de-
scription of how to realize sharing of hardware resources
within a RACE engine. The recipes were just new RACE

documents. In fact, some of the existing RACE documents
already were such recipes, such as the document describing
how function component should look like, without actually
defining concrete function components. These documents
had a different nature than the other RACE documents that
describe specific RACE components, like a scheduler. Ob-
serve from Figure 4 that most of the scenarios fall in the
category of directly supported scenarios.

The indirect scenarios were, as usual in SAAM, parti-
tioned in two subsets: a subset with low impact and a subset

Proceedings of the Ninth European Conference on Software Maintenance and Reengineering (CSMR’05)

1534-5351/05 $20.00 © 2005 IEEE

with high impact. Overall this assessment session did not
discover many design flaws. The architects spent most of
their time on the single high impact, high priority scenario
(multiple sheet paths).

The indirect scenario interaction was considered very
briefly as only a few indirect scenarios were discovered.
It was concluded that those did not interact.

4.4. Overall evaluation

This final stage of the assessment involved the over-
all evaluation, which resulted in a set of strong and weak
points. The set of strong points includes the aforemen-
tioned use of RACE and its flexibility; most of the evaluated
scenarios are directly supported.

The set of weak points includes a design flaw that pre-
vents support for multiple sheet paths, which is required for
duplex printing for instance. Additionally RACE seemed
incomplete as it missed several cookbook recipes. For ex-
ample, recipes for sharing hardware resources and reusing
engine parts amongst different engines in a single copier
are currently not included in RACE. Another weakness was
that variation points were not explicit in the RACE docu-
mentation. Related to this issue is a missing structure for
documenting a RACE instantiation, an engine generation,
with respect to the RACE documentation. It was not clear
how conformance to and deviations from RACE should be
specified by projects that develop a RACE instantiation.
However, this is important for the maintainability of the
reference architecture and its instantiations.

5. Discussion

Below we both discuss the implications of evaluating
a reference architecture and using a distributed SAAM ap-
proach and we indicate where these lead to suggestions for
future work and research questions.

5.1. Reference architecture

Reuse level In Section 2.2 we positioned RACE as a plat-
form. Furthermore the business drivers for RACE were
all related to reuse (Sec. 2.1). Therefore the positioning
raised two questions: is it correct for the current situation,
and for the future? If correct, the current reuse position-
ing of RACE as a platform should be supported by links
between the documentation of RACE and the documenta-
tion of instantiated products. In view of the reuse posi-
tioning of RACE, we expect a considerable reduction in the
effort of documenting a product instantiation compared to
a single-product architecture approach. A prerequisite for
this conjecture is that there must be a systematic way of
documenting product instantiations with respect to RACE.

It is unclear whether such a systematic documentation pro-
cess exists.

Research question Can we define and deploy a
systematic process for documenting product ar-
chitectures with respect to a reference architec-
ture?

In order to find out if product instances are documented
with respect to their reference architecture in a systematic
way reuse metrics are required [14]. As an example of such
a reuse metric, consider two indicative figures: the relative
size and a normalised cohesion factor. The size factor cal-
culates the lines of documentation of a product instantia-
tion relative to the size of the RACE documentation. The
cohesion factor takes the number of references from the
documentation of a concrete product to the RACE docu-
mentation that handle variation points, normalised with the
total number of references from the product instantiation
documentation to the RACE documentation. A low relative
size and high cohesion factor indicate a high reuse factor
and thus a systematic approach for reusing RACE in prod-
uct instantiations.

Future work Define a metric to position a refer-
ence architecture with respect to scope of reuse.

With respect to the future reuse positioning of RACE we
would expect, looking at RACE’s reuse-oriented business
drivers, that Océ aims to increase the reuse scope of RACE.
This objective is supported by the identification of various
direct floating scenarios, which will be implemented by the
RACE team in a cookbook (Fig. 4). This implies that Océ
indeed foresees that the reuse positioning of RACE is raised
from platform to software product line in the near future.

Updates RACE’s maintainability was the central quality
aspect in the evaluation. One aspect of maintainability is
the possibility to update the reference architecture with de-
velopments that take place in a product instantiation: dur-
ing the oblique lines in Figure 2. In order to successfully
implement a proposed update to RACE two issues need to
be considered: conformance and permissiveness.

Conformance is the extent to which the product archi-
tecture and reference architecture match. One must specify
the update in agreement with the existing reference archi-
tecture. This is necessary, for example, to prevent speci-
fication of updates to components that do not exist at all
in the reference architecture. The architecture of a product
may undergo small changes during its development. Con-
sequently, there may be a discrepancy between the product
architecture and the reference architecture. The discrep-
ancy may obstruct the transfer of architectural fragments,
e.g., a cookbook recipe, from the reference architecture to

Proceedings of the Ninth European Conference on Software Maintenance and Reengineering (CSMR’05)

1534-5351/05 $20.00 © 2005 IEEE

the product architecture. But it may also obstruct the up-
date of the reference architecture itself.

To detect these architectural discrepancies and suggest
possible repairs, one could check the conformance by first
using reverse engineering techniques to raise the level of
abstraction of concrete RACE-based product architectures
and then compare the result with RACE [15].

Future work Develop a technique to measure
the conformance of a product architecture with
respect to the reference architecture on which it is
based in order to assess the possibility to transfer
fragments from product architecture to reference
architecture.

The bare fact that a product has an architecture that con-
forms with the reference architecture does not ensure by
itself that a proposed update will be successful. The ref-
erence architecture also has to be permissive with respect
to the update. The reference architecture must provide the
flexibility to incorporate the proposed update. An update
might violate some of the design decisions taken earlier;
whether this is the case is in practice generally hard to as-
sess. One reason for this is that design decisions are not
completely documented. Most times only the structural
effect of a design decision is documented. Documenting
other aspects of design decisions, such as their rationale
and effect with respect to (non)-functional requirements is
often neglected.

Research question How can we document de-
sign decisions explicitly and how can we then use
them to assess an architecture’s permissiveness
with respect to a proposed update?

Use of reference architectures Another point of discus-
sion is RACE’s use. Besides its technical use as a starting
point for product specific software architectures, the ref-
erence architecture served according to its objectives as a
discussion platform for the software architects of different
products. In that sense RACE indeed is an efficient way to
exchange experiences among product teams.

Another use of RACE appeared during discussions in the
D-SAAM evaluation. RACE acts as a stable platform for
negotiations amongst different domains: the mechatronics,
manufacturing, and software reuse groups at Océ. By intro-
ducing a generic and more stable architecture for the engine
software of Océ copiers the RACE group tries to prevent
that software is automatically considered to be the means to
solve problems during engine integration. As such defining
an embedded software reference architecture helps creating
a better balance between the different disciplines involved
in engine development. This is a typical problem in the

embedded software domain as was also observed in the in-
ventory described in [2].

In the evaluation we conducted, the usage of the refer-
ence architecture was not addressed explicitly. Considering
the specific use of reference architectures described above,
it seems useful to do so, especially in the case of embedded
systems.

Research question How can we include the us-
age of a reference architecture in an evaluation?

5.2. D-SAAM

The status and awareness of RACE in Océ had their im-
pact on the evaluation. As we believe this situation at Océ
is not unique it is discussed here together with some issues
with respect to the scope of the distributed approach.

Status and awareness The low status of RACE and the
low awareness of how projects can benefit from it, made
that only a small number of stakeholders was involved in
the joint D-SAAM evaluation session. As discussed below
this was not a problem for the evaluation. However, the low
status and awareness limit the potential of RACE.

The D-SAAM process was intended to answer questions
derived from the initial one: ‘How good is RACE?’ These
questions not only refer to the (technical) maintainability
of RACE, but to its current and future use as well. If RACE

supports future developments of products currently com-
patible with RACE or if RACE’s reuse scope can be raised
from platform to product line, RACE’s status in the organ-
isation will be raised. This incidently leads to increased
involvement of more stakeholders for future evaluations.

A frequently quoted side effect of the general gathering
in a SAAM meeting is the increased awareness of architec-
tural details. In this case the goal is more modest, creat-
ing awareness of RACE is considered already an asset. The
consulting phase prior to the D-SAAM session actually cre-
ated the aimed awareness of RACE.

Scope of evaluation The main concern of scenario-based
evaluation methods is whether the coverage and scope is
broad enough to be conclusive about the findings of the
evaluation. SAAM overcomes this by organising a general
two-day gathering, which is moderated by experienced as-
sessors. In D-SAAM we had to take alternative measures.

In view of the two questions above and the development
of RACE the number of direct stakeholders is limited (Ta-
ble 2), although many indirect stakeholders can be identi-
fied. These two groups of stakeholders seem to have differ-
ent interests in RACE.

Raising the scope of reuse of RACE directly concerns
the architects of compatible products as users and architects

Proceedings of the Ninth European Conference on Software Maintenance and Reengineering (CSMR’05)

1534-5351/05 $20.00 © 2005 IEEE

of RACE. It implies that RACE not only should identify
variation points but also explicitly give alternatives. The
cookbook of the previous section provides these.

Scenarios that describe future development of existing
and foreseen products are the concern of the stakeholders
of those products. The development of these scenarios is
the responsibility of these stakeholders, which are not nec-
essarily also direct stakeholders of RACE. On the other
hand the resulting scenarios are input to D-SAAM session,
thus indirectly they are.

One measure we took to include indirect stakeholders
in the evaluation was to split the process of developing the
set of scenarios in two stages: an off-line stage with the
indirect stakeholders, and a D-SAAM stage with the direct
stakeholders. The scenarios provided by the indirect stake-
holders were product specific. Evaluating the impact on
the reference architecture was not their concern, but that
of the direct stakeholders. Furthermore the direct stake-
holders are the only ones capable of doing so. Therefore
because only the indirect stakeholders were excluded from
the joint session, the scope of the D-SAAM session was not
affected by the lack of stakeholder interaction during eval-
uation.

However, this also prevented indirect stakeholders to in-
terfere or interact during scenario prioritisation. During the
D-SAAM session, the architects concentrated on the most
likely scenarios, from the perspective of an architect. Al-
though scenarios were prioritised with respect to their im-
pact, there was no clear rationale for this ranking. Hence
D-SAAM’s scope was still at risk due to the possibility of a
wrong scenario prioritisation.

In order to validate D-SAAM’s scope we recommend
to organise indirect stakeholder involvement after the joint
session as well. During this feedback phase stakeholders
might be consulted, for instance in small sessions or indi-
vidual interviews, in the same way as we did in prepara-
tion to the session. This time the indirect stakeholders can
comment on the prioritisation of the scenarios and verify
whether the evaluation covered all relevant aspects of the
architecture. This preserves the small impact on the organ-
isation offered by D-SAAM. During the feedback phase,
indirect stakeholders may conclude that some likely sce-
narios have not been evaluated thoroughly enough. Thus
the feedback phase may yield newly developed scenarios,
emphasising certain concerns. This new set of scenarios
has to be evaluated in a new D-SAAM session. An ad-
ditional advantage of the proposed wrap-up session with
indirect stakeholders is that it will raise the awareness of
RACE within Océ, as discussed above, even further.

Future work Extend D-SAAM with an off-line
feedback phase after the joint session for indirect
stakeholders.

Use of Documentation During the assessment we were
somewhat surprised that the actual RACE documentation
was not used at all during the session. This means that the
architecture assessed is the one that is in the team mem-
bers’ heads, and not the documented architecture. The cor-
responding risk is that the team may have different archi-
tectures in their minds, that the documented architecture is
inadequate, and that architects not participating may have
different perspectives. Thus we have:

Research question How can we involve the ar-
chitecture as documented explicitly in the assess-
ment process?

Solution directions will require explicit, analysable rep-
resentations of both the architecture and the scenarios used
in the assessment. An interesting research topic is whether
text analysis techniques can be used to analyse the relation-
ship between these two representations.

6. Related work

An overview of SAAM and ATAM, as well as references
to many other methods for evaluating software architec-
tures can be found in the book by Clements et al. [5].

Galagher discusses the application of ATAM to a refer-
ence architecture [16]. Unfortunately, he hardly discusses
any issues specific to the evaluation of reference architec-
tures (such as the different role of scenarios). The reference
architecture is more or less evaluated as a single-product
software architecture with specific business drivers.

Since the boundary between product line architectures
and reference architectures is not always distinct (Sec. 2),
another area of relevant related work is the field of product
line evaluation. Lutz and Gannod discuss the architectural
analysis of a product line architecture [17]. The authors
present a three-phased approach consisting of architecture
recovery, scenario-based assessment, and model checking
of safety-critical behaviour. Here a software architecture
needed to be recovered from an existing product, which is
then evaluated in order to see whether this type of product
is amenable to a product-line-development approach.

Of particular interest are evaluation methods focusing
on maintainability. The architecture-level modifiability
analysis (ALMA) method from Bengtsson et al. integrates
a number of different scenario-based approaches for assess-
ing architecture maintainability [18].

7. Conclusion

In this paper we reported the evaluation of an embed-
ded software reference architecture using a tailored SAAM-
based approach. The objective of the assessment was to as-
sess the maintainability of the architecture. Maintainability

Proceedings of the Ninth European Conference on Software Maintenance and Reengineering (CSMR’05)

1534-5351/05 $20.00 © 2005 IEEE

involved two aspects, raising the domain of reuse from a
platform to a product line and facilitating anticipated ex-
tensions of derived products and future products.

The evaluation of RACE was based on a distributed
SAAM (D-SAAM) method, involving three phases: a prepa-
ration phase in which indirect stakeholders are consulted
individually to collect scenarios, a joint evaluation session
with only architects and observers, and an evaluation phase.

Assessing a reference architecture is different from as-
sessing a product architecture. In an ordinary SAAM ses-
sion, evaluated scenarios are categorised in directly and
indirectly supported scenarios. Because RACE is a refer-
ence architecture, the set of directly supported scenarios
was subdivided into those with evidence of being supported
by RACE and those without evidence. The latter class typ-
ically consist of scenarios for which solutions are available
in one of the products, but these have not been documented
yet. In the D-SAAM session we defined a cookbook to
cover these scenarios.

The experience provided valuable insights for industry
as well as for academia. In retrospect we argued that D-
SAAM is a suitable approach for the given situation, assess-
ing the maintainability of a maturing reference architecture.
Both the coverage of D-SAAM and the quality of its con-
clusions are tenable. Note that reference and product-line
architectures enable efficient reuse, a key business driver in
many organisations. The concepts on which this type of ar-
chitectures are based are maturing. Therefore it is expected
that more and more companies will adopt a product-line
approach, possibly involving reference architectures.

Océ gained insight in the positioning and status of RACE

in their organisation; its current position and its future po-
sition. Océ also gained confidence in the maintainability of
RACE.

We gained insight in the process of assessing a reference
architecture. For instance, scenarios are typically evaluated
based on a product instance and the results are abstracted
to the reference architecture. This evokes all kinds of ques-
tions related to topics such as conformance checking and
documenting design decisions, as discussed in Section 5.

Acknowledgement

The research in this paper has been sponsored in part by
the ITEA MOOSE project. We would like to thank Océ for
their hospitality and cooperation, in particular Peter Aarts
and Lou Dohmen.

References

[1] Ivar Jacobson, Martin Griss, and Patrick Jonsson. Software
Reuse: Architecture, Process and Organization for Business
Success. Addison-Wesley, 1997.

[2] Bas Graaf, Marco Lormans, and Hans Toetenel. Embedded
software engineering: state of the practice. IEEE Software,
20(6):61–69, November–December 2003.

[3] Frederick P. Brooks Jr. The Mythical Man-Month. Addison-
Wesley, anniversary edition, 1995.

[4] Rick Kazman, Gregory Abowd, Len Bass, and Paul
Clements. Scenario-based analysis of software architecture.
IEEE Software, 13(6):47–55, November 1996.

[5] Paul Clements, Rick Kazman, and Mark Klein. Evaluating
Software Architectures. Addison-Wesley, 2002.

[6] Sybren Deelstra, Marco Sinnema, and Jan Bosch. Product
derivation in software product families: a case study. Jour-
nal of Systems and Software, 74(2):173–194, January 2005.

[7] Y. van Dinther, W. Schijfs, F. van den Berk, and K. Rijnierse.
Architectural modeling: Introducing the Architecture Meta-
Model. In Landelijk Architectuur Congres, Utrecht, The
Netherlands, 2001. SERC.

[8] D. Soni, R. L. Nord, and C. Hofmeister. Software archi-
tecture in industrial applications. In Proceedings 17th In-
ternational Conference on Software Engineering (ICSE’95).
ACM Press, 1995.

[9] Philippe B. Kruchten. The 4+1 view model of architecture.
IEEE Software, 12(6):42–50, November 1995.

[10] L. A. J. Dohmen and L. J Somers. Experiences and lessons
learned using UML-RT to develop embedded printer soft-
ware. In M. Oivo and S. Komi-Sirviö, editors, Proceedings
of PROFES 2002, LNCS 2559, pages 475–484. Springer-
Verlag, 2003.

[11] L. Dobrica and E. Niemelä. A survey on software archi-
tecture analysis methods. IEEE Transactions on software
Engineering, 28(7):638–653, 2002.

[12] Rick Kazman, Mark Klein, Mario Barbacci, Tom Longstaff,
Howard Lipson, and Jeromy Carriere. The architecture
tradeoff analysis method. In Proceedings of the Fourth IEEE
International Conference on Engineering of Complex Com-
puter Systems, pages 68–78. IEEE Computer Society, Au-
gustus 1998.

[13] Len Bass, Paul Clements, and Rick Kazman. Software Ar-
chitecture in Practice. Addison-Wesley, 2003.

[14] J. S. Poulin. Measuring Software Reuse: Principles, Prac-
tices, and Economic Models. Addison-Wesley, 1997.

[15] A. van Deursen, C. Hofmeister, R. Koschke, L. Moonen,
and C. Riva. Symphony: View-driven software architecture
reconstruction. In Proceedings IEEE/IFIP Working Confer-
ence on Software Architecture (WICSA’04). IEEE Computer
Society Press, 2004.

[16] Brian P. Gallagher. Using the architecture tradeoff analysis
method to evaluate a reference architecture: A case study.
Technical Report CMU/SEI-2000-TN-007, Carnegie Mel-
lon University, Software Engineering Institute, June 2000.

[17] Robyn R. Lutz and Gerald C. Gannod. Analysis of a
software product line architecture: an experience report.
The Journal of Systems and Software, 66(3):253–267, June
2003.

[18] PerOlof Bengtsson, Nico Lassing, Jan Bosch, and Hans van
Vliet. Architecture-level modifiability analysis (ALMA).
Journal of Systems and Software, 69(1–2):129–147, jan
2004.

Proceedings of the Ninth European Conference on Software Maintenance and Reengineering (CSMR’05)

1534-5351/05 $20.00 © 2005 IEEE

