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Abstract

We present a new approach for performing load testing
of web applications by simulating realistic user behaviour
with stochastic form-oriented analysis models. Realism in
the simulation of user behaviour is necessary in order to
achieve valid testing results. In contrast to many other user
models, web site navigation and time delay are modelled
stochastically. The models can be constructed from sam-
ple data and can take into account effects of session history
on user behaviour and the existence of different categories
of users. The approach is implemented in an existing ar-
chitecture modelling and performance evaluation tool and
is integrated with existing methods for forward and reverse
engineering.

1 Introduction

Web applications are ubiquitous and need to deal with a
large number of users. Due to their exposure to end users,
especially customers, web applications have to be fast and
reliable, as well as up-to-date. However, delays during the
usage of the Internet are common and have been the focus
of interest in different studies [2, 6]. The demands on a web
site can change very rapidly due to different factors, such as
visibility in search engines or on other web sites. Load test-
ing is thus an important practice for making sure a web site
meets those demands and for optimizing its different com-
ponents [1]. Continual evolution of web applications is a
challenge for the engineering of this class of software appli-
cation. After each maintenance cycle, a convincing perfor-
mance test must include a test of the full application under
realistic loading conditions. In [16] it is recommended that
load testing of a web site should be performed on a regular
basis in order to make sure that IT infrastructure is provi-
sioned adequately, particularly with regard to changing user
behaviour and web site evolution. Also other experiences

stress the importance of load testing for the prediction and
avoidance of service-affecting performance problems [23]
at earlier stages of a web site’s life cycle.

However, realism in the simulation of user behaviour
for the purpose of load testing has been found to be cru-
cial [29, 1]. “A load test is valid only if virtual users’ be-
haviour has characteristics similar to those of actual users”
because “failure to mimic real user behaviour can generate
totally inconsistent results” [16]. Most current tools for load
testing support the creation of simple test cases consisting
of a fixed sequence of operations. However, in order to give
the generated load some variety it is usually necessary to
modify and parametrize these test cases manually. This is
usually both time-consuming and difficult. A more elabo-
rate approach is needed in order to generate a realistic load,
and such an approach requires more advanced tool support.

Our approach applies the methodology of form-oriented
analysis [9], in which user interaction with a sub-
mit/response style system is modelled as a bipartite state
transition diagram. The model used in form-oriented analy-
sis is technology-independent and suitable for the descrip-
tion of user behaviour. It describes what the user sees on the
system output, and what he or she provides as input to the
system. In order to simulate realistic users we extend the
model with stochastic functions that describe navigation,
time delays and user input. The resulting stochastic model
of user behaviour can be configured in different ways, e.g.,
by analyzing real user data, and can be used to create virtual
users of different complexity. The level of detail of the sto-
chastic model can be adjusted continuously. All this enables
our load test tool to generate large sets of representative test
cases. Furthermore, our load test tool has its natural place
in a chain of tools that support software engineers working
on web applications. Those other tools also use the form-
oriented model and thus help a software engineer to reuse
or recover a web site’s model for load testing.

Sect. 2 gives an overview of the methodology of form-
oriented analysis that we use throughout the paper. Sect. 3
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explains how this methodology can be applied in order to
perform realistic simulation of web site users. Sect. 4 pro-
vides some information about how load tests are actually
performed and delineates the whole picture of load testing;
Sect. 5 explains the parameters used to describe workloads.
Sect. 6 discusses related work, and Sect. 7 concludes the
paper.

2 The Form-Oriented Model

Form-oriented analysis [9] is a methodology for the
specification of ultra-thin client based systems. Form-
oriented models describe a web application as a typed, bi-
partite state machine which consists of pages, actions and
transitions between them. Pages can be understood as sets
of screens, which are single instances of a particular page
as they are seen by the user in the web browser. The screens
of a page are conceptually similar, but their content may
vary, e.g., in the different instances of the welcome page of
a system, which may look different depending on the user.
Each page contains an arbitrary number of forms, which in
turn can have an arbitrary number of fields. The fields of
forms usually allow users to enter information, and each
form offers a way to submit the information that has been
entered into its fields to the system. A submission invokes
an action on the server side, which processes the submit-
ted information and returns to the client a new screen in
response. Hyperlinks are forms with no fields or only fields
that are hidden to the user.

Form-oriented models can be visualized using form-
charts. In a formchart the pages are represented as ovals
and the actions as boxes, while the transitions between them
are represented as arrows, forming a directed graph. Form-
charts are bipartite directed graphs, meaning that on each
path pages and actions occur alternatingly. This partition-
ing of states and transitions creates a convenient distinction
between system side and user side: the page/server transi-
tions always express user behaviour, while the server/page
transitions always express system behaviour.

In Fig. 1 we see the formchart of a simple home banking
system, which will be the running example of this paper.
The system starts showing page Login to a user, who can
enter an account number and access code. This data is sub-
mitted to action Verify, which checks if it is correct and ei-
ther redirects the user back to the Login page or to the Menu
page of the home banking system. Here the user can access
the different functions, i.e., showing the account’s status,
making transfers, trading bonds, and logging out. Each of
the functions may involve different subsystems and make
use of different technical resources.

A form-oriented model of a web application offers sev-
eral benefits. It is suitable for testing as well as for the
analysis and development of dynamic web applications. A
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Figure 1. Formchart of example home bank-
ing web application.

typical shortcoming of many other models is that they do
not capture fan-out of server actions, i.e., the ability of a
server action to deliver many conceptually different client
pages, which is covered by the form-oriented model.

3 Modelling User Behaviour with Stochastic
Formcharts

Formcharts specify web applications, which usually
work in a strictly deterministic manner. In a load testing
scenario, however, the web application already exists, and
the problem is to simulate the behaviour of a large number
of users. But just as a formchart is a specification of the web
application, it is also a specification of possible user behav-
iour; and while it is the web application that chooses in an
action which page will come next and which data will be
shown on the page, it is the user who chooses which of the
available actions will be invoked afterwards and which data
the action will get. In other words, when simulating users
we have to model their navigational choices and the input
they enter. Since we are aiming at real-time simulation, we
also need to model the timing of user behaviour. In the case
of web applications, this can be reduced to a model of user
response time or “think time”, i.e., the time delay between
reception of a screen and submission of a form. Since the
fine-grained interaction involved in user input happens at
the client side, transparent to the server, we do not model it.

We cannot predict user behaviour as we can predict the
behaviour of a web application. Therefore, we use a sto-
chastic model, which makes only assumptions about the
probability of a particular user behaviour and not about
which behaviour will actually occur. When estimating such
probabilities, it can be important to take into account the
session history of a user, which may influence the deci-
sion about the next step. For example, a user that has just
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logged into the system is unlikely to log out immediately af-
terwards, but much more likely to log out after he or she did
other things. Consequently, we are dealing with conditional
probabilities.

The essential decision that a user makes on every page
is about which form he or she will use. This affects much
of the behaviour that will follow, so in our simulation we
should make this decision first. There is always a limited
number of forms on a page, and the question is how proba-
ble it is for each form to be chosen. This is expressed by
probability distribution Pform, which also takes into ac-
count the session history. Histories is the set of all pos-
sible session histories, and Forms is the set of all forms. A
form that is not available at a certain point in session history
has probability 0; if there is only a single form available, it
has probability 1.

Pform:Histories × Forms → [0, 1]

Once a form is chosen, we estimate a delay. This is done
with pdelay. Time is a continuous variable, therefore pdelay

is not a discrete probability distribution but a probability
density function.

pdelay:Histories × Forms × (0,∞) → R
+

Again, we acknowledge that the session history may have
an influence on delay time, but we expect this effect to
be much weaker than the effect of history on form choice.
Therefore, we might simplify our model by neglecting ses-
sion history. In our example, the delay probability density
graphs for the forms on page Menu that lead to actions Lo-
gout, Status, Make Transfer and Invest, respectively, could
look like the ones in Fig. 2.

One of the more complex tasks is the generation of input
data for the fields of the chosen form. Pinput is a discrete
probability distribution that describes the probability that
certain data is entered into the form. Data is the universe
of possible data, and if some particular data in it cannot be
entered into a form, the value of Pinput is 0.

Pinput:Histories × Forms × Data → [0, 1]

Also Pinput depends on the session history. If, for example,
the user needs a secret one-off transaction number (TAN)
to add additional security to each transaction, such a TAN
is only used once, hence the probability for that TAN to be
used again shrinks. However, usually we can neglect the
effect of session history on user input and use some sim-
ple logic instead in order to cope with such dependencies.
Approaches for the generation of form input exist and have
been discussed, for example, in [8, 3, 7].

Depending on the data we have about real user behav-
iour, there are different possibilities for us to configure the
user model. In some cases, e.g., when the system we want
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Figure 2. Probability densities for the delay
caused with different forms.

to test is new, there might not be any sample of real user
data yet. But when the system has already been used for
some time there might be plenty of empirical historical user
behaviour data. In both cases we try to make the user model
as realistic as possible.

3.1 Repetition Models

After surveying real user session data, we can use it di-
rectly by replaying it on the system. Of course, the system
would usually have to be reset to its original state first be-
cause it is not generally possible to play a session, e.g., for
selling a bond, twice. We can adjust the load of the sys-
tem by changing the time interval in which the sessions are
replayed, or, when a session can be replayed an arbitrary
number of times, the frequency of repetition. Form-oriented
analysis offers suitable concepts for storing and represent-
ing session histories.

For surveying user behaviour we need a suitable in-
strument. In [8] we suggested the Revangie tool that can
“snoop” on the communication between clients and server.
Such a tool could be used for recording real user behaviour.
Alternatively, server logs can be used. The problems and
procedures of collecting real user data, and the benefit in
the context of test case generation for functionality testing
has been discussed, for example, in [14].

3.2 History-Free Stochastic Models

As discussed in the previous section, we can simply re-
peat real user sessions. But we can also exploit real user
data in order to find suitable parameters for a stochastic
model. A stochastic model is a more general approach and
therefore more versatile. It is much easier to create new
load testing scenarios by adjusting model parameters. Fur-
thermore, replaying recorded data might not cause a system
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Figure 3. Simple stochastic formchart for the
home banking system.

load that is representative. To create a representative repe-
tition model requires a random sample of real user sessions
with a sufficient size. If this is not given, the model might
simply fail to cover the variety of possible input behaviour
well enough, which might result in flaws of the system re-
maining undetected. In contrast to that, load testing with
a stochastic model uses a randomized algorithm, which is
generally less prone to yield tendentious results.

If we have data about how many times each form has
been submitted, i.e., the total usage frequency of each form,
we can use this to approximate Pform. The probability of
a form to be chosen is set to the relative usage frequency,
i.e., the number of usages of that form divided by the sum
of the numbers of usages for all the forms on that page.
This neglects the effect of session history on Pform and
produces a stochastic formchart like the one in Fig. 3. In
this formchart all page-action transitions are annotated with
a transition probability, which reflects function Pform. At
each page, the probabilities of all outgoing transitions sum
up to 1 or possibly a bit less, with the remaining probability
reserved for abrupt termination of the session. The tran-
sitions from actions to pages are performed by the system
and therefore need no annotation. The problem of choosing
transition probabilities for similar stochastic models is also
discussed in [13, 27].

Such stochastic formcharts are similar to Markov chains,
but there is a subtle and important difference: while a
Markov chain creates a state machine with probabilities at
every transition, a stochastic formchart is a bipartite state
machine with probabilities only at the transitions going
from page to action. Which transition will be chosen from
action to a page is determined by the logic of the system,
which is well-defined. Consequently, it makes no sense for
load testing to model also this aspect stochastically and add
probabilities to the action-page transitions, too. We cannot
get rid of action-page transitions because an action can have

more than one outgoing transition, such as the action Verify.

3.3 History-Sensitive Stochastic Models

When we have samples of real user sessions and not just
unrelated usage frequencies, we are able to create an em-
pirical model that takes into account the effects of session
history on Pform. A good method to define Pform with the
help of this data is a decision tree (see, for example, [12]),
which captures the relation between past events and future
ones. Each path in the tree is a sequence of pages and ac-
tions, alternating, and represents a possible user session of
a certain length. If there are cycles in the original formchart
of a system, a corresponding decision tree can have arbi-
trary depth, and actions and pages of the original formchart
can occur multiple times. In the decision tree we distin-
guish these multiple occurrences of actions and pages by
giving them running indexes. All these actions and pages
with index but the same name correspond to a single action
or page in the original formchart.

Look, for example, at Fig. 4, which shows a possible
decision tree for our home banking system. The root of
the tree represents the state in which the system starts, i.e.,
page Login. Since it is the first occurrence of this page in
our tree, we add the index 1 to its name. There is only one
form on page Login, i.e., the form to enter account num-
ber and PIN. Logically, the probability that action Verify,
which is invoked by that form, is chosen is 1 (or a little
bit less if we would consider abrupt termination). The next
two outgoing transitions of Verify are action-page transi-
tions and therefore need no probability, as we have dis-
cussed in Sect. 3.2. The first of these transitions is cho-
sen by the system when the authentication failed and leads
back to page Login1. This page, Login1, is the same as the
root of our tree. Formcharts allow us to visually represent
actions and pages arbitrarily often, which can be good to
avoid ugly transition arrows crossing over the diagram. If
we want a page or action to have a certain transition, we
can add a corresponding arrow to any of its correspond-
ing bubbles/rectangles. The fact that there is a transition
from Verify1 back to Login1 signifies that if the system
chooses to go back to page Login, the user will, with re-
gard to Pform, behave stochastically just the same as when
he or she first entered the system at that page. This equiva-
lence of user behaviour also includes future behaviour, i.e.,
the probabilities of form choices on pages to come. We
need this recurrence to states in order to handle cycles in
the original formchart, which could not be represented with
a finite decision tree otherwise. On the arrows representing
the outgoing transitions of page Menu1 we see the prob-
abilities with which the user chooses different forms just
after he or she logged in. Let us have a closer look at what
happens when the user chooses the form that leads to ac-
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tion Invest. Page Depot1 offers a form for action Cancel1,
which means that a simulated user that invokes it will come
back to page Menu1 and stochastically behave like a user
who has just logged in. There are also forms for actions
Buy Bond and Sell Bond, which are assigned equal prob-
abilities. When action Buy Bond is invoked, we get back
to page Depot. However, the probabilities have changed,
and we model this situation with a new page Depot2. The
probability for the invocation of Cancel is now higher, i.e.,
once a bond has been bought, the user is more likely to go
back to Menu. Furthermore, the probability to buy another
bond is now higher than the probability to sell one, which
might reflect, for example, the common pattern that new
bonds are bought from the money old ones were sold for,
but not vice versa. In all the three possible cases we refer
back to other parts of the decision tree, which means that
the following pattern of user behaviour is already part of
the model. However, if we found that after some action the
user behaviour differs significantly from what has already
been modelled, we would add another layer of pages and
actions to the tree that reflects these differences. Following
this pattern, the effects of session history in Pform can be
approximated arbitrarily.

It is important to note that the relation between a sys-
tem’s original history-free formchart and a correspond-
ing history-sensitive stochastic formchart model is formally
well-defined. There exists a homomorphism h between the
pages and actions U of a formchart that takes into account
session history and the pages and actions V of the corre-
sponding one that does not. h:U → V maps all pages
or actions Xi ∈ U to the corresponding page or action
X ∈ V . Any sequence of action invocations s performed
from a certain page u ∈ U that ends at a page s(u) ∈ U can
also be performed on page h(u) ∈ V and will end at page
h(s(u)) ∈ V . This relation is illustrated in Fig. 5.

3.4 Multimodels

Within the population of all users there are usually dif-
ferent categories of users that use some features of the web
application particularly often, which causes differences in
Pform, or with particular skill, which generally reflects in
pdelay. The presence of distinct groups of novice users and
expert users, for example, can be visible in the fact that the
graph of pdelay has more than one peak.

In order to find out which categories exist, we can
analyse data about real user sessions and perform a classifi-
cation. One method for doing this automatically is cluster-
ing (see, for example, [12]). When we have divided the ses-
sions into different categories, we can create a user model
for each category using the respective subset of data. Once
we have a set Models of different user Models, we can de-
fine a distribution Pmodel of the probability that a user is
of a certain category and has thus to be simulated with the
corresponding model.

Pmodel:Models → [0, 1]

This distribution can simply be inferred from the relative
sizes of the different categories. In order to produce a re-
alistic load during load-testing, we stochastically choose a
user model every time we create a new virtual user. When
load-testing models incorporate several user models, we
call them multimodels.

Such multimodels enable prioritization techniques pro-
posed for functional testing, e.g., as discussed in [10]. Such
techniques, which execute more important test cases more
often than others, can also be reasonable from a load testing
perspective, for example for making sure that particularly
popular or critical parts of a web site are tested thoroughly.
Such a multimodel can also be understood as a complex
form of operational profile [18] that takes into account dif-
ferent types of user behaviours with their respective occur-
rence probabilities. In certain circumstances, multimodels
can be subsumed under history sensitive formchart models.

4 Performing Load Tests

In order to actually perform a load-test, we have to use
one of the described user models to create a workload on
the system, i.e., an activity that consumes some of its re-
sources. For this task, we can choose between different
workload models, which describe workload over time. In
order to push a system to its limits we could, for example,
utilize the increasing workload model, which adds more and
more virtual users to the system. The parameters that can
be used to describe a workload are explained in Sect. 5
It is important that the load test environment the system is
running in is very close to the production environment, i.e.,
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the one the system is eventually intended to work in. The
most accurate results will be produced when the load test
is performed in the production environment itself, although
this is usually not possible in a system that is being used
already. As one can see in the schematic illustration of the
load testing environment in Fig. 6, we perform the load-
test with the help of dedicated computers, which are called
load engines. The load engines simulate virtual users and
write data about the state of the testing environment and its
measured performance to a database. Another important re-
quirement of the test environment is that the load engines
themselves are bottleneck-free. If this is not the case, then
performance measurements of the server will be distorted
by delays introduced by the load engines [1]. That is why,
from a certain number of virtual users on, we distribute the
simulation of the users onto several load engines.

Now let us consider what each of the virtual users actu-
ally does. According to the model, an initial page request is
sent to the system. The load engine lets the virtual user wait

for a random time given by pdelay. Then, a form and cor-
responding input is chosen randomly by Pform and Pinput,
respectively. This information is used in order to create and
send a new request. Since the server action correspond-
ing to the chosen form may generate screens of different
pages, the received screen has to be classified in order to
determine which of the possibly many action-page transi-
tions was chosen by the system. How such classification
can be done has been described, for example, in [8]. Once
the classification is done, the load engine can again simulate
a delay. Another aspect of virtual users worth mentioning
is that it can sometimes be necessary to use a managed set
of virtual user profiles. This means maintaining and using
data that cannot be generated randomly, e.g., account num-
bers and corresponding PINs for our home banking exam-
ple. These data can also be stored in the database all the
load engines are connected to.

4.1 Finding Performance Bottlenecks

When looking for system bottlenecks, we usually ob-
serve the system in a state of extreme load, which is also
called a stress test. An important measure to keep track of is
the roundtrip-response time [16], i.e., the time between the
request of a load engine to the server and the reception of
its response, because this reflects the time a real user would
have to wait. Also the response time on the server, i.e., the
time between the reception of a request and the sending of
a response, is usually monitored. Other common measures
are, for example, the CPU and memory usage on the server.
More about metrics for load testing can be found in [21].

A common way to perform stress testing is to use an
increasing workload model and add virtual users until the
response time crosses a threshold that we consider long
enough to render the system unusable, i.e., longer than a
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user would probably be willing to wait. With the data col-
lected by the load engines we are able to analyse the re-
sponse time of individual actions. The number of users
where the response time crosses a certain limit usually dif-
fers between the actions, depending on how much they are
invoked and the technical resources they are driven by. Ac-
tions for which this limit is crossed early present a bottle-
neck of the system and usually allow us to draw conclusions
about the underlying subsystem.

4.2 Load Testing of Legacy Systems

Often we face the task of load testing a legacy system,
i.e., a system which is already deployed and running, and
for which the information necessary to create a realistic user
model is not available. In such a case we could either use
a very simple user model, such as a generic one that in-
vokes actions randomly with a uniform distribution, or try
to extract the necessary information by means of reverse
engineering. In [8] we proposed a methodology and a tool
called Revangie which is able to reconstruct form-oriented
analysis models for existing web applications. Models can
be constructed online, i.e., during system exploration, but
also offline, e.g., from recorded user data. There also exist
other tools for model recovery of web sites that can be use-
ful for the creation of load models, e.g., the ones described
in [3].

4.3 Load Testing in the MaramaMTE Tool

Our implementation extends earlier work on perfor-
mance estimation of distributed systems generated using
the ArgoMTE tool. This tool generates testbeds for such
systems from descriptions of their software architecture al-
lowing performance estimation to be carried out at design
time and lessens the cost of experimenting with multiple
software architecture choices [5]. This work has recently
been ported to an Eclipse-based implementation in the form
of the MaramaMTE tool. A screenshot of MaramaMTE in
use specifying a software architecture is shown in Fig. 7.
In this example, the architecture modelled consists of a set
of RMI remote objects (CustomerManager, UserManager,
AccountManager) and database tables (customer, user, ac-
count). MaramaMTE permits specification of client-based
testing from the architecture description using the simple
assumption that internal code within modules is much lower
cost than inter-module communication (valid for most ap-
plications; note if actual code has been implemented for a
module this can be used in place of the testbed generated
code). Clients can be multi-threaded and client load can
be repeated; in this example ClientTest1, ClientTest2 are
repeated each 1000 times. While this tool is very success-
ful, it lacks the ability to model user interaction appropri-

ately. Accordingly, we have implemented our load testing
approach for the history free stochastic model in the Mara-
maMTE toolsuite.

Our implementation adds a formchart view to Mara-
maMTE for editing the model (Fig. 8). The test designer
can define the interaction model and annotate the transi-
tions with probabilities. Delay distributions can be defined
as described earlier. For the load testing process the test
designer can specify a workload model. The actions speci-
fied in the formchart view are linked to remote service calls
specified in the MaramaMTE architecture views, combining
the two models together; for example the login Test2 page
in Fig. 8 is linked to the findUser service of the UserMan-
ager component in Fig. 7. The load test can be activated
from the MaramaMTE toolsuite. This toolsuite possesses a
sophisticated remote deployment functionality; the tool can
automatically deploy load test agents acting as clients on
different machines and orchestrate their activity. From the
MaramaMTE tool, the whole load test architecture can be
controlled.

Combining our stochastic model-based approach with
MaramaMTE provides a very powerful model-based per-
formance estimation approach where realistic estimates of
a web application’s performance can be performed at de-
sign time before significant implementation expenses have
occurred.

5 Workload Models

A workload is completely described by a user model and
one of several possible workload parameters; both elements
together give a workload model. A user model is a sto-
chastic formchart with user delays. A workload parameter
can be a function over time, modelling a changing work-
load. For the introduction and comparison of the different
parameters here we focus on constant parameters. We will
introduce workload parameters that are partly based on vir-
tual users, partly on the concept of user sessions. A user
session is the model of what we consider as one typical con-
nected usage of the system by a user; we assume that users
always explicitly start end end their sessions. User sessions
can be modelled by identifying the session delimiting tran-
sitions like login and logout in a formchart; the user session
model is then a part of the user model. Given a stochas-
tic formchart, a session model may have a defined average
number of requests (AV GR) before the session terminates;
note that not every distribution has to have such an expected
value. But it is possible to statically check whether a sto-
chastic user session model has such a finite AV GR; then we
call it a finite user session. The client request rate (CRR)
is the request rate of the individual virtual user. It is deter-
mined by the server response time and the user think time
after receiving the response. If this think time is kept con-
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Figure 7. Screenshot of the architecture view of the MaramaMTE tool.

stant, then CRR decreases as soon as the server response
degrades. For load testing tools, a load-independent CRR
is often recommended, but this requires in general a non-
trivial implementation [1]. We will also consider the aver-
age session duration (AV GD). This value takes into ac-
count server response times as well as think times. If the
server response times are negligible, then exactly the finite
user sessions have a defined AV GD.

There are two classical workload parameters, one is the
number of virtual users (V U ), that is the number of user
processes active at a point in time. Another workload pa-
rameter is the request rate (RR), that is the number of re-
quests generated per time unit. All client requests — in our
terminology form submissions — are counted. For work-
load models with finite user sessions we introduce a dif-
ferent workload parameter, the starting user session rate
(SUR). This is the average number of finite user sessions
that is started per time unit. All three parameters can be
used to describe a constant load. If V U is the workload pa-
rameter, a constant load is achieved by generating a certain
number of virtual users, and then ceasing to generate new
users. We can also control the load with SUR. A constant
load is achieved by continuously generating new user ses-
sions with a constant SUR. After an initial start-up time in
the order of AV GD we have constant load. V U is in this
case an observable parameter that is affected by SUR and
other parameters.

The different elements of the workload model, user

model and workload parameter should model truly different
aspects of the model as a separation of concerns; otherwise
the model will be unrealistic as we will see in the following.
We define: a workload description is realistic if the follow-
ing holds for a change in the user model. If an element
of the user model is changed, for example if a think time
is shortened, perhaps in order to model an improved page
readability, or if the number of requests per user session is
changed, perhaps because the user navigation is improved,
then this change in the user model should have the same ef-
fect on the load test as it would have on the real system. We
restrict our definition here to these two types of changes in
the user model. We can show that the two major conven-
tional workload parameters, namely V U and RR, do not
give realistic workload models, but SUR does.

We now discuss whether a workload model with work-
load parameter V U is realistic. If the server response times
are negligible, we note that for such models globally scal-
ing all think times by factor a ceteris paribus changes RR
by factor 1/a, because each virtual user delivers a changed
CRR; obviously we have

RR = V U · CRR

The scaling of think times hence changes the system load
in the load test. On the real system however the load is not
expected to change as we will see soon; if all users simply
take a little bit longer to think, but still do the same number
of requests, RR does not change! Hence realism is vio-
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Figure 8. Screenshot of the formchart view of the MaramaMTE tool.

lated for a workload model with workload parameter V U .
We now discuss whether a workload model with workload
parameter RR is realistic. We note that for such models
the request rate is trivially kept constant if think times are
scaled. We now consider the second condition of realism;
if we change the user model by reducing AV GR and we
assume for simplicity that all requests create the same load,
then the load during the load test remains constant if we
have fixed RR. But on the real system, the load would de-
crease. Hence workload models with workload parameter
RR are unrealistic.

We now consider a workload model with workload para-
meter SUR. After an initial start-up we have, as one easily
convinces oneself:

RR = SUR · AV GR

Hence globally scaling all think times ceteris paribus does
not change RR, since the duration of the single user session
is irrelevant after start-up: The equation contains AV GR
and not AV GD. This behaviour of the load test is exactly
the behaviour of the real system; for the real system, the
same equation holds. We now consider the second condi-
tion of realism; if we change the user model by, say, halv-
ing AV GR, and if we assume for simplicity that all requests
create the same load, then in both, the load test and the real
system, the load will be halved. According to our defini-
tion this indicates that workload models with workload pa-
rameter SUR are realistic. In fact, workload models with

workload parameter SUR have other advantages. Further-
more RR is not sensitive to server load, even if the think
time of the session clients would be sensitive to the server
load. Even if the actual user agents are programmed in a
way that they have AV GD that are dependent on the server
response, if SUR is kept constant, then the load is constant.
This is because V U is changed appropriately if we scale the
think times; in fact it is easy to see that we have:

V U = SUR · AV GD

We discuss now an example showing that an unrealistic
workload model, if applied naively, can create misleading
load test results. We take an example from one of the load
test projects the authors are involved with. It is an enrol-
ment system for university students. Using the system is
mandatory for students. We compare now the behaviour of
the different load test approaches during maintenance of the
application. We assume a workload model with workload
parameter RR. We assume the system performance is suf-
ficient. We assume every student performs 10 requests for
his enrolment, only the last one creates heavy load through-
out the system. Now the user interface is improved, and
only two requests per user are necessary, a first lightweight
one and the last one being the same heavy load request as
before. If we naively change only the user model in the
workload model, and not the workload parameter, then the
system load would increase roughly by factor 5 and could
bring down the system. In the real system the system load
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would not increase. The problem remains if the workload
model is set up with workload parameter V U . In contrast, if
the workload model is set up with the realistic workload pa-
rameter SUR, the system load remains roughly the same in
the load test, hence resembling the behaviour of the running
application. As we see, workload models with workload
parameters RR or V U can deliver spurious results, if the
parameters are not changed with every change to the user
model. These changes can be done, but they require the
knowledge of the above equations or lucky intuition to the
same effect. The correct load test behaviour comes for free
in the workload model with the realistic workload parame-
ter SUR.

6 Related Work

In many cases, load-testing is still done by hand-written
scripts that describe the user model as a subprogram [22,
25]. For each virtual user, the subprogram is called, possi-
bly with a set of parameters that describe certain aspects of
the virtual user’s behaviour. Often the users are also mod-
elled by a multimodel, which defines a subprogram for each
user category. Data is either taken from a set of predefined
values or generated randomly. With regard to input data
this approach has a certain degree of randomization. How-
ever, user behaviour itself mainly remains a matter of rep-
etition. This approach is purely script driven and suffers,
like any hand-written program, from being prone to pro-
gramming errors. The load engine itself has to be devel-
oped and brought to a mature state, which usually is a very
time consuming task. In contrast to that, our approach does
not rely on hand-written programs but on configurable mod-
els, which are much easier to handle and less error prone. It
does not require a rewrite of the load engine itself, but rather
a reconfiguration of a load engine that interprets stochastic
formcharts.

The leading product for industry-strength load test-
ing [19] is Mercury Interactive’s LoadRunner [17]. It takes
a similar script-driven approach. However, it significantly
increases usability by offering a visual editor for end-user
scripts. No conventional programming is needed, and the
scripts describe the load tests in a much more domain-
specific manner. End-user scripts are run on a load engine
that takes care of load balancing and monitoring automati-
cally. LoadRunner does not, however, offer a model-based
solution like that of stochastic formcharts. In contrast to
the LoadRunner tool suite, which focuses on load testing
and optimisation, formchart models offer well-understood
concepts for the specification of systems in general, which
are also useful for other web application engineering tools
and facilitate their interoperability. Most current load test-
ing tools operate in a manner similar to LoadRunner. A
detailed discussion of bottleneck problems created among

other things by operating systems is given in [1]. Addition-
ally the authors present a nontrivial implementation for load
test clients. More information about load test practice can
be found in [24, 11, 16].

There already exist model-based approaches for testing
of web applications, e.g., in [15, 26], but they usually fo-
cus on the generation of test cases for functionality test-
ing. Different studies have shown that stochastic models,
in particular Markov chains, provide benefits for function-
ality testing [26, 13, 27]. They can be used for the automatic
generation of large randomized test suites with a high cover-
age of operational paths. In [20, 26], for example, analysis
models are used for regression testing in web site evolution
scenarios. The model for user navigation is a stochastic one
similar to Markov chains, but all user input data has to be
given in advance for the system to work. While this may be
appropriate for regression testing, it is not flexible enough
for performing load tests. A Markov chain model like that
in [27, 26] can only be used for a system where identical in-
puts cause identical state transitions, which is not the case in
most web applications that rely on session data or a modifi-
able database. Consider, for example, an online ticket reser-
vation system: after a specific place has been booked, it is
not available any more; thus, repeating the same inputs will
cause different results.

The motivation of using a statistical model based on data
about real user behaviour for realistic load testing of web
sites was already anticipated in [13], but their model fails
to distinguish the user behaviour, which can only be ade-
quately modelled as a stochastic process, from the system
behaviour, which is deterministically given by the imple-
mentation. Transforming a state model of a web site directly
into a Markov chain is not sufficient and does not account
for the system’s behaviour, which is not stochastic. In [28]
it was shown that creation of a simple stochastic user model
with real user data represents a valid approach for load test-
ing. However, most approaches offer no model for specify-
ing user behaviour over time, and it is usually neglected that
form choice probabilities may change during a session.

The difference to stochastic process calculi such as, for
example, the one described in [4], is that our stochastic
model captures the specifics of web applications and can
also be very suitably used for web application develop-
ment [9]. However, it is conceivable that such theory can
help in the development of new analysis techniques for our
stochastic models. Since action-page transitions are cho-
sen by the system, it is not necessary to assign probabilities
to them in order to perform load testing. But if we assign
probabilities to these transitions the same way we do with
page-action transitions, e.g., by measuring relative frequen-
cies, estimation or simply using uniform probabilities, then
we can analyse the model statically and make statistical es-
timates similar to those described in [27] for Markov chains.
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The difference to Markov chains is that our model also cap-
tures behaviour over time, i.e., delays. So if we extend our
model further by measuring or estimating time delay dis-
tributions for the server actions, then we could also make
statistical estimates of timing behaviour. This could, for ex-
ample, allow the calculation of the expected duration of a
session or of the expected usage of particular subsystems.
Such new analysis techniques present possible future work
in the area of web site performance evaluation.

7 Conclusion

In this paper we presented a new approach for load test-
ing of web sites which is based on stochastic models of user
behaviour. It allows the easy creation of realistic models
of the individual user behavior. Furthermore we discussed
how the user model can be used in a realistic workload
model. We described our implementation of realistic load
testing in a visual modelling and performance testbed gen-
eration tool, which allows realistic estimates of web appli-
cation performance from software architecture descriptions.
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