
ADvISE: Architectural Decay In Software Evolution
Salima Hassaine∗, Yann-Gaël Guéhéneuc§, Sylvie Hamel∗, and Giuliano Antoniol§

∗DIRO, Université de Montréal, Québec, Canada
Email: {hassaisa,hamelsyl}@iro.umontreal.ca

§DGIGL, École Polytechnique de Montréal, Québec, Canada
Email: {yann-gael.gueheneuc}@polymtl.ca, antoniol@ieee.org

Abstract—Software systems evolve continuously, requiring con-
tinuous maintenance and development. Consequently, their archi-
tecture tends to degrade with time as it becomes less relevant to
new, emerging requirements. Therefore, stability or resilience is
a primary criterion for evaluating an architecture. In this paper,
we propose a quantitative approach to study the evolution of the
architecture of object oriented systems over time. In particular,
we represent an architecture as a set of triplets (S,R,T), where S
and T represent two classes and R is a relationship linking them.
We use these triplets as basic unit to measure the stability of
an architecture. We show the applicability and usefulness of our
approach by studying the evolution of three open source systems:
JFreeChart and Xerces-J and Rhino.

Index Terms—Software evolution; Architecture decay; Archi-
tecture stability.

I. INTRODUCTION

Software architecture1 is an important topic of interest in the
object-oriented community, because an architecture contains
information that ease the communication among programmers
and should help develop programs with better quality.

Software systems evolve continuously, requiring continuous
maintenance and development. Thus, they undergo changes
throughout their lifetimes as features are added and defects are
fixed. As these systems are adapted to changing requirements,
they may suffer from signs of aging, because their architec-
ture can deviate substantially from the architecture originally
designed, i.e., their architecture tends to decay with time and
it becomes less adaptable to new, emerging requirements [1],
[2]. When evolution occurs in an uncontrolled manner, the
systems become more complex over time and thus, harder to
maintain [3], [4]. Therefore, methods and tools are needed to
evaluate architectural decay to identify signs of software aging
to overcome or avoid their negative effects and thus, to keep
development costs down.

Several authors [5], [6] suggested stability or resilience as
a primary criterion for evaluating an architecture and, thus,
they proposed different approaches to analyse the evolution
of software architectures [6]–[10]. Most of these previous
approaches aim at finding structural changes occurring in
long-lived evolving architectures. However, to the best of our
knowledge, none of these approaches have been used to study
the signs of software aging or architectural decay to propose
mitigating methods and tools.

1We use the term “architecture” to mean any structural model of a program,
e.g., a UML class diagram.

Other authors defined architectural decay as the deviation
from an original design, i.e., the violation of architecture
caused by the process of evolution [11]–[13]. They suggested
that decayed architectures make their systems more prone to
defects [14] and that, in some not-so-rare cases, a system
architecture and its implementation code must be thrown away
because it is too hard to maintain, unless the decay can be
stopped before the architecture is completely unworkable [15].

In this paper we propose a novel approach ADvISE to
investigate some metrics (code decay indicators) on software,
that serve as symptoms, risk factors, and predictors of decay, in
the context of an evolving architecture. Our approach ADvISE
aims at analysing the evolution of a software architecture
at various levels (classes, triplets2, and micro-architectures3)
to provide support for software evolution. Specifically, we
analyse the architectural history of three software systems and
infer when and how their architectures decayed and whether
the decayed architectures are more prone to defects.

The first step in observing architectural decay is to use
a diagram matching technique to identify structural changes
among versions of architectures. Finding structural changes
occurring in long-lived evolving architectures requires the
identification of class renamings. Thus, a first contribution
of this paper is a set of structure-based and text-based simi-
larities to identify class renamings in evolving architectures.
The second step requires to match evolving architectures to
identify changes and stable micro-architectures. Thus, the
second contribution are a bit-vector and incremental clustering
algorithms to perform the matching between several versions
of an architecture and find stable micro-architectures, which
exist in all versions. The third step consists of using the
previously-identified micro-architectures, in proposing metrics
to identify the signs of architectural decay. Thus, the third
contribution is a set of metrics (code decay indicators) on
software, that serve as symptoms and risk factors of decay
in the context of an evolving architecture, and thus, predictors
of fault proneness. We also perform a quantitative and two
qualitative studies, to show the applicability and usefulness of
our approach. We apply our approach on three open-source
systems: JFreeChart, Rhino and Xerces-J, and answer the
following research questions as follows:

2We define a “triplet” as T = (CSource,R,CTarget), where CSource and CTarget
represent two classes and R is a relationship between them.

3We use the term “micro-architecture” to mean any subset of an architec-
ture, e.g., a set of classes and their relationships.

• RQ1: What are signs of architectural decay and how
can they be tracked down? We studied the graph of
architectures evolution for each system, and we showed
that these indicators provide us useful insights regarding
the signs of software aging.

• RQ2: Do stable and unstable micro-architectures have the
same risk to be fault prone? We showed that stable micro-
architectures, belonging to the original design, are signif-
icantly less bug-prone than unstable micro-architectures.

This paper is organised as follows. Section II summarises
related work and highlights their limitations. Section III de-
scribes our approach. Section IV presents three case studies,
and discusses our approach. Finally, Section VI concludes and
outlines future work.

II. RELATED WORK

Our work relates to three main research directions: ar-
chitectural decay, architectural diagram evolution, and API
evolution. Architectural decay is due to violation of architec-
ture caused by the process of evolution. Existing techniques
for architectural diagram evolution aims detecting structural
changes between versions of a class diagram. API evolution
techniques aims comparing two versions of a framework, in
order to find changes caused by renamings.

A. Architectural Decay

Perry et al. [11] suggested that architectural decay is due to
violation of architecture caused by the process of evolution.
Eick et al. [16] suggested that a code is decayed if it is more
difficult to change than it used to be. Van Gurp et al. [14]
defined architectural decay as the cumulative, negative effect
of changes on the quality of a software system. Hochstein
et al. [12] defined archietctural decay as the deviation of
actual or concrete architecture from planned or conceptual
architecture. Williams et al. [13] defined architectural decay
as the deviation from original design. Parnas [17] suggested
that softwares suffer from various aging problems such as
increasing complexity, unstructured code, feature overloading,
etc. The phenomenon of software aging is the result of
software changes.

B. Architectural Diagram Evolution

Antoniol et al. [18] proposed an automatic approach, based
on IR techniques, to trace, identify, and document evolution
discontinuities at class level. Xing and Stroulia [7] presented
UMLDiff tool to automatically detect structural changes be-
tween versions of a class diagram by comparing the two
directed graphs that represent these diagrams. UMLDiff was
also used to study design evolution [8] and design-level
structural changes to understand phases and styles of evolution
[9]. Antoniol et al. [19] recovered diagrams from the source
code of programs and compared them in subsequent versions
by computing the best matching of bipartite graphs using a
maximum match algorithm [20]. Nodes in the bipartite graph
are the classes of the two versions and the similarity between
them is derived from class and attribute/method names by

means of string-edit distances. Their approach does not support
relationships. Kpodjedo et al. [6] proposed an Error Correcting
Graph Matching (ECGM) algorithm to study architectural
diagram evolution. This algorithm is derived from search-
based techniques: given two architectural diagrams D1 and D2,
the authors aims finding, among the large set of all possible
matchings, a solution that is the best true matching between
classes of D1 and D2. Kimelman et al. [21] have designed
a Bayesian framework to solve the model correspondence
problem. They have implemented a matching algorithm based
on their framework.

Existing approaches for architectural diagram evolution aim
comparing two versions of an architectural diagram in order
to study its evolution. However, to the best of our knowledge,
none of these approaches have been used to evaluate the
architectural decay.

C. API Evolution

Wei et al. developed AURA [22], a novel hybrid approach
that combines call dependency and text similarity analyses
to provide developers with change rules when adapting their
programs from one version of a framework to the next. Da-
genais et al. developed SemDiff [23], a tool that recommends
replacements for framework methods that were accessed by
a client program and deleted during the evolution of the
framework. Schäfer et al. [24] mined framework-usage change
rules from already-ported instantiations. The three previous
approaches compute support and confidence value on call
dependency analysis. Godfrey et al. [25] presented a semi-
automatic hybrid approach to perform origin analysis using
text similarity, metrics, and call dependency analyses. Xing
and Stroulia [26] developed Diff-CatchUp to analyse textual
and structural similarities of UML architectural diagram to
recognise API changes. Kim et al. [27] presented an automated
approach to infer high-level renaming patterns.

The above approaches detect renamings at method level
and use text-based similarities. Thus, they cannot detect re-
named methods that do not have similar names with their
target methods. Call dependency-based approaches provide
useful information to identify renamed methods that may not
be detected by text-based approaches. However, they cannot
detect renamed methods for target methods that are not used
in frameworks and linked programs. In this paper, we propose
similarity measures to detect renamings at class level. Our
approach could also be adapted to detect renamings at method
level, which is the aim of our future work.

III. APPROACH OVERVIEW

This section presents our approach to compute some metrics
for evaluating architectural decay (see Figure 1). We will
describe each step of the approach in details below. Our
approach consists of five steps. Given two versions of an
object-oriented program, it extracts their class diagrams using
an existing tool PADL. Second, it identifies class renamings
using a combination of structure-based and text-based simi-
larities. Third, it computes the diagram matching between the

Fig. 1. Approach Overview.

two versions, using a bit-vector algorithm, to identify their
common triplets T = (CSource,R,CTarget), where CSource and
CTarget represent two classes and R is a relationship linking
them. Fourth, it applies an incremental clustering algorithm
to group connected triplets into clusters in order to find stable
micro-architecture (SµA). Finally, our approach reports the sets
of SµA between two program versions. We use these sets as an
indicator to measure the stability of an architectural diagram.

A. Step 1: Pre-processing

We use an existing tool, PADL [28], to automatically
reverse-engineer class diagrams from the source code of
object-oriented programs. A model of a program is a graph
with nodes being the classes and edges representing the
relationships between classes, as illustrated in Figure 2(a).

Then, we use an existing tool, EPI [29], to convert the
program model into a string representation, defined by the
sequence of triplets T = (CSource,R,CTarget), each triplet rep-
resenting a connection between the CSource and the CTarget .
The program conversion consists of three steps. First, EPI
takes as input the program model previously generated by
PADL. Then, it transforms this graph into Eulerian graph
by adding “dummy” edges, noted dm, between vertices with

unequal in-degree and out-degree (see Figure 2(b)). Finally,
traversing the minimum Eulerian circuit generates a unique
string representation of the program model (see Figure 2(c)).

C

B

A

D

F

E

G

cr cr cr

co

in

ag as

in

in

in

(a) UML-like model

C D

A

B

E

F G

dm dm

cr

dmdm

cr cr

co

dm

in

ag as

in

in

in

(b) Eulerian model

(c) String representation of the Eulerian model

Fig. 2. Representations of a simple example program (from [29]).

B. Step 2: Class Renaming Detection

Based on the program models obtained in the previous step,
we first identify class renamings using our structure-based
and text-based metrics, which assess the similarities between
original and renamed class names.

1) Structure-based Similarity: We define the structure-
based similarity (StrS), between a candidate renamed class
CA and a target class CB, as the percentage of their common
methods, attribute types, and relationships4. We assume that
two methods are common in CA and CB if they have the
same signatures (return types, declaring modules, names, and
parameter list). In future work, we plan to use a Levenshtein
Distance to assess whether two methods are common or not.

Let S(CA) and S(CB) to be the set of methods, attributes,
and relationships of CA (respectively CB). The structure-based
similarity of CA and CB is computed by comparing S(CA) to
S(CB) as:

StrS(CA,CB) =
2×|S(CA)∩S(CB)|
|S(CA)∪S(CB)|

∈ [0,1]

If StrS(CA,CB) = 0, then CA and CB do not have common
methods, attributes, and relationships. If StrS(CA,CB) = 1,
then classes CA and CB have the same sets of methods,
attribute types, and relationships. Our algorithm reports, given
CA, the CB with the highest StrS similarity score as the class
renamed from CA.

4We compare six types of logical connections: associations, use relations,
inheritance relations, creations, aggregations, and container-aggregations (spe-
cial case of aggregations [30]).

2) Text-based Similarity: It is possible that, our previous
algorithm reports, given a candidate renamed class CA, a set
of target classes {CB1 , ...,CBn} with the highest StrS similarity
value. In this case, we select the target class that has similar
name with CA. Thus, we compute the text similarity, between a
candidate renamed class CA and each of the target class CBi i∈
[1,n], using a Camel-similarity (CamelS), and the Normalized
Levenshtein Edit Distance (ND).

The CamelS similarity between CA and CB represents the
percentage of their common tokens. We first tokenise the
names of CA and CB using a Camel Case Splitter. Let T (CA)
and T (CB) to be the set of tokens of CA (respectively CB)
names. Then, we compute the CamelS similarity of CA and
CB by comparing T (CA) to T (CB) as:

CamelS(CA,CB) =
2×|T (CA)∩T (CB)|
|T (CA)∪T (CB)|

∈ [0,1]

If CamelS(CA,CB) = 0, then the names of CA and CB do not
have common tokens. If CamelS(CA,CB) = 1, then the names
of CA and CB have the same set of tokens.

The Levenshtein Edit Distance [31] between CA and CB
return the number of edit operations (insertions, deletions,
and substitutions) required to transform the name of
CA into the name of CB. To have comparable Levenshtein
distances, we use the normalized edit distance (ND), given by:

ND(CA,CB) =
LEV (CA,CB)

sum(length(CA), length(CB)
∈ [0,1]

where LEV computes the Levenshtein distance (we count
substitution as an edit operation with cost 1, not as a deletion
followed by an insertion with cost 2). If ND(CA,CB) = 0, then
the names of CA and CB are the same. If ND(CA,CB)≃ 1, then
the names of CA and CB are different.

Finally, we combine ND and CamelS to compare the text
similarity between names of the candidate class and the target
class, because ND and CamelS assess to two different aspects
of string comparison: ND is concerned with the difference
between strings but cannot tell if they have something in
common, while CamelS focuses on their common tokens but
cannot tell how different they are. Our algorithm reports, the
CB with the highest CamelS and the lowest ND scores as the
class renamed from CA.

3) Combination of Similarities: We describe our Algorithm
1, as follows: When we compare the similarities of a candidate
renamed class CA to many target classes {CB1 , ...,CBn}, we
first compare their structure-based similarity StrS. We select
the set of target classes having the highest StrS value. Then,
we compute their textual similarities (ND and CamelS).

For example, we want to identify a target class
that has the most similar name to the candidate re-
named class DataSource. Let us assume that three tar-
get classes, DataSetdescription, DataSet, and Dataret

have the highest StrS scores (0.70) to DataSource. Then,

we compute their textual similarities (ND and CamelS).
Both DataSetdescription and DataSet have the same
CamelS = 0.50, while their ND is different (0.42 for
DataSetdescription, and 0.29 for DataSet). Also,
DataSet and Dataret have the same ND = 0.29, while their
CamelS is different (0.0 for Dataret and 0.50 for DataSet).
Thus, by combining ND and CamelS, we can identify that
DataSet has the lowest ND and the highest CamelS and,
thus, is the most similar to DataSource.

If we do not find a target class that has the lowest ND and
the highest CamelS. Then, for each target class {CB1 , ...,CBn},
we compare ND and CamelS similarities to given thresholds.
If none of the target classes has ND lower than the 0.40
threshold5 and CamelS higher than the 0.50 threshold6. Then,
we can consider that class CA was deleted and not renamed.

For example, we want to identify a target class that has the
most similar name to the candidate renamed class BlankAxis.
Let us assume that two target classes, HorizontalDateAxis
and HorizontalCategoryAxis have the highest StrS scores
(0.66) to BlankAxis. Then, we compute their textual sim-
ilarities (ND and CamelS). Both HorizontalDateAxis

and HorizontalCategoryAxis have the same CamelS =
0.40. However, it is not higher than the 0.50 thresh-
old. Also, their ND similarities are not lower than 0.40
threshold (0.44 for HorizontalDateAxis and 0.51 for
HorizontalCategoryAxis). Thus, by comparing ND and
CamelS similarities to given thresholds, we conclude that the
original class BlankAxis was deleted and not renamed.

C. Step 3: Architectural Diagram Matching
A bit-vector algorithm applies a bounded number of vector

operations to an input vector, regardless of the length of
the input. Such an algorithm can thus be implemented with
bit-wise operations available in processors, leading to highly
efficient computations [33].

We use a bit-vector algorithm to perform diagram matching
of two program versions. This algorithm is interesting, because
it can find all common parts in a bounded number of vector
operations, which is independent of the size of the diagrams.

We summerise our iterative bit-vector algorithm for archi-
tectural diagram matching as follows: we first convert program
versions into strings, as described in Section III-A, because bit-
vector algorithms are designed for strings. Then, we analyse
these strings to identify the set of their common triplets using a
bit-vector algorithm [33]. This algorithm consists in traversing
in parallel string representations of two the versions, triplet
by triplet, and in recording the triplets in the first version that
match those in the second version. At the end of the traversal,
we obtain the set of stable triplets.

To use a bit-vector algorithm for matching two diagrams,
we build the characteristic vectors of each token in the
string representation. The characteristic vector of a token t

5Previous authors [32] have fixed the threshold value of normalized edit
distance (ND) to 0.40.

6We set the 0.5 threshold of CamelS similarity through our experimental
evaluations on two systems: JFreeChart and Xerces-J.

Algorithm 1 Similarities Combination Principle.
1: R← EmptyList{}
2: S← EmptyList{}
3: A← List{{CA1 , ...,CAn}, candidate renamed classes (version1)}
4: B← List{{CB1 , ...,CBm}, candidate target classes (version2)}
5: for each Class CAi in A, i ∈ [1,n] do
6: for each Class CB j in B, j ∈ [1,m] do
7: Compute Similarity StrS(CAi ,CB j).
8: if StrS(CAi ,CB j)> strMax then
9: R← EmptyList{}.

10: ADD CB j to R.
11: strMax← StrS(CAi ,CB j).
12: else
13: if StrS(CAi ,CB j) = strMax then
14: ADD CB j to R.
15: end if
16: end if
17: end for
18: for each Class CBr in R, r ∈ [1, |R|] do
19: Compute Similarity CamelS(CAi ,CBr).
20: Compute Similarity ND(CAi ,CBr).
21: if ND(CAi ,CBr) < 0.40 AND CamelS(CAi ,CBr) > 0.50

then
22: ndMin←Min(ND(CAi ,CB j),ndMin).
23: camelMax←Max(CamelS(CAi ,CB j),camelMax).
24: end if
25: end for
26: S←{CBs}, having ndMin and camelMax.
27: if |S| = 0 then
28: Class CAi is deleted.
29: else
30: Class CAi is renamed to CBs .
31: end if
32: end for

associated with the string s = s1...sm, is t = (t1...tm):

ti =
{

1 if si = t
0 otherwise.

For the example shown in Figure 2, the characteristic vectors
of tokens A, in, and B are defined as:

A = 10000000000000000︸ ︷︷ ︸
30

1

in = 0101000100010000000︸ ︷︷ ︸
19

B = 0010001000100000000︸ ︷︷ ︸
20

We use characteristic vectors to find the common triplets
between two versions. Our bit-vector algorithm iteratively
reads triplets of tokens in the string representation of first
version, e.g., T = (CSource,R,CTarget), and identifies in the
string representation of second version—using disjunctions
and shifts—all possible triplets that matches T . It stores the
triplets identified as being common between two architectural
diagram versions.
For example, to identify whether class B is directly related
to class A through the inheritance relationship in, we compute:

(→→ A) = 0110000000000000000000︸ ︷︷ ︸
29

(→ in) = 0010100010001000000︸ ︷︷ ︸
18

B = 0010001000100000000︸ ︷︷ ︸
20

R = (→→ A)∧ (→ in)∧B

= 00100000000000000000000︸ ︷︷ ︸
29

and assess whether the bit vector R is null (contains only
zeros). If R is not null, then class B is related to class A
through the inheritance relationship in and thus, the triplet
T = (A, in,B) is common between the two versions.

D. Step 4: Architectural Diagram Clustering
Once we obtain the list of all common triplets between two

architectural diagram versions using the bit-vector algorithm,
we apply our novel incremental clustering algorithm to find
the sets of connected triplets, which form the stable micro-
architectures (SµA) between two program versions.

Our incremental clustering algorithm requires one and only
one scan of all triplets. Each triplet is read and then either
assigned to one of the SµAs or used to start a new SµA. Then,
the set of existing SµAs is reduced by merging two SµAs if a
new triplet join them.

Algorithm 2 Incremental Clustering Principle.
1: L← EmptyList{Clusters}
2: S← List{Commontripletsbetweentwoprogramverions}
3: for each Triplet T in S do
4: for each Cluster C in L do
5: if T is in relations with the existing triplet T ∗ in C then
6: if T is not added to any cluster then
7: ADD T to C.
8: ClusterToBeMerged← C.
9: else

10: MERGE ClusterToBeMerged to C.
11: end if
12: end if
13: end for
14: if T is not added to any cluster then
15: Create a new Cluster C∗.
16: ADD T to C∗.
17: ADD C∗ to L.
18: end if
19: end for

We describe our Algorithm 2, as follows: Let S to be the
list of all common triplets. First, it traverses S, then for each
triplet T in S and for each cluster C, if there is a triplet T ∗ in C
in relations with it, then the triplet T is added to the cluster C
which is marked as Cluster to be merged (lines 3-8). If there is
another cluster that contains another triplet T ∗ in relations with
triplet T, then the current cluster is merged with the marked
cluster (lines 9-10). If after checking all clusters C in L, the

triplet T was not assigned to any cluster, a new cluster C∗ is
created and the triplet T is added to it (lines 14-17).

Our algorithm returns the clusters that represent stable
micro-architectures SµAs between two versions.

E. Step 5: Architectural Decay Evaluation
We perform a pairwise matching of subsequent program

architectures to identify the sets of stable triplets and stable
micro-architectures. We use these sets as indicators of the
architectural stability, as follows:
• Stability of the original design: we compute the number

of triplets that has a match in all the versions. These
triplets are considered to be part of a tunnel, the backbone
part of the system.

• Stability of the architecture with an enriched function-
ality: we compute the number of triplets that have not
changed since their first appearance in a given version of
a system.

We will show in Section IV how this indicator can pro-
vide useful insights to developers regarding the evaluation of
architectural decay in object-oriented programs.

IV. STUDY DEFINITION AND DESIGN

Following the Goal Question Metric (GQM) methodology
[34], the goal of our study is to analyse the performance of
our approach ADvISE and understand whether it performs
better than previous approaches. The purpose is to provide
an approach for identifying class renaming and evaluating
architectural decay. The quality focus is to evaluate the ar-
chitectural decay of software systems. The perspective is of
both researchers, who want to study class renaming, and
practitioners who analyse software evolution to estimate the
effort required for future maintenance tasks. The context of
our experiments is three open-source Java systems: JFreeChart,
Rhino and Xerces-J.

A. Objects

We perform our study using four well-known, open-source
programs: JFreeChart, Rhino and Xerces-J. Table I shows
some descriptive statistics of these programs.

JFreeChart7 is a powerful and flexible open-source charting
library. Rhino8 is an open-source implementation of JavaScript
written entirely in Java. Xerces-J9 is a family of software
packages for parsing XML.

B. Research Questions

We investigate whether it is possible to apply our approach
to study the evolution of architectural diagrams for object
oriented software systems. This study aims answering the
following research questions:
• RQ1: What are signs of architectural decay and how can

they be tracked down? This question aims studying if the
numbers of stable triplets are good indicators to measure

7http://www.jfree.org/jfreechart/
8http://www.mozilla.org/rhino/
9http://xerces.apache.org/

Program Releases Entities Bit-vectors History Dates(in classes) (in bits)

JFreeChart v0.5.6 1,335 87,227 51 25/11/2000
v1.0.13 9,105 1,089,345 20/04/2009

Rhino v1.5.R1 163 40803 11 10/05/1999
v1.6.R5 449 266,265 19/11/2006

Xerces-J v1.0.1 5,100 162,583 36 05/11/1999
v2.9.0 12,585 1,195,353 22/11/2006

TABLE I
STATISTICS FOR THE FIRST AND LAST VERSION OF EACH PROGRAM

the architectural decay, and if they provide useful insights
to developers regarding the signs of software aging.

• RQ2: Do stable and unstable micro-architectures have the
same risk to be fault prone? This question leads to the
following null hypothesis:

– H0: The proportions of faults carried by stable and
unstable micro-architectures are the same.

C. Analysis Methods

In RQ1, we first apply our approach to JFreeChart and
Xerces-J. We chose these systems, because the lengths of
their histories are long enough to make some interesting
observations on the signs of the architectural decay. Also,
they are medium-size open-source projects, yet small enough
to manually validate the occurrences of class renamings and,
studied in previous work. The last condition reduces the bias
in the selection of the subject systems and facilitates the
comparison with previous work.

Then, we perform a pair by pair matching of subsequent
program architectures to identify stable triplets in JFreeChart
and Xerces-J (see Figures 3 – 4). To evaluate the deviation of
actual architecture from the original design, we compute the
number of triplets that has a match in all the versions. These
triplets are considered to be part of a tunnel, the backbone part
of the system. Also, to analyse the stability of the architecture
with an enriched functionality, we compute the number of
triplets that have not changed since their first appearance in a
given version of a system. Then, we build a graph visualising
the evolution of a system architecture over time. The axes
of the graphic are the time (software versions) and numbers
of our indicators of architectural decay (number of common
triplets between two versions, and number of triplets in the
tunnel). Thus, we study the graph of architectures evolution
for each system to assess whether, these indicators provide us
useful insights regarding the signs of software aging.

In RQ2, we first apply bit-vector algorithm to identify
stable micro-architectures in Rhino. We choose this system,
because we use publicly available data on the faults (i.e.,
issues reporting real bugs) collected by previous authors10. To
attempt rejecting H0, we test whether the proportion of classes
that compose unstable (respectively stable) micro-architectures
take part (or not) in significantly more faults than those in
stable (respectively unstable) micro-architectures. We use the

10http://www.cs.columbia.edu/∼eaddy/concerntagger/

contingency tables to assess the direction of the difference,
if any. We use Fisher’s exact test [35], to check whether the
difference is significative. We also compute the odds ratio [35]
that indicates the likelihood for an event to occur. The odds
ratio is defined as the ratio of the odds p of an event occurring
in one sample, i.e., the odds that decayed classes are identified
as fault-prone, to the odds q of the same event occurring in
the other sample, i.e., the odds that stable classes are identified
as fault-prone. An odds ratio greater than 1 indicates that the
event is more likely in the first sample (unstable classes), while
an odds ratio less than 1 that it is more likely in the second
sample. An odds ratio OR = p/(1−p)

q/(1−q) . OR = 1 indicates that
fault-prone entities can either have high or low term entropy
and context coverage. OR> 1 indicates that fault-prone entities
indeed have high term entropy and high context coverage. We
expect OR > 1 and a statistically significant p-value.

V. EMPIRICAL STUDY RESULTS

We now report and discuss the results of our study to address
the research questions.
RQ1: Our bit-vector and incremental clustering algorithms
identified the common triplets in JFreeChart and Xerces-J.
In one hand, we build the graphs visualising the number of
triplets between two subsequent versions. In the other hand,
we found external information in the release notes and mailing
lists. Thus, we report two examples of external information
illustrating the architectural changes. The answer RQ1 is also
positive.

1) In JFreeChart: The number of triplets in the first version
was decreasing from 413 to 100 stable triplets in the tunnel
(see Figure 3). This is due to major changes that have been
made. Using external information, we explain the results
shown in Figure 3 as follows:
• On Sep 2004, common triplets between versions 0.9.20

and 0.9.21 decreased to 1,894 triplets, the release notes
reports an important splitting activity of two pack-
ages org.jfree.data and org.jfree.chart.renderer into sub-
packages category and xycharts. The fully qualified
names of all entities in both packages have been changed,
which decreased the number of common triplets.

• On Apr 2009, common triplets between versions 1.0.12
and 1.0.13 increased again. After version 1.0.0, we no-
ticed that the number of common triplets was increasing
until the last version 1.0.13. The analysis of the release
notes reveals that few new features were added and some
bugs fixed. The number of common triplets in the tunnel
remains constant, the backbone of the program is more
stable.

Our approach has the potential to discover two cases of
renamings in a fully-qualified class name: (1) Class renaming
without changing the package name; (2) Package renaming
without changing the class name. In the second case, the
triplets are not considered stable, because renamings are due
to structural changes in the architecture, such as: splitting or
merging packages, moving the class to a new package, etc.

2) In Xerces-J: The number of triplets in the first version
was decreasing from 1,693 to 484 triplets have been present
and stable in the tunnel throughout all the life of Xerces-J (see
Figure 4). This means that 28.58% of the triplets belong to
the tunnel. Using external information, we explain the results
shown in Figure 4 as follows:
• Between v1.0.1 to v1.4.4, the number of common triplets

increased from 1,693 triplets to 3,160: new features were
added and maintained until version 1.44. The number of
stable triplets in the tunnel decreased, some classes in the
first version were deleted and replaced by new ones;

• Between v1.4.4 to v2.0.0, the number of common triplets
decreased from 3,160 triplets to 959. There was a major
change reported in version 2.0.0. Also, the number of
stable triplets in the tunnel decreased from 1,693 to 488,
because classes from the first version were deleted;

• Between v2.0.0 to v2.0.9, the number of common triplets
increased from 959 triplets to 6,096. The program design
became more stable, there was just new features added
and some bugs fixed. Also, the number of stable triplets
in the tunnel remained constant at 488, so the backbone
of the program is now stable;

In JFreeChart and Xerces-J, the number of common triplets
between two subsequent versions is increasing over time. As
a software evolves, additions of all sorts are to be expected, as
new requirements and new functionalities will be implemented
in the software. In contrast, deletions are less ”natural” and
more likely to be associated with the correction of early
misconceptions. Thus, for this preliminary study, we are only
interested in evaluating how much of an original design is
present throughout subsequent versions. To this end, we count
the number of triplets in the tunnel of JFreeChart and Xerces-J,
to measure their architectural decay11.

In our approach, a system design is represented by a
(possibly reverse-engineered) class diagram. As a result, the
first measure of design erosion, we are interested in, is related
to how many of the classes of the considered diagram are kept
in subsequent snapshots or releases. As illustrated in Figure
3, the tunnel of JFreechart decreased faster than the tunnel
of Xerces-J over the n versions, which means the structural
changes are more frequent in JFreechart than in Xerces-J. In
both programs, numbers of triplets in the tunnel become stable,
which means that the systems are more adapted to the new
changing requirements.

As a result, the first measure of architectural decay is related
to how many of the classes of the considered architecture
are kept in subsequent snapshots or releases. Such measure,
though unidimensional, is simple, intuitive and can be used for
more complex notions, such as estimating a ”mortality” rate
for classes in a project. The second measure of architectural
decay we consider in this study is focused on relationships
(number of triplets) existing between classes of a given ar-
chitecture. The absence of those relationships in subsequent

11In our study, we define architectural decay as the deviation of the actual
architecture from its original design.

Fig. 3. The evolution of JFreeChart architecture.

Fig. 4. The evolution of Xerces-J architecture.

versions is another interesting measure of architectural decay.
In particular, there may be cases in which the classes are
kept but the relationships between them are deeply modified.
Finally, our third measure considers the number of connected
components of a design in subsequent releases. Considering
the set of the classes of a given design, it may happen that the
overall connectivity is not preserved. By deleting some rela-
tionships (e.g., when trying to insert some new intermediary
class), one may add a degree of separation between previously
connected classes. In this study, we analysed architectural
decay using two measures (number of classes and triplets).
In future work, we plan to investigate the use of number of
connected components (clusters) to measure the architectural
decay.

Time performance: We applied with success and run
algorithms on a Linux Bi-Processor Opteron 64-bit with 16
Gb RAM running Redhat Advanced Server version 4. The
applicability on the programs JFreeChert and Xerces-J and
the computation time—less than 0.036 milliseconds per two
consecutive versions (this time does not include the pre-
processing step)—is acceptable for an on-line application of
the algorithms.

RQ2: Table II presents a 2× 2 contengency table for Rhino
that reports the number of (1) unstable classes which are iden-
tified as fault-prone; (2) unstable classes which are identified
as clean; (3) stables classes which are identified as fault-prone;
and, (4) stables classes which are identified as clean. The result
of Fisher’s exact test and odds ratios when testing H0 are

significants. The p-value is less then 0.05 and the odds ratio
for fault-prone unstable classes is three times higher than for
fault-prone stable classes.

Faulty classes Clean classes
Unstable classes 105 14

Stable classes 39 17
Fisher’s test 0.005

Odd-ratio 3.244

TABLE II
CONTINGENCY TABLE AND FISHER TEST RESULTS FOR UNSTABLE

CLASSES WITH AT LEAST ONE FAULT.

We can answer to RQ2 as follows: we showed that stable
micro-architectures, belonging to the original design, are sig-
nificantly less bug-prone than unstable micro-architectures.

A. Threats to Validity

Several threats potentially impact the validity of our study.

a) Construct validity: threats concern the relation
between theory and observation; in our context, they are
mainly due to errors introduced in measurements. Our
strategy of reverse engineering class diagrams may contain
imprecision and there is need to compare obtained results
with other reverse engineering tools. Nevertheless, since
all class diagrams were produced by the same tools chain
imprecision should factor out. However, we can not exclude
the possibility that by using a different reverse engineering
tool our algorithms may produce slightly different results.
Another critical element is the faults datasets. We use
manually-validated faults that have been used in previous
studies 12. Yet, we cannot claim that all fault-prone classes
have been correctly tagged or that fault-prone classes have
not been missed. There is a level of subjectivity in deciding if
an issue reports a fault and in assigning this fault to classes.
In this context, we are just interested to check whether a
class is faulty or not, rather than quantifying the amount of
faults, which is however possible and could be investigate in
future work.

b) Internal validity: threats do not affect this particular
study, being an exploratory study. Thus, we cannot claim
causation, but just relate unstable classes with the occurrences
of faults, although our discussion tries to explain why some
unstable could have been subject to faults. Conclusion validity
threats concern the relation between the treatment and the
outcome.

c) Conclusion validity: threats concern the relation
between the treatment and the outcome. We paid attention
not to violate assumptions of the statistical tests that we used
(we mainly used non-parametric tests).

12http://www.cs.columbia.edu/∼eaddy/concerntagger/

d) External Validity: The external validity of a study
relates to the extent to which we can generalise its results.
The main threat to the external validity of our study that
could affect the generalisation of the presented results relates
to the analysed programs. We performed our study on three
different Java programs belonging to different domains and
with different sizes. However, we cannot assert that our
results can be generalised to other larger programs and
programs in other programming languages. Future work
includes replicating this study on other programs to confirm
our results.

VI. CONCLUSION AND FUTURE WORK

Architectural decay is defined as the deviation from an
original design, i.e., the violation of architecture caused by
the process of evolution [11]–[13]. When evolution occurs in
an uncontrolled manner, the systems become more complex
over time and thus, harder to maintain [3], [4]. Thus, decayed
architectures make their systems more prone to defects [14].

In this paper, we propose a novel approach ADvISE and a
set of measures to evaluate architectural decay. The first step
in observing architectural decay is to use a diagram matching
technique to identify structural changes among versions of
architectures. Finding structural changes occurring in long-
lived evolving architectures requires the identification of class
renamings. The second step requires to match evolving archi-
tectures to identify changes and stable micro-architectures. The
third step consists of, using the previously-identified micro-
architectures, in proposing metrics to identify the signs of ar-
chitectural decay. Thus, this paper present three contributions:

1) The first contribution of this paper is a set of structure-
based and text-based similarities to identify class renam-
ings in evolving architectures.

2) The second contribution are a bit-vector and incremental
clustering algorithms to perform the matching between
several versions of an architecture and find stable micro-
architectures, which exist in all versions.

3) The third contribution is a set of metrics (code decay
indicators) on software, that serve as symptoms and
risk factors of decay in the context of an evolving
architecture, and thus, predictors of fault proneness. We
also perform a quantitative and two qualitative studies,
to show the applicability and usefulness of our approach.

We apply our approach on three open-source systems:
JFreeChart, Rhino and Xerces-J, and answer the following
research questions as follows:
• RQ1: What are signs of architectural decay and how

can they be tracked down? We studied the graph of
architectures evolution for each system, and we showed
that these indicators provide us useful insights regarding
the signs of software aging.

• RQ2: Do stable and unstable micro-architectures have the
same risk to be fault prone? We showed that stable micro-
architectures, belonging to the original design, are signif-
icantly less bug-prone than decayed micro-architectures.

In future work, we plan to apply our approach to other larger
programs and study its results. We also plan to investigate the
use of number of connected components (clusters) to measure
the architectural decay.

ACKNOWLEDGMENT

This research was partially supported by NSERC (Research
Chairs in Software Patterns and Patterns of Software and in
Software Evolution) and FQRNT.

REFERENCES

[1] S. J. Carrière and R. Kazman, “The perils of reconstructing architec-
tures,” in Proceedings of the third international workshop on Software
architecture. New York, NY, USA: ACM, 1998, pp. 13–16.

[2] J. van Gurp and J. Bosch, “Design erosion: problems and causes,” J.
Syst. Softw., vol. 61, pp. 105–119, March 2002.

[3] D. Bell, Software Engineering, A Programming Approach. Addison-
Wesley, 2000.

[4] D. Hamlet and J. Maybee, The Engineering of Software. Addison-
Wesley, 2001.

[5] M. Jazayeri, “On architectural stability and evolution,” in da-Europe
’02: Proceedings of the 7th Ada-Europe International Conference on
Reliable Software Technologies. London, UK: Springer-Verlag, 2002,
pp. 13–23.

[6] S. Kpodjedo, F. Ricca, P. Galinier, and G. Antoniol, “Recovering the
evolution stable part using an ecgm algorithm: Is there a tunnel in
mozilla?” in CSMR ’09: Proceedings of the 2009 European Conference
on Software Maintenance and Reengineering. Washington, DC, USA:
IEEE Computer Society, 2009, pp. 179–188.

[7] Z. Xing and E. Stroulia, “Umldiff: an algorithm for object-oriented
design differencing,” in ASE ’05: Proceedings of the 20th IEEE/ACM
international Conference on Automated software engineering. New
York, NY, USA: ACM, 2005, pp. 54–65.

[8] ——, “Understanding class evolution in object-oriented software,” in
Proceedings of the 12th IEEE International Workshop on Program
Comprehension, june 2004, pp. 34 – 43.

[9] Z. Xing, “Analyzing the evolutionary history of the logical design of
object-oriented software,” IEEE Trans. Softw. Eng., vol. 31, no. 10, pp.
850–868, 2005, member-Stroulia, Eleni.

[10] D. Kimelman, M. Kimelman, D. Mandelin, and D. Yellin, “Bayesian
approaches to matching architectural diagrams,” Software Engineering,
IEEE Transactions on, vol. 36, no. 2, pp. 248 –274, 2010.

[11] D. E. Perry and A. L. Wolf, “Foundations for the study of software
architecture,” SIGSOFT Softw. Eng. Notes, vol. 17, pp. 40–52, 1992.

[12] L. Hochstein and M. Lindvall, “Combating architectural degeneration: a
survey,” Information Software Technology, vol. 47, pp. 643–656, 2005.

[13] B. Williams and J. Carver, “Characterizing software architecture
changes: An initial study,” in Empirical Software Engineering and
Measurement, 2007. ESEM 2007. First International Symposium on,
2007, pp. 410 –419.

[14] J. van Gurp, S. Brinkkemper, and J. Bosch, “Design preservation over
subsequent releases of a software product: a case study of baan erp:
Practice articles,” J. Softw. Maint. Evol., vol. 17, pp. 277–306, 2005.

[15] M. W. Godfrey and E. H. S. Lee, “Secrets from the monster: Extracting
Mozilla’s software architecture,” in Proc. of the Second Intl. Symposium
on Constructing Software Engineering Tools (CoSET-00), 2000.

[16] S. Eick, T. Graves, A. Karr, J. Marron, and A. Mockus, “Does code
decay? assessing the evidence from change management data,” Software
Engineering, IEEE Transactions on, vol. 27, no. 1, pp. 1 –12, 2001.

[17] D. L. Parnas, “Software aging,” in Proceedings of the 16th international
conference on Software engineering. IEEE Computer Society Press,
1994, pp. 279–287.

[18] G. Antoniol, M. D. Penta, and E. Merlo, “An automatic approach to
identify class evolution discontinuities,” Principles of Software Evolu-
tion, International Workshop on, vol. 0, pp. 31–40, 2004.

[19] G. Antoniol, G. Canfora, G. Casazza, and A. De Lucia, “Maintain-
ing traceability links during object-oriented software evolution,” Softw.
Pract. Exper., vol. 31, no. 4, pp. 331–355, 2001.

[20] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms. MIT Press, 1990.

[21] D. Kimelman, M. Kimelman, D. Mandelin, and D. Yellin, “Bayesian
approaches to matching architectural diagrams,” Software Engineering,
IEEE Transactions on, vol. 36, no. 2, pp. 248 –274, 2010.

[22] W. Wu, Y.-G. Guhneuc, G. Antoniol, and M. Kim, “Aura: a hybrid
approach to identify framework evolution,” in ICSE ’10: Proceedings of
the 32nd ACM/IEEE International Conference on Software Engineering,
J. Kramer, J. Bishop, P. T. Devanbu, and S. Uchitel, Eds., vol. 1. ACM,
2010, pp. 325–334.

[23] B. Dagenais and M. P. Robillard, “Recommending adaptive changes for
framework evolution,” in ICSE ’08: Proceedings of the 30th interna-
tional conference on Software engineering. ACM, 2008, pp. 481–490.

[24] T. Schäfer, J. Jonas, and M. Mezini, “Mining framework usage changes
from instantiation code,” in ICSE ’08: Proceedings of the 30th inter-
national conference on Software engineering. New York, NY, USA:
ACM, 2008, pp. 471–480.

[25] M. W. Godfrey and L. Zou, “Using origin analysis to detect merging
and splitting of source code entities,” IEEE Trans. Softw. Eng., vol. 31,
no. 2, pp. 166–181, 2005.

[26] Z. Xing and E. Stroulia, “API-evolution support with diff-CatchUp,”
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, vol. 33,
no. 12, pp. 818 – 836, 2007.

[27] M. Kim, D. Notkin, and D. Grossman, “Automatic inference of structural
changes for matching across program versions,” in ICSE ’07: Pro-
ceedings of the 29th international conference on Software Engineering.
Washington, DC, USA: IEEE Computer Society, Not Available 2007,
pp. 333–343.

[28] Y.-G. Guéhéneuc and G. Antoniol, “DeMIMA: A multi-layered
framework for design pattern identification,” Transactions on Software
Engineering (TSE), vol. 34, no. 5, pp. 667–684, September 2008, 18
pages. [Online]. Available: http://www-etud.iro.umontreal.ca/∼ptidej/
Publications/Documents/TSE08.doc.pdf

[29] K. Olivier, G. Yann-Gaël, and S. Hamel, “Efficient identification of
design patterns with bit-vector algorithm,” csmr, vol. 0, pp. 175–184,
2006.

[30] Y.-G. Guéhéneuc and H. Albin-Amiot, “Recovering binary class rela-
tionships: Putting icing on the UML cake,” in Proceedings of the 19th

Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), D. C. Schmidt, Ed. ACM Press, October 2004,
pp. 301–314, 14 pages.

[31] V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions, and reversals,” Cybernetics and Control Theory, vol. 10, no. 8,
pp. 707–710, 1966.

[32] L. M. Eshkevari, V. Arnaoudova, M. Di Penta, R. Oliveto, Y.-G.
Guéhéneuc, and G. Antoniol, “An exploratory study of identifier renam-
ings,” in Proceeding of the 8th working conference on Mining software
repositories. ACM, 2011, pp. 33–42.

[33] A. Bergeron and S. Hamel, “Vector algorithms for approximate string
matching,” International Journal of Foundations of Computer Science,
vol. 13, no. 1, pp. 53–65, 2002.

[34] V. R. Basili and D. M. Weiss, “A methodology for collecting valid
software engineering data,” IEEE Trans. Software Eng., vol. 10, no. 6,
pp. 728–738, 1984.

[35] D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical
Procedures. Chapman & Hall/CRC, 2007.

