
Recommending Refactorings to Reverse Software Architecture Erosion

Ricardo Terra†‡, Marco Tulio Valente†, Krzysztof Czarnecki‡ and Roberto S. Bigonha†
‡University of Waterloo, Canada

†Universidade Federal de Minas Gerais, Brazil
Email: {terra,mtov}@dcc.ufmg.br, kczarnec@gsd.uwaterloo.ca, bigonha@dcc.ufmg.br

Abstract—Architectural erosion is a recurrent problem
faced by software architects. Despite this fact, the process
is usually tackled in ad hoc way, without adequate tool
support at the architecture level. To address this issue, we
describe the preliminary design of a recommendation system
whose main purpose is to provide refactoring guidelines for
developers and maintainers during the task of reversing an
architectural erosion process. The paper formally describes
first recommendations proposed in our current research and
results of their application in a web-based application.

I. INTRODUCTION

Software architecture erosion designates the progressive
gap normally observed between the planned and the actual
architecture of a software system as implemented by
its source code [1]–[4]. Although the causes for this
architectural gap are diverse, ranging from conflicting re-
quirements to deadline pressures, the consequences always
include degradation in the internal quality of the system,
with a negative impact on properties like maintainability,
evolvability, extensibility, and reusability [5]. When the
process is accumulated over years, architectural erosion
can transform software architectures into unmanageable
monoliths [6], [7].

In order to maintain the long-term survival of any
system, software architects have the responsibility for
establishing policies to monitor the erosion process. Partic-
ularly, such policies must provide answers to the following
concerns:

1) How to locate the points of erosion in a software
system? In other words, how to locate in the source
code the implementation decisions that represent
violations to the planned architecture?

2) After locating the violations, how to reverse the
erosion process? Stated differently, how to refactor
the source code to replace architectural violations by
implementation decisions that are consistent with the
planned architecture?

The first concern has been widely investigated in the
literature on software architecture evolution and several
solutions have been proposed to uncover architectural
violations [8]–[10]. As particular examples, we can men-
tion techniques such as reflexion models [11], inten-
sional views [12], and domain-specific languages, such as
SCL [13], DCL [14], LogEn [15], and .QL [16]. There are
also industrial-strength architecture analysis tools that, to
some extent, are based on such techniques and languages,
including Lattix LDM [17], IESE SAVE [18], and Semmle
ODASA [19].

There has been less research effort dedicated to the
second concern, however. Usually, the common recom-
mendation for removing architectural violations reduces to
the use of traditional refactorings [20], as supported by to-
day’s IDEs. However, this recommendation is too generic
in most scenarios. Suppose, for example, that a developer
has created an object of type Product in a module where
this object creation is not allowed. To fix this violation, the
standard recommendation consists in applying a Replace
Constructor by a Factory Method refactoring. However,
most developers do not have a complete understanding
of the system and therefore they may not know the
name of the Factory method to call in this situation.
As a second example, suppose a system where database
operations are confined to Data Access Objects (DAOs).
Suppose also that a database query has been performed
outside a DAO. To fix this violation, developers must apply
the Extract Method and then Move Method refactorings.
However, they may require considerable time to determine
the particular DAO the query must be moved to.

To address the lack of tool support for removing
architectural violations, we describe in this paper the
preliminary design of a recommendation system whose
main purpose is to provide refactoring guidelines for
developers and maintainers during the task of reversing
an architectural erosion process. For example, our system
not only indicates the application of a Replace Constructor
by a Factory Method, but it complements this information
with the name of the Factory method that must be called
in this particular context. Similarly, when a Move Method
is recommended, the system suggests the target class of
the move refactoring. We acknowledge that providing
a fully automatic approach for removing architectural
violations is challenging and far ahead the state of the art
in refactoring tools. On the other hand, due to its relevance,
we take the position that architectural erosion should not
continue to be tackled in ad hoc way, without adequate
tool support at the architecture level.

Specifically, our approach provides recommendations
to remove architectural violations detected by the DCL
language [14], [21]. DCL (Dependency Constraint Lan-
guage) is a domain-specific language with a simple, easy
understandable syntax for defining structural constraints
between modules. Once defined, such restrictions are stat-
ically checked by a conformance tool, called dclcheck.
Figure 1 illustrates how the proposed approach leverages
the architecture conformance definition provided by the
DCL language. The proposed recommendation engine,

called dclfix, requires the following inputs: a set of DCL
constrains (specified by a software architect or designer),
a set of architectural violations (raised by the dclcheck

tool), and the source code of the system. Based on these
inputs, the engine provides a set of recommendations to
guide the process of removing the detected violations.

Figure 1. Proposed recommendation engine

Structure: The remainder of this paper is structured as
follows. Section II provides an overview on the DCL lan-
guage. Section III presents a specification for our current
set of recommendations. Section IV presents preliminary
results on applying these recommendations in a web-based
system. Finally, Sections V and VI briefly discuss related
and further work, respectively.

II. THE DCL LANGUAGE

Because existing object-oriented languages allow client
modules to reference any public type exported by server
modules, the rationale behind DCL is to provide archi-
tects with means to control such dependencies [14], [21].
Particularly, the language provides constraints to capture
two types of architectural violations: divergences (when
a dependency that exists in the source code violates the
planned architecture) and absences (when the source code
does not establish a dependency that is prescribed by the
planned architecture) [8], [11]. To capture divergences,
DCL allows architects to specify that dependencies only
can, can only or cannot be established by specified mod-
ules (the differences will be explained shortly). In addition,
to capture absences, architects can specify that particular
dependencies must be present in the source code.

To illustrate the use of DCL, assume the following
constraints:

1: only Factory can- c r e a t e Product
2: Util can-only -depend $java, Util
3: View cannot-a c c e s s Model
4: Product must- implement Serializable

These constrains state that only classes in the Factory

module can create objects from classes in the Product

module (line 1), classes in the Util module can only
establish dependencies with the Java API and with classes
in the own Util module (line 2), and classes in the
View module cannot access classes in the Model mod-
ule (line 3). The last constraint defines that all classes
in the Product module must implement the mentioned
interface (line 4).

When defining constraints, DCL allows developers
to specify dependencies caused by accessing methods

and fields (access), declaring variables (declare),
creating objects (create), extending classes (extend),
implementing interfaces (implement), throwing
exceptions (throw), or using annotations (annotate). It
is also possible to define constrains including any form
of dependency (depend).

Formal Semantics: Since the proposed recommendations
aim to remove violations in architectural constraints de-
fined in DCL, it is important to provide a formal semantics
for the language. For this purpose, suppose that MA and
MB are modules, which are sets of classes. Moreover,
suppose that MA denotes the complement of module MA,
i.e., all classes of the system under analysis except those
in MA. Finally, suppose that dep denotes a dependency
type provided by DCL, i.e., dep can be access, declare,
create, etc.

First, the semantics of only can and can only rules are
defined in terms of cannot rules, as described next:

only MA can-dep MB =⇒ MA cannot-dep MB

MA can-only-dep MB =⇒ MA cannot-dep MB

Furthermore, a violation in a rule of the form
MA cannot-dep MB happens whenever

∃A ∃B [A ∈ MA ∧ B ∈ MB ∧ dep(A, B)]

where A and B denote classes and dep is a predicate that
checks whether there is a dependency of type dep from A

to B.
Finally, a violation in a rule in the form MA must-dep MB

happens whenever

∃A¬∃B [A ∈ MA ∧ B ∈ MB ∧ dep(A, B)]

III. REFACTORING RECOMMENDATIONS

The proposed refactoring recommendations aim to assist
developers and maintainers—especially those who are
unfamiliar with the architecture—to fix violations detected
by DCL. We decided to rely on the following syntax to
specify the recommendations:

Architectural Rule
Code_With_V iolation=⇒ Recommendation,

if Preconditions

This syntax should be interpreted as follows: whenever
the Architectural Rule is violated by the particular
Code With V iolation and the Preconditions hold, the
Recommendation can be triggered. More specifically,
Architectural Rule is a constraint defined in DCL and
Code With V iolation is the particular statement or ex-
pression in the source code where this constraint has been
violated. A Recommendation consists of a sequence of
refactoring operations, using the functions described in
Table I; and Preconditions for the proposed recommen-
dations are defined using the functions listed in Table II.

Based on the proposed syntax and functions, Table III
shows some of the refactoring recommendations we have

Table I
REFACTORING FUNCTIONS

Refactoring Description
extract(stm) Extracts method with statements stm

move(f, C) Move method f to the class C

move(C, M) Move class C to the module M

remove(S) Removes the block of code S

replace(stm1, stm2) Replaces block of code stm1 by stm2

propagate(exp, v, S) Propagates exp to the uses of the vari-
able v in the block of code S

promote(f, v, exp) Promotes variable v to a formal param-
eter of f; the expression exp is used as
the argument in the calls to f

Table II
FUNCTIONS USED IN PRECONDITIONS

Function Description
can(T1, dep, T2) Checks whether type T1 can establish a de-

pendency of the dep kind with T2

call sites(f) Returns the call sites of f
delegate(f) Searches for a delegate method for f
factory(C, exp) Searches for a factory for class C, accepting

exp as input
gen decl(T, f) Declares a variable of class T to access f

gen factory(T, exp) Generates a factory for class T, accepting exp
as input

super(t) Returns the supertypes of type t (in order
from the most specific to the most generic)

type(v) Returns the type of the variable v

typecheck(stm) Checks whether code stm type checks
user code() Prompts the user for a block of code

already formalized. This table shows recommendations for
violations in cannot rules including dependencies due to
create, declare, access, throw, and derive relations.
We have formalized more than twenty recommendations
for violations in cannot rules. Table III shows only a subset
of them due to space restrictions. Alternatively, code
may be surrounded by quotation brackets. It is important
to mention that the proposed recommendations can also
handle violations in only can and can only rules, because
these rules are defined in terms of cannot constraints,
as described in Section II. Finally, Table III does not
include recommendations for must rules; we are currently
investigating recommendations for these rules.

We briefly describe the recommendations listed in Ta-
ble III:

• Recommendations for cannot-create rules are
always associated to a new operator, as in the case
of the first two recommendations. In both cases,
the recommendation includes the replacement of
the new operator by a call to the get method of
a Factory class. The recommendation may suggest
using a method from an existing Factory (rec. 1a)
or the creation of a new Factory class, using the
function gen factory (rec. 1b).

• Recommendations for cannot-declare rules
may include the replacement of the unauthorized
type B by one of its supertypes B′ (rec. 2a).
This recommendation is particularly useful to handle

violations due to the use of a concrete implementation
of a service, instead of its general interface. Repairing
violations of cannot-declare rules may also involve
the removal of the unauthorized declaration followed
by the propagation of the initialization expression
exp to all uses of the declared identifier (rec. 2b).

• Recommendations for cannot-access rules may
include the replacement of an unauthorized call
to a method f by a call to a delegate method g

(rec. 3a). As an alternative, the system may suggest
the extraction of a new method g with the call to f

and the movement of g to another class C (rec. 3b).
Section III-A provides more information about the
algorithm proposed to find an appropriate class for
the extracted method. Finally, the recommendation
engine may suggest promoting the variable—whose
initialization expression contains the unauthorized
access—to a formal parameter of the enclosing
method g. In this case, the initialization expression
exp b must be used as the argument in g calls
(rec. 3c).

• Recommendations for cannot-throw rules may
include the removal of the throws clause, in the
cases it is not needed (rec. 4a). On the other hand,
when the throws is needed, its removal can be
followed by the insertion of a try-catch block
around the body of the method to handle the
exception internally (rec. 4b). In this particular case,
the developers must provide the code that handles
the exception, as required by function user code.

• Recommendations for cannot-derive rules may
include the movement of the entire class to a more
appropriate module (rec. 5a).

In Table III, the recommendations are listed according to
their priority. When two or more recommendations match
a given violation in the source code, the system only
triggers the recommendation with the highest priority.

A. Class Similarity

Recommendation 3b suggests the movement of a
method to another class, as computed by the function
suitable class. To implement this function, the sim-
ilarity between a method and a class is calculated using
the Jaccard Similarity Coefficient, which is a statistical
measure for the similarity between two sets. To calculate
the coefficient, we assumed that a method or a class is rep-
resented by the set of structural dependencies it establishes
with other program elements. This assumption is based in
the fact that our recommendations have been proposed
to handle violations in DCL constraints, which basically
denote divergences (or absences) in the expected set of
dependencies established by a given program element.

Based on such assumptions, the similarity between a
method f and a class C is defined by:

similarity(f, C) =
|Deps(f) ∩Deps(C)|
|Deps(f) ∪Deps(C)|

Table III
REFACTORING RECOMMENDATIONS

A cannot-create B, where A ∈ MA ∧ B ∈ MB

new B(exp) =⇒ replace([new B(exp)], [FB.getB(exp)]), if FB = factory(B, [exp]) ∧ can(A, access, FB) (1a)

new B(exp) =⇒ replace([new B(exp)], [FB.getB(exp)]), if FB = gen factory(B, [exp]) ∧ can(A, access, FB) (1b)

A cannot-declare B

B b; S =⇒ replace([B], [B′]), if B′ ∈ super(B) ∧ typecheck([B′ b ; S]) ∧ B′ /∈ MB (2a)

B b = exp; S =⇒ propagate([exp], b, [S]), if can(A, access, B) (2b)

A cannot-access B

b.f =⇒ replace([b.f], [D; c.g]), if g = delegate(f) ∧ D = gen decl(type(c), g) ∧ type(c) /∈ MB (3a)

b.f =⇒ g = extract([b.f]), move(g, C), if C = suitable class(g) ∧ can(A, access, C) (3b)

g { T v = exp b } =⇒ promote(g, v, [exp b]), if ∀C ∈ call sites(g), can(C, access, B) (3c)

A cannot-throw B

g (p) throws B { S } =⇒ remove([throws B]), if typecheck([g (p) { S }]) (4a)

g (p) throws B { S } =⇒ remove([throws B]), replace([S], [try {S} catch (B b){S′}]), if can(A, declare, B) ∧
S′ = user code()

(4b)

A cannot-derive B

A extends | implements B =⇒ move(A, M), if M = suitable module(A) ∧ can(A, extends | implements, B) (5a)

where Deps denotes the set of dependencies established
by a method or class. This definition ensures that similarity
value ranges over the interval [0, 1]. Using this definition,
function suitable class(f) returns the class C with the
highest value for similarity(f, C).

A similar approach is used by function
suitable module(C) to return a more appropriate
module to host the implementation of a class C.

IV. EXAMPLE

To illustrate the use of our approach, we have
developed a simple web-based e-commerce system,
called MyWebMarket, including functions to manage
customers and products, handle purchase orders, generate
reports, etc. This system has been carefully designed
and implemented to resemble on a smaller scale the
architecture of a real-world human resource management
system, with more than 200 KLOC, which we have
used to evaluate the DCL language [14]. The decision to
mirror the architecture of a previously evaluated system
has allowed us to reuse its DCL constraints. It also
simplified the insertion of architectural violations similar
to those that have been detected in the real system.
The MyWebMarket system provides us with a controlled
environment to illustrate architectural erosion and our
approach to counter it.

Architecture: Figure 2 illustrates MyWebMarket

architecture. The architecture follows the well-known
Model-View-Controller (MVC) pattern and it relies
on several frameworks widely used when architecting
web-based systems (including Hibernate, Struts, JSP,
DWR, Quartz, etc.).

Figure 2. MyWebMarket architecture

Architectural Constraints: The following DCL constraints
have been defined for MyWebMarket:

#1: only DAOFactory can- c r e a t e HibernateDAO
#2: Controller cannot-handle HibernateDAO
#3: Model can-only -throw DAOException
#4: only SystemScheduling can-depend QuartzAPI

These constraints cover the main categories
of architectural violations detected in our past
experience [14]. More specifically, they provide illustrative
examples for the following categories of violations:
improper use of design patterns (constraint #1), improper
use of persistence patterns (constraint #2), bypassing the
MVC layers (constraint #3), and unauthorized use of
frameworks (constraint #4).

Architectural Violations and Recommendations: Table IV
presents the number of violations we have inserted in
the code for each defined DCL constraint. It also shows
the number of triggered recommendations to fix such

violations and the number of violations that remained in
the code after following these recommendations.

Table IV
VIOLATIONS AND RECOMMENDATIONS FOR MyWebMarket

Constraint # Violations # Recs. # Violations
before after

#1 21 21 0
#2 43 15 12
#3 44 44 0
#4 9 9 0

We briefly comment the results presented in Table IV:
• Constraint #1 prescribes the use of a factory. To

violate this constraint, we have deliberately replaced
all uses of the factory by a direct instantiation,
resulting in 21 violations. For each of such violations,
our approach has triggered recommendation 1a, with
the suggestion to use the existing factory. After
following this recommendation, all violations have
been removed.

• Constraint #2 prescribes the use of well-defined
interfaces to persistence purposes. To violate
this constraint, we have deliberately bypassed
the use of such interfaces by coupling directly
with concrete implementations, resulting in 43
violations (21 declarations and 22 accesses).
In 15 declare violations, our approach has triggered
recommendation 2a, with the suggestion to generalize
the type. By following this recommendation,
31 violations have been removed, even access

violations, since the accesses go through the
interfaces. On the other hand, the remaining
violations could not be removed because the
accessed methods were not defined in the interfaces
(i.e., the interface has not evolved to include
signature of new public methods provided by the
concrete implementations).

• Constraint #3 prescribes the encapsulation of
Hibernate exceptions in a specific type to decouple
the Controller layer from the underlying persistence
framework. To violate this constraint, we have
removed the encapsulation of Hibernate exceptions,
resulting in 44 violations. For each violation, our
approach has triggered recommendation 4b, with the
suggestion to remove the throws declaration and to
surround the body of the method with a try-catch
block. After following this recommendation, all
violations have been removed.

• Constraint #4 prescribes the use of a particular
module to handle job scheduling. To violate this
constraint, we have intentionally implemented
a simple schedule operation in a Struts action
whose only responsibility is to handle HTTP
requests and responses, resulting in 9 violations.

For such violations, our approach has triggered
recommendation 3b, suggesting to extract the
statements and move them to a suitable class. The
most adequate class returned by similarity(f, C)
function was one inside the SystemScheduling

module, whose similarity was 0.41. By following
this recommendation, all violations have been
removed.

Threats to Validity: We have illustrated our approach
using a single example, which mirrors the architecture
and respective violations detected in a real-world system.
Therefore, this preliminary illustration presents at least
three threats. First, we cannot claim that our approach will
provide equivalent results in systems following different
architectures. Second, since we have considered a minimal
set of restrictions, we cannot certify that our approach will
provide useful recommendations for the whole spectrum
of architectural constraints. Third, due to the controlled
environment used in our example, we also cannot claim
that our approach is effective in systems already facing
a major architectural erosion process. However, we are
currently working in a new evaluation scenario, including
a large-scale and long-lived software system.

V. RELATED WORK

Recommendation Systems for Software Engineering
(RSSEs) are an emerging research area [22]. For ex-
ample, current RSSEs can recommend relevant source
code fragments to help developers to use frameworks and
APIs (Strathcona [23]), software artifacts that must be
changed together (eRose [24]), and replacement methods
for adapting code to a new library version (SemDiff [25]).
However, we are not aware of recommendation systems
whose precise goal is to help developers in tackling the
architectural erosion process. For example, Tsantalis and
Chatzigeorgiou have proposed a methodology to suggest
Move Method refactoring opportunities [26]. Their general
goal is to tackle coupling and cohesion anomalies mani-
fested in the form of the Feature Envy bad smell. On the
other hand, the refactoring problem we have investigated
in this paper has a broader scope, since we target the
elimination of architecture anomalies.

The relevance and challenges involved in the recon-
struction of software architectures are well-documented
in the literature. For example, Sarkar et al. report their
experience in a two-year project involving the remod-
ularization of a legacy banking application, which has
more than 25 MLOC [6]. Although they have built some
program analysis tools (such as tools to extract function-
call information), they state that the refactoring step of
the remodularization process has been completely manual.
Rama and Patel [27] have analyzed several large software
modularization projects in order to define recurring modu-
larization operations, including module decomposition and
union. However, they do not provide tool support for the
proposed modularization operators.

VI. FURTHER WORK

The preliminary evaluation presented in Section IV
has provided us with encouraging feedback about our
refactoring recommendations. Nevertheless, in order to
provide more robust arguments we are starting to apply the
proposed approach to a real-world system. The analysis of
a large-scale system will help us to improve our approach,
possibly suggesting new recommendations not defined in
this current work. We are also investigating recommenda-
tions to address violations in must constraints and we are
extending dclcheck to incorporate our approach.

ACKNOWLEDGMENT

This research has been supported by grants from
CAPES, CNPq, and FAPEMIG.

REFERENCES

[1] D. E. Perry and A. L. Wolf, “Foundations for the study of
software architecture,” Software Engineering Notes, vol. 17,
no. 4, pp. 40–52, 1992.

[2] J. van Gurp and J. Bosch, “Design erosion: problems and
causes,” Journal of Systems and Software, vol. 61, pp. 105–
119, 2002.

[3] M. Lindvall and D. Muthig, “Bridging the software archi-
tecture gap,” Computer, vol. 41, no. 6, 2008.

[4] X. Dong and M. W. Godfrey, “Identifying architec-
tural change patterns in object-oriented systems,” in 16th
IEEE International Conference on Program Comprehen-
sion (ICPC), 2008, pp. 33–42.

[5] J. Knodel and D. Popescu, “A comparison of static archi-
tecture compliance checking approaches,” in 6th Working
IEEE/IFIP Conference on Software Architecture (WICSA),
2007, p. 12.

[6] S. Sarkar, S. Ramachandran, G. S. Kumar, M. K. Iyengar,
K. Rangarajan, and S. Sivagnanam, “Modularization of
a large-scale business application: A case study,” IEEE
Software, vol. 26, pp. 28–35, 2009.

[7] J. Borchers, “Invited talk: Reengineering from a practi-
tioner’s view – a personal lesson’s learned assessment,” in
15th European Conference on Software Maintenance and
Reengineering (CSMR), 2011, pp. 1–2.

[8] L. Passos, R. Terra, R. Diniz, M. T. Valente, and N. Men-
dona., “Static architecture-conformance checking: An illus-
trative overview,” IEEE Software, vol. 27, no. 5, pp. 82–89,
2010.

[9] S. Ducasse and D. Pollet, “Software architecture recon-
struction: A process-oriented taxonomy,” IEEE Transac-
tions on Software Engineering, vol. 35, no. 4, pp. 573–591,
2009.

[10] L. de Silva and D. Balasubramaniam, “Controlling software
architecture erosion: A survey,” Journal of Systems and
Software, vol. 85, no. 1, pp. 132–151, 2012.

[11] G. Murphy, D. Notkin, and K. Sullivan, “Software reflexion
models: Bridging the gap between source and high-level
models,” in 3rd Symposium on Foundations of Software
Engineering (FSE), 1995, pp. 18–28.

[12] K. Mens, A. Kellens, F. Pluquet, and R. Wuyts, “Co-
evolving code and design with intensional views: A
case study,” Computer Languages, Systems & Structures,
vol. 32, no. 2-3, pp. 140–156, 2006.

[13] D. Hou and H. J. Hoover, “Using SCL to specify and
check design intent in source code,” IEEE Transactions on
Software Engineering, vol. 32, no. 6, pp. 404–423, 2006.

[14] R. Terra and M. T. Valente, “A dependency constraint
language to manage object-oriented software architectures,”
Software: Practice and Experience, vol. 32, no. 12, pp.
1073–1094, 2009.

[15] M. Eichberg, S. Kloppenburg, K. Klose, and M. Mezini,
“Defining and continuous checking of structural program
dependencies,” in 30th International Conference on Soft-
ware Engineering (ICSE), 2008, pp. 391–400.

[16] O. de Moor, “Keynote address: .QL for source code analy-
sis,” in 7th IEEE International Conference on Source Code
Analysis and Manipulation (SCAM), 2007, pp. 3–14.

[17] N. Sangal, E. Jordan, V. Sinha, and D. Jackson, “Using
dependency models to manage complex software architec-
ture,” in 20th Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA),
2005, pp. 167–176.

[18] J. Knodel, D. Muthig, M. Naab, and M. Lindvall, “Static
evaluation of software architectures,” in 10th European
Conference on Software Maintenance and Reengineering
(CSMR), 2006, pp. 279–294.

[19] Semmle Inc., “Semmle’s on-demand analytics of software
assets (ODASA),” http://semmle.com.

[20] M. Fowler, Refactoring: improving the design of existing
code. Addison-Wesley, 1999.

[21] R. Terra and M. T. Valente, “Towards a dependency
constraint language to manage software architectures,” in
Second European Conference on Software Architecture
(ECSA), ser. Lecture Notes in Computer Science, vol. 5292.
Springer, 2008, pp. 256–263.

[22] M. Robillard, R. Walker, and T. Zimmermann, “Recom-
mendation systems for software engineering,” IEEE Soft-
ware, vol. 27, no. 4, pp. 80–86, 2010.

[23] R. Holmes, R. Walker, and G. Murphy, “Approximate struc-
tural context matching: An approach to recommend relevant
examples,” IEEE Transactions on Software Engineering,
vol. 32, no. 12, pp. 952–970, 2006.

[24] T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl,
“Mining version histories to guide software changes,” IEEE
Transactions on Software Engineering, vol. 31, no. 6, pp.
429–445, 2005.

[25] B. Dagenais and M. P. Robillard, “Recommending adaptive
changes for framework evolution,” in 30th International
Conference on Software Engineering (ICSE), 2008, pp.
481–490.

[26] N. Tsantalis and A. Chatzigeorgiou, “Identification of move
method refactoring opportunities,” IEEE Transactions on
Software Engineering, vol. 99, pp. 347–367, 2009.

[27] G. M. Rama and N. Patel, “Software modularization op-
erators,” in 26th International Conference on Software
Maintenance (ICSM), 2010, pp. 1–10.

