
Visualizing Arrays in the Eclipse Java IDE
Bilal Alsallakh, Peter Bodesinsky1, Silvia Miksch, Dorna Nasseri2

Centre of Visual Analytics Science and Technology (CVAST)
Institute of Software Technology and Interactive Systems

Vienna University of Technology
Vienna, Austria

Email: {alsallakh, miksch}@cvast.tuwien.ac.at, {1e0304343, 2e0227552}@student.tuwien.ac.at

Abstract—The Eclipse Java debugger uses an indented list to
view arrays at runtime. This visualization provides limited insight
into the array. Also, it is cumbersome and time-consuming to
search for certain values at an unknown index. We present a new
Eclipse plugin for visualizing large arrays and collections while
debugging Java programs. The plugin provides three views to
visualize the data. These views are designed to support different
tasks more efficiently. A tabular view gives detailed information
about the elements in the array, such as the value of their field
variables. A line chart aims to depict the values of a numerical
field over the array. Lastly, bar charts and histograms show how
the values of a field are distributed. We show how these views
can be used to explore linear data structures and hashes from
the Collections Framework. The plugin features tight integration
with the Eclipse IDE, and is freely available as an open-source
project. Developers’ feedback confirmed the utility of the plugin
to explore large arrays in real-world scenarios.

I. INTRODUCTION

The debugger is one of the most important components of
modern IDEs. It comprises a set of tools that aim to test and
debug programs while they are being executed. One important
feature of the debugger is to watch the values of variables
while stepping through the program. Watching variables when
the execution is suspended is essential for understanding
the current state of the program, and hence localizing bugs.
Eclipse has emerged as one of the most advanced IDEs for
the Java programming language [1]. The debugger offered by
Eclipse Java development tools (JDT) allows the navigation in
the frames of the stack-trace of all suspended threads. At each
frame the developer can watch and modify variables accessible
at this frame, or evaluate valid expressions at this frame. Also,
the developer can advance the execution at the location in the
source-code that corresponds to the selected frame. Eclipse
offers a dedicated view to watch and modify variables, and a
dedicated view to evaluate expressions.

When the value being watched is of type ReferenceType

(i.e. sub-class of Object), Eclipse presents it in an indented
list (Fig. 1). The root of this list represents the value it-
self. Sub-elements of the root represent the values of the
field variables of this object. If a sub-element is of type
ReferenceType it can be further expanded and visualized
in the same manner. Elements of PrimitiveType (such as
int or char) cannot be further expanded, but their values
can be changed in place. Additionally, a textual representation
for the selected element is displayed (using the toString()

method for elements of type ReferenceType).

When the value being visualized is an array, the sub-
elements represent the values in this array. Here also, the
sub-elements can be individually expanded if they are of type
ReferenceType. The indented list provides detailed infor-
mation about an individual element, but it is not suitable for
gaining an overview of the whole array. Moreover, navigation
in the list becomes more difficult when the array is large.
Eclipse copes with this problem by grouping the elements of
a large array into buckets. Each bucket contains up to one
hundred elements. This solution helps when the developer
wants to inspect an element at a known index. However, the
indented list is inefficient when the developer wants to find
certain values at unknown indexes.

Fig. 1: Watching variables in Eclipse. Arrays can be also
explored in the indented list. Array elements are grouped into
buckets. An element must be expanded to explore its content.

In this work we present an alternative method to visualize
arrays and collections in Eclipse. Our method intends to cope
with the above-mentioned limitations by providing a quick
overview of the array elements and their sub-field, and an
efficient mechanism to search for certain values in the array.



Fig. 2: Methods for visualizing data structures while debugging: (a) Memory Graphs [2]. (b) Type Visualizers [3] in Visual
Studio. (c) Debug Visualization Plugin for Eclipse [4]. (d) Linked plots [5] in MATLAB.

II. RELATED WORK

A variety of approaches and tools have been devised to
visualize data structures and memory state for debugging
purposes. Zimmermann and Zeller [2] presented a method for
visualizing memory graphs (Fig. 2-a). Their method enables
querying the graphs and comparing memory states. Korn and
Appel [6] proposed a traversal-based approach for visualiz-
ing data structures. Their method enables user-defined visual
mappings to be used to produce abstract displays of the data
and find specific patterns. Methods to visualize data structure
have also been developed for popular IDEs. Type Visualizers
[3] are a general mechanism for data structure visualization
in Visual Studio. It allows the developer to write custom
classes to specify how to display a certain data type. Fig. 2-
(b) shows a visualization of the key-value pairs of a hashmap.
The Debug Visualization Plugin for Eclipse [4] applies graph-
based techniques to display and navigate in data structures.
It uses directed graphs to display Java objects as nodes and
relations between them as edges (fig. 2-c). Variables can be
added to the graph from the ”Variables” view in Eclipse. Array
variables are also displayed as a directed graph. The root node
represents the array itself, and the child nodes represent the
array elements. Due to the linear arrangement of elements in

an array, a graph-based representation might not be suitable
for gaining insight into large arrays. In MATLAB, variables
can be visualized in linked plots while debugging programs
[5]. Fig. 2-(d) shows a linked plot of a one-dimensional
matrix. The Vcc program animation tool [7] has a dedicated
view for visualizing numerical arrays as bar charts or line
charts. Kranzlmüller et al. ([8], [9]) proposed a method for
visualizing multi-dimensional numerical arrays for debugging
parallel programs. The above presented methods and tools
either do not focus on arrays or are restricted to numerical
arrays. We address these limitations by providing a method
for visualizing generic arrays in the Eclipse Java IDE.

III. ARRAY VISUALIZATION

Our approach visualizes arrays in a dedicated Eclipse view.
A list in the left panel of this view shows the variables or the
expressions of array type that are selected for visualization. If
the array is of type ReferenceType, its node can be expanded
to explore the fields of this type. When a list item is double-
clicked, a visualization of the corresponding array is added
to the right panel. The user can select between three types
of visualizations, depending on the information she needs: a
tabular listing, a line chart, or a bar chart (or histogram). The
next sub-sections present these visualizations in details.



A. Tabular Listing

This view provides a textual listing of array elements in a
table (Fig. 3). When the array is of type ReferenceType,
the table columns represent the fields of this type. A column
can be further expanded if the field it represents is of type
ReferenceType. This substitutes it with a group of columns
that represent the fields of this type.

Fig. 3: Tabular view of an array.

Compared with the built-in view for exploring arrays in
Eclipse (Fig. 1) the tabular view provides a more natural
way for visualizing generic arrays. It shows more details
about the array at once, and is more space-efficient. Also,
it makes it easier to compare values at arbitrary depth (i.e.
inner object) from different elements. Additionally, it offers
richer interactivity that enables more insight into the array.
For example, by sorting the table by a column, or by filtering
it, searching for specific field values at an unknown index
becomes easier. Also, using the instant search functionality,
values that contain a specific text can be quickly highlighted.
Color can also be used to highlight certain values such as
null.

However, the tabular view can only show information from
the compile-time type of the array. Information from the actual
runtime type of an individual element needs to be inspected in
the Eclipse popup dedicated for this purpose. This popup can
be opened by right-clicking the element. Color can be used to
reveal the different runtime types of the elements.

B. Line Charts

The values of a numerical array or of a numerical field in
an array can be plotted in a two-dimensional line chart (Fig 4).
The x-axis represents the index of the array element, while the
y-axis represents its value. The line chart offers an alternative
to the text-based visualization used by the tabular view. It
provides a compact overview of how the values vary along
the array. Also, the developer can identify where the high and
low values are concentrated. More importantly, line charts of
different arrays can be compared by plotting them below each
other. An array element or the sub-field value being visualized
can take the null value. This is represented by a discontinuity
in the line chart.

When the values are not numeric, the y-axis cannot be used
to show different values. Hence, line charts are not suitable to
show useful information about non-numeric arrays.

Fig. 4: Line chart of the values of a numerical field.

C. Histograms and Bar Charts

For a numerical array or a numerical field in an array, a
histogram can be plotted to show the distribution of the values
in the array (Fig. 5-a). It helps in quickly finding the maximum
and minimum of these values. For a non-numerical array, a bar
chart of all unique values can be plotted to show the frequency
of each value in the array (Fig. 5-b).

Fig. 5: Frequency-based visualizations: (a) a histogram of a
numerical array and (b) a bar chart of a reference array.

Both histograms and bar charts have the advantage of being
familiar visualizations. They allow to quickly find the most
frequent elements in the array. Moreover, frequency-based
visualizations have the advantage of higher scalability for
numerical arrays: the number of bins is highly independent of
the number of elements. Likewise, large non-numerical arrays
can be visualized effectively when the number of distinct
values is reasonably small.

IV. IMPLEMENTATION DETAILS

We implemented our methods as a plugin for Eclipse.
The plugin provides an Eclipse view named ”Arrays”.
It also extends Eclipse menus that deal with watching
variables and expressions with a menu item for visu-
alizing arrays. This item is enabled when the selected
variable or expression evaluates to a Value of type



ArrayReference. The context menu of the Java edi-
tor was extended by defining a viewerContribution

for traget#CompilationUnitEditorContext. The con-
text menus in the ”Variables” and ”Expressions” views where
extended by defining an objectContribution for items of
the following classes:
- org.eclipse.debug.core.model.IWatchExpression
- org.eclipse.jdt.debug.core.IJavaVariable
- com.sun.jdi.ObjectReference
When the menu item is clicked, the ”Arrays” view is ac-
tivated. The corresponding variable or expression is added
to the item list and is evaluated to array values using API
of Java Debug Interface (JDI) and Eclipse JDT. The values
are visualized in a new part in the visualization area. To
refresh the views upon stepping, we extend the command
org.eclipse.debug.ui.commands.Resume provided by
Eclipse, with a contribution. In this contribution, the expres-
sions of the open array views are re-evaluated and the views
are updated. The user can choose to disable the automatic
updating of some arrays.

V. DISCUSSION

We performed an informal evaluation of our tool with
practitioners that have been using Eclipse to develop Java
applications for several years. No tasks were required to be
solved. We were mainly interested in finding out how intuitive
the proposed views are, and whether developers can make
use of them in real-world scenarios. The visualizations were
perceived as intuitive and familiar. The tabular listing was
found the most useful for many practical scenarios. This is
probably due to the fact that it views the values of all array
fields for all items in a simple and familiar way. The limitation
of showing only the fields of the declared array type was
considered as a major shortcoming. This happens when the
declared type is an interface or a generic abstract class that
does not contain the fields needed for debugging.

The utility of histograms and bar charts was appreciated
by some developers. They found it a useful means of getting
an impression of what different values a specific field takes
in the whole array. They mentioned scenarios in which this
can help them find errors. Though line charts of numerical
arrays were perceived as intuitive, however, most developers
preferred the tabular listing over it. Also, line charts do not
scale for large arrays (with tens of thousands of element).
One developer who works with object management and O/R
mapping mentioned that the tool can make his debugging
tasks easier. Another developer who works with scientific
computing and computer graphics appreciated the utility of the
tool in quicking debugging his algorithms. Finally, it is worth
mentioning that the plugin imposes no noticeable performance
overhead on the Eclipse Java debugger.

Applicability to Collections

The above-mentioned visualizations are not limited to
arrays. They can be as well used to explore a generic
Collection (such as List and Set). In this case the fields

are inferred from the type parameter <T> of these generic
data structures. Likewise, a Map can be treated as a collection
whose items are the <key , value> pairs. The tabular view of
these pairs is by far more convenient than the built-in indented
list which can only show the underlying data structure of the
map (a sparse array in the case of HashMap).

VI. CONCLUSION

We presented a novel open-source Eclipse plugin for vi-
sualizing arrays while debugging Java programs at runtime.
The plugin offers a tabular listing of the array showing the
values of the fields of its declared type. Columns can further
be expanded if they have sub-fields. Also, a line chart or a
histogram (or bar chart) can be created for a specific field.
Compared with the built-in array explorer in Eclipse, our
plugin provides richer interaction and more insights. It helps
in finding desired values at unknown indexes. It also helps in
understanding the distribution of the values of a field in the
array. Both tasks are cumbersome in the built-in explorer. The
proposed views can also be used to explore other linear data
structures and hashes from the Java Collections Framework.

Future work will address the limitation of using declared
types for determining the table columns. One solution would
be to use the most specific type shared among all objects in
the array. Another solution is to use getter-methods or methods
specified by the user as computed columns. Also, more work is
needed for revealing changes and comparing different arrays.
Furthermore, we aim to design more suitable visualizations
for specific data structures such as trees and graphs. Finally,
more evaluation of user experience need to be collected.

Acknowledgement The authors would like to thank the developers
from AMOS Austria GmbH who contributed their time for evaluating
the work. This work was supported by CVAST Centre for Visual
Analytics Science and Technology (funded by the Austrian Federal
Ministry of Economy, Family and Youth in the Laura Bassi Centres
of Excellence initiative #822746).

REFERENCES

[1] G. Goth, “Beware the march of this IDE: Eclipse is overshadowing other
tool technologies,” Software, IEEE, vol. 22, no. 4, pp. 108 – 111, 2005.

[2] T. Zimmermann and A. Zeller, “Visualizing memory graphs,” in Revised
lectures on Software Visualization. Springer-Verlag, 2001, pp. 191–204.

[3] L. J. H. Anson Horton, Michael Montwil, “Visualizer system and
methods for debug environment,” February 2010. [Online]. Available:
http://www.freepatentsonline.com/7657873.html

[4] “Debug Visualization Plugin,” http://code.google.com/p/debugvisualisation/,
accessed in January 2012.

[5] MATLAB Documentation, “Making graphs responsive with data link-
ing,” http://blogs.mathworks.com/desktop/2008/12/15/visual-debugging-
with-linked-plots/, accessed in January 2012.

[6] J. Korn and A. W. Appel, “Traversal-based visualization of data struc-
tures,” in IEEE Symposium on Information Visualization, 1998, pp. 11–18.

[7] R. A. Baeza-yates, G. Quezada, and G. Valmadre, “Visual debugging and
automatic animation of C programs,” in Software Visualization, 1996,
vol. 7, pp. 46–58.

[8] D. Kranzlmüller and J. Volkert, “Why debugging parallel programs needs
visualization,” in Proceedings of the IEEE VL2000 Workshop on Visual
Methods for Parallel and Distributed Programming. IEEE, 2000.

[9] D. Kranzlmüller and A. Rimnac, “Parallel program debugging with MAD:
a practical approach,” in Proceedings of the 2003 international conference
on Computational science, ser. ICCS’03. Berlin, Heidelberg: Springer-
Verlag, 2003, pp. 201–210.


