Visual Tracing for the Eclipse Java Debugger

Bilal Alsallakh, Peter Bodesinskyl, Alexander Gruber?, Silvia Miksch
Centre of Visual Analytics Science and Technology (CVAST)
Institute of Software Technology and Interactive Systems
Vienna University of Technology

Vienna, Austria
Email: {alsallakh, miksch} @cvast.tuwien.ac.at, {1€0304343, 2¢0625633} @student.tuwien.ac.at

Abstract—In contrast to stepping, tracing is a debugging
technique that does not suspend the execution. This technique
is more suitable for debugging programs whose correctness is
compromised by the suspension of execution. In this work we
present a tool for visually tracing Java programs in Eclipse.
Tracepoint hits are collected on a per-instance basis. This enables
finding out which tracepoints were hit for which objects at which
time. The interactive visualization provides detailed information
about the hits such as thread, stack trace, and assigned values.
We implemented the tool as an Eclipse plugin that integrates
with other features of Eclipse Java debugger. In an informal
evaluation, developers appreciated the utility of our method as
a solution in the middle between full tracing and stop-and-go
debugging. They suggested scenarios in which our tool can help
them in debugging and understanding their programs.

I. INTRODUCTION

Eclipse has emerged as a mainstream IDE for the Java
programming language. The Eclipse Java debugger allows the
developer to perform program animation (also referred to as
stepping) by setting several types of breakpoints. Breakpoints
enable pausing the execution when a specific location in the
code is reached, when a specific condition is met, or when
a specific variable is being accessed. In some applications,
it is not feasible for the debugger to interrupt the program’s
execution long enough for the developer to learn anything
helpful about its behavior [1]. If the program’s correctness
depends on its real-time behavior, delays introduced by the
debugger might cause the program to change its behavior, or
perhaps fail, even when the code itself is correct. Examples of
that arise when debugging application interfaces that involve
user interaction. When a breakpoint defined in a method or on
a variable that is involved in painting is hit, the program stops
to respond to user interaction. Moreover, once the execution
is resumed, the GUI needs to be repainted, which causes the
breakpoint to be hit again. If the first hit does not reveal the
bug, it would be difficult for the developer to reach the state
that would reveal it.

Two features of the Eclipse debugger can be used to avoid
unwanted suspension of execution. One feature is to add
conditions to breakpoints. Another feature is to set the hit
count for a breakpoint: the breakpoint will stop the execution
only if it has been (silently) hit a specific number of times. To
choose the appropriate hit count or condition, the developer
should have considerable knowledge about the logic behind
the source-code being debugged.

Another way to avoid unwanted suspension is to avoid using
breakpoints at first. Instead, the developer can manually insert
code snippets at the desired locations in the source code.
These snippets print out the values that need to be checked
to the console. After the code is executed, the developer can
check the console to spot unexpected values. This mimics a
debugging aid offered by some debuggers called tracepoints.
In this work we propose a visual method for tracing Java
programs in Eclipse. Our method fills a place in the middle
between traditional stop-and-go debugging and full tracing.

II. RELATED WORK

The use of tracing as debugging aid dates back to the
1970s with several debuggers offering the possibility to add
tracepoints in programs [2]. When a tracepoint is hit during
execution, information about the current program state as well
as the values of user-defined expressions are printed out. Fig.
1 shows traces generated by GNU Debugger [1]. Table I
lists keywords that can be used to specify the information in
these traces. Tracepoints are useful in performing post-mortem
debugging, i.e. debugging a program after it has already
crashed. However, the textual output makes it cumbersome
to relate the traces especially with multiple tracepoints.

trap.

stem32\msvcrt.dll

(gdb) i
-1**- #gnd-polyworld.exe*

Bot L5772 (Debugger:run [

Fig. 1. A trace in GNU Debugger [1]. Each line shows available information
about a tracepoint hit (such as source location and parameter values).

Keyword Evaluates to
$ADDRESS The address of the instruction
$CALLER The name of the function that called this function
$CALLSTACK The state of the call stack
$FUNCTION The name of the current function
$PID The ID of the process
$PNAME The name of the process
$TID The ID of the thread
$TNAME The name of the thread

TABLE I
TRACEPOINT KEYWORDS IN GNU DEBUGGER [3].

T Object Diagram 3 . 36 ¢ | @4 04 b0 b | & & [¥ = O](0 sequence Disgram 5
=0

[&&[e=D

[3ava Apphication] CilPragram Flesiiavahjdki ion] C:\Program Fit

{3ul 2, 2007 6:17:06 PIM)

[© obrec
[

Savalidkd 6.0
sarkt | [& checkingaccount:1 | | & savingsaccouncia | =]

main:1

<o [3ava Applcat o
:| ‘ & main Gd = 1) [Sdentn | [%5
@ client| [checkingccount | | @ Savingséccount

o Trace Viewer &

® Patterns

0 -

Time:
Controls;

poisson 2

Fig. 2. Visualizing execution traces: (a, b) object and sequence diagrams in the JIVE plugin for Eclipse [4], (c) Code Canvas [5]: the arrows represent the
call sequences, (d) linking a circular view of relations with a view of massive sequences [6], (e) the event graph of MPI communication traces [7].

Several approaches have been proposed for visualizing exe-
cution traces. JIVE [4] is an environment for visual debugging
of Java programs. The current state of execution is depicted
through an enhanced object diagram (Fig. 2a). The history of
execution is depicted by a sequence diagram (Fig. 2b). These
diagrams can be used to formulate queries over the program
execution history and the runtime states. This constitutes
a declarative approach to debugging. The JIVE plugin for
Eclipse offers tight integration with other functionalities of
the Eclipse IDE. However, JIVE might not be applicable
for debugging large programs, both due to the overhead of
collecting the runtime information, and due to visual limits.

Code Canvas [5] is a zoomable surface for software devel-
opment in Visual Studio. A canvas houses editable forms of
project documents. It also allows multiple layers of visualiza-
tion over those documents. One layer can be used to visualize
the stack trace at the runtime by means of arrows (Fig. 2c). It
offers no view that shows trace information over time.

Cornelissen et al. [6] proposed linked views to visualize
execution traces (Fig. 2d). A circular view shows which com-
ponents of the program call each other. A massive sequence
shows single calls in details. While this approach is highly
scalable, it does not show variable values. It is more suited
for program understanding than for data-driven debugging.

Klausecker et al. [7] proposed a method for handling large
event traces using the Trace Viewer plugin of g-Eclipse (Fig.
2e). They used a pattern matching technique to simplify the
debugging of large message passing parallel programs.

The method presented in this work uses simple and effi-
cient metaphors for defining tracepoint and visualizing trace
information to aid debugging Java programs in Eclipse.

III. FROM BREAKPOINTS TO TRACEPOINTS

The Eclipse Java debugger is built upon the API of Java
Debug Interface (JDI), which is part of the Java Development
Toolkit. This API enables adding requests to monitor JVM
events such as BreakpointEvent. When an event occurs,
the debugger gets a notification and the thread in which this
event took place can be obtained. For each frame in the stack
trace of this thread the following information can be obtained:

e The source Java file in which the execution at this frame

has taken place (or null if the source is not available).

e The method and line number (if available).

o The this object or null if the method is static.

The Eclipse debugger uses this information when a breakpoint
is hit. It shows the stack trace for the suspended thread in the
“"Debug” view. For the selected frame in this trace, Eclipse
highlights the corresponding line number in its source file,
and displays the this variable in the “Variables” view.

To make a breakpoint behave like a tracepoint, our plu-
gin disables it. This causes Eclipse debugger to ignore the
BreakpointEvents, but allows the plugin to track the above
information. Also, a timestamp for each such silent hit is
recorded. This is computed as the number of elapsed mil-
liseconds since the program was started. In an object-oriented
context, it is meaningful to divide the silent hits into groups
according to the object they belong to. For line breakpoints and
method breakpoints, the object is the this instance on which
the corresponding method is executed. For watchpoints, the
object is the instance to which the field variable being watched
belongs. We call the hits in each group, the breakpoint history
for the respective instance. For a breakpoint in a static method
or on a static field, only one history is tracked.

Foojava i3 = O | |09= Variables | %o Breakpoints) Traces 2 Arrays =0
A P 0
Targets: | Foo at localhost: 54240
2 armess |hons oo e [¥] Scale by time Color by: | Calling method v| Frame: ©— Instant search: Zoom: D
3 public class Foo { test.Foo (line 18)
q id=17
5 void tess() 1 fd y Foo [line: 18] - £20 - id=16
Id=
143 491
6 £10): test.Foo (line13)
’ £210); id=17 i ; | Pl o
8 : id=16 | f2at 446 ms 1o L |
¢ testFoo (ine 24) THTT O INILILITILILL s
10 wvoid £1() { i 4 bbb pi b b
. . . . LB B R L L RN LR LS

11 for (int i = -10; i <« 10; i++) {

12 20 Foo [line: 13] - f10 - id=16
013 System.ovut.println ("tracepoint 1");

1z 444 489
g:: void £20) 1 Foo [line: 18] - f20) - id=17
f218 System.out.println("tracepoint 2"):

g Color legend: e
- ! 492 533
2c Foo.fl()

21 public static void main(String[] args) { @ Foo.i20 Foo [line: 13] - f1() - id=17

22 new Foo().test():

23 new Foo().test(): # Foo.test() B e e]
1024 System.out.println ("static tracepnt”); # Foo.main() 433 531
o c Srsram s meineln (Mendn)

©® Toggle Breakpoint = =

%5 Debug 52 N = | 3 ¥ = O[5 outline 3 BRYexw~ =0

Disable Breakpoint

51 Foo [Java Application] B test
B Trock test.Foo at localhost:54240 @, Foo
Go to Annotation Cirl+1 «® Thread [main] (Suspended (breakpoint at line 24 in Foc)) & test(): void
= Foo.main(String[]) line: 24 a f10:void
Add Bookmark... i C:\Program Files (x36)\Java\jre6\bin'\javaw.exe (15.12.2011 20:53:07) a f20:void
Add Task... el main(String[]) : void
Fig. 3. The “Traces” view of our Eclipse plugin. Four traces resulting from the listing to the left are visualized. Scaling by time is activated to reveal the

temporal relationship between the histories. A dot representing a hit is clicked and the corresponding location in the code is highlighted in light blue.

IV. TRACE VISUALIZATION

A breakpoint history is basically visualized as a line chart.
The dots on the horizontal line represent the single hits in
this history. The hits are ordered in their chronological order.
Optionally, the stack trace for each hit can be visualized on a
vertical dashed line. The frames of this trace are represented
by dots on this line in their stack order from top to bottom
(Fig. 3). The user can select the maximum stack depth to be
visualized. A similar metaphor is used in Saturn and Shark
profilers for Mac OS X. The dots in the histories can be placed
at a fixed interval or at locations scaled by their timestamps.
The former case is simpler and reduces overlapping in case of
a highly uneven distribution of dots over time. The latter case
is useful for understanding this distribution or for comparing
multiple histories over time. Horizontal zooming and panning
help in focusing on a specific time range. By hovering the
mouse over a dot more details about the hit it represents are
shown in a tooltip, such as the timestamp and method name.
When a dot is double-clicked, the corresponding line-of-code
is highlighted in its source file in the Java editor. The dots can
be colored by the calling methods at a given stack depth (Fig.
3) or by the calling threads (Fig. 4).

Fig. 3 shows the implemented “Traces” view in Eclipse. The
tracing-enabled breakpoints are shown in the left panel in this
view. Under each breakpoint, instances of its class that have
recorded histories are listed. These instances can be inspected
on the fly in the Eclipse variable inspection popup. In case
of a line breakpoint in a static method or a watchpoint on a
static field, the list entry represents its unique history. When a
history is double clicked, its visualization is added to the right
panel. The visualization is updated upon a new hit.

V. VARIABLE HISTORY

Tracing can also be enabled for a watchpoint on a field
(also referred to as a data breakpoint). In this case, the history
associated with a specific instance records the values assigned
to the field’s variable in this instance. The user can decide to
show all hits or only hits that represent write accesses. In the
former case, different visual representations for read hits and
write hits are used. We distinguish between two cases for the
visualization depending on the field type:

1) Numerical Primitive Types: Except for boolean and
char, the values in the history of a primitives type can be
naturally visualized in a 2-dimensional step chart. The x-
axis represents the time or the order of the hits. The y-
axis represents the numerical value. In Fig. 4-(c) the dots
representing numerical values are colored by the threads which
assigned them. One can notice the race condition caused by
an unsynchronized critical area.

2) Reference Types / char: Reference types are subclasses
of Object. Values of this type are visualized as dots on a
line chart. Additional functionalities help in analyzing these
values. Hovering a dot will show a tooltip of the textual
(tostring ()) representation of its value. An instant search
highlights dots whose textual representations contain a specific
text (Fig. 4-b). Other values are blended. This helps in deter-
mining if specific values were assigned to the watched field
variable. Right-clicking on a dot opens the Eclipse variable
inspection popup to show its value in details. To determine the
runtime types of the values, the dots can be colored according
to the different types. By default, null values in the history
are visualized as gray dots (Fig. 4-b). This helps in quickly
finding potential sources of errors caused by null values.

[J] *Foojava &3
3public class Foo { -

4
2 5 String str; (a)
v int i;
9 public veid test() {
10 for (int thd = 0; thd <= 2; thd++) {
11 final int thInd = thd;
new Thread(new Runnable() {
public void run() {
for (i = 0; i < 10; i++) {
if (thInd == 2)
str = null;
else
str = ("str" + i) + thInd;

}

}
}).start();
}
}

SR

5 public static void main(String[] args) {
new Foo().test(); L

2
2
2
2
2
26

Instant Search: 60

[Scale by time [~] Show read-accesses Color by: [None - Zoom: D

Foo.str (id=12) =

—o o oo

sti60 at 412ms

[] Scale by time [] Show read-accesses Color by: |Calling thread | | Instant Search: Zoom: D
Foo.i (id=12) ®
B (c)
Nl TJ 1
1 30
« Thread 1 « Thread 2 « Thread 3

Fig. 4. Variable histories: (a) a sample Java program, (b) the history of a variable of reference type. Gray dots represent null values. An instant search is
applied and the search result is highlighted in red, (c) the history of a numerical variable. Dots are colored by the thread which assigned their values.

VI. DISCUSSION

We performed an informal evaluation of our tool with
ten practitioners that have been using Eclipse for several
years. We used small Java programs that intend to illustrate
the visualization and interaction metaphors. No tasks were
required to be solved. We were mainly interested in finding
out how intuitive and familiar our method for visual tracing is.
The developers found the metaphors intuitive and easy to inter-
pret. The ability to define tracepoints out of existing Eclipse
breakpoints made it easy to understand the tracing process.
For the visualization of the history of a reference variable,
one developer preferred the use of a tabular view instead of a
line chart. Another request was to use hierarchical abstraction
instead of the matrix-like visualization for stack traces. When
asked if the visualizations can help them solving real-world
problems, two developers mentioned scenarios related to GUI
debugging. Another developer mentioned understanding the
runtime behavior of algorithms. Debugging multi-threaded
applications was also mentioned as an application scenario.

The presented method is designed to visualize relatively
short traces (with number of hits < 100), and a few number
of traces (< 7) simultaneously. This is sufficient for many
debugging tasks that arise in practice, even in large programs.
Spatial subsampling [6] and dot aggregation techniques, as
well as nonlinear transformation of the time axis [8] need to
be investigated to handle a large number of hits. The current
implementation registers its own EventRequest in the JVM.
This might cause deadlocks in multi-threaded programs. This
can be avoided by intercepting the listeners already registered
by Eclipse debugger (this might require a change in Eclipse).

VII. CONCLUSION

We have presented a novel tool for tracing Java programs
in Eclipse. Our tool enables altering conventional Eclipse
breakpoints to tracepoints and collecting runtime information
from them. The hits for each breakpoint are collected on a
per-instance basis which is well-suited for an object-oriented
language. Using interactive visualization, these hits can be

explored and related to the corresponding location in the
source-code. The visualization helps also in examining time
and thread information, as well as values and types for data
breakpoints. Compared with existing Eclipse plugins for visual
debugging, our plugin offers a simpler and more familiar
process for defining and visualizing the data to be traced.
Informal evaluation showed that the per-instance histories and
the metaphor of line charts are easy to understand. Some
developers suggested scenarios in which visual tracing can
help them in debugging and understanding their programs.
Future work should focus on better integration with Eclipse
to acquire the data without registering additional listeners in
the JVM. Also, it should address scalability issues as well
as features requested by the test subjects. Additionally, more
formal evaluation needs to be performed. We are currently
preparing programs that contain deliberate bugs. The develop-
ers will be asked to find the bugs with and without our tool.

Acknowledgement This work was supported by CVAST Centre for
Visual Analytics Science and Technology (initiative #822746).

REFERENCES

R. M. Stallman, R. Pesch, and S. Shebs, Debugging with GDB - The
GNU Source-Level Debugger. GNU Press, Mar. 2002.

G. M. Bull, “Dynamic debugging in BASIC,” Comput. J., vol. 15, no. 1,
pp. 21-24, 1972.

S. Akhter and J. Roberts, “Multi-threaded debugging techniques,” in
Multi-Core Programming. Intel Press, 2006, pp. 215-236.

J. K. Czyz and B. Jayaraman, “Declarative and visual debugging in
eclipse,” in Proceedings of the 2007 OOPSLA workshop on eclipse
technology eXchange. New York, NY, USA: ACM, 2007, pp. 31-35.
R. DeLine and K. Rowan, “Code Canvas: Zooming towards better devel-
opment environments,” in Proc. of the 32nd International Conference on
Software Engineering, vol. 2, 2010, pp. 207-210.

B. Cornelissen, A. Zaidman, D. Holten, L. Moonen, A. van Deursen, and
J. J. van Wijk, “Execution trace analysis through massive sequence and
circular bundle views,” J. Syst. Softw., vol. 81, pp. 2252-2268, 2008.

D. K. Thomas Kockerbauer, Christof Klausecker, “Scalable parallel
debugging with g-Eclipse,” in Tools for High Performance Computing
2009: Proceedings of the 3rd International Workshop on Parallel Tools
for High Performance Computing. Springer, 2009, pp. 215-236.

J. Triimper, J. Bohnet, and J. Doéllner, “Understanding complex multi-
threaded software systems by using trace visualization,” in Proc. of the
international symposium on software visualization, 2010, pp. 133-142.

(1]
(2]
(3]
(4]

[5]

(6]

(71

(8]

