
Extracting and Analyzing the Implemented Security
Architecture of Business Applications

Bernhard J. Berger, Karsten Sohr and Rainer Koschke
Center for Computing Technologies (TZI), Universität Bremen

Bremen, Germany
{berber|sohr|koschke}@tzi.de

Abstract—Security is getting more and more important for
the software development process as the advent of more complex,
connected and extensible software entails new risks. In particular,
multi-tier business applications, e.g., based on the Service-
Oriented Architecture (SOA), are vulnerable to new attacks,
which may endanger the business processes of an organization.
These applications consist often of legacy code, which is now
exported via Web Services, although it has originally been
developed for internal use only. The last years showed great
progress in the area of static code analysis for the detection
of common low-level security bugs, such as buffer overflows
and cross-site scripting vulnerabilities. However, there is still a
lack of tools that allow an analyst to assess the implemented
security architecture of an application. In this paper, we propose
a technique that automatically extracts the implemented security
architecture of Java-based business applications from the source
code. In addition, we carry out threat modeling on this extracted
architecture to detect security flaws. We evaluate and discuss our
approach with the help of two commercial real-world case studies,
one taken from the e-government domain and the other one from
logistics.

Index Terms—reverse engineering; software security; static
analysis; threat modeling

I. INTRODUCTION

Software security plays more and more an important role.
Specifically, the increasing connectivity of IT systems is lead-
ing to higher risks. Many formerly local legacy applications
are now exported via new technologies, such as the Service-
Oriented Architecture (SOA). The security research commu-
nity and later industry has addressed these new challenges in
several ways, most notably, by employing static code analysis
[1], [2], [3], [4], [5], [6]. Static code analyzers, such as Fortify
SCA [7] or Coverity Prevent [8], help an analyst to detect
common low-level security bugs like buffer overflows, cross-
site scripting and SQL injection vulnerabilities. Recent work
has applied static code analyzers also to mobile applications
[9]. Although code analyzers are effective in finding these low-
level bugs, they cannot detect architectural security flaws, e.g.,
illogical role-based access control [10].

Conversely, there are several approaches attempting to (for-
mally) specify and validate an application’s security architec-
ture, e.g., model-driven security [11] or UMLsec [12]. Specifi-
cally, if the architecture is formalized with modeling languages
such as the Unified Modeling Language (UML), model-driven
development can be employed to automatically generate high-
quality code [11]. However, even if this approach is widely

used in practice, there are still lots of legacy systems that do
not use the model-driven approach. In addition, the generated
code might be modified in an ad hoc fashion due to press-
ing customer requirements. Consequently, it is still unclear
whether the software architecture is in sync with the imple-
mentation. Also, threat modeling as introduced by Microsoft
[13] does not consider the implemented architecture, although
it is an important step of a Secure Software Development Life-
cycle [1]. It still remains unclear whether the implementation
reflects the specified and approved architecture.

To overcome the aforementioned shortcomings, we propose
to use techniques and tools from reverse engineering to extract
the implemented security architecture from the source code of
Java-based business applications. For this purpose, we employ
the Soot tool [14], a widely-used static analysis framework for
Java, as well as Bauhaus [15], a reverse engineering tool-suite.
Our approach decomposes a multi-tier business application
(e.g. consisting of client, web, application and data tiers) into
single components and identifies information flows between
these different components. Proceeding this way, we obtain a
high-level overview of the implemented software architecture
of enterprise applications. The extracted architecture can be
used as input to a threat-modeling process to identify security
flaws [13]. Furthermore, we enrich the extracted architecture
with information about actually implemented security mea-
sures and check for architectural security vulnerabilities.

If a documentation of the architecture is already available,
we can additionally employ the reflexion analysis [16], [17].
The reflexion analysis automatically checks the implemented
against the specified architecture and reports on divergences
between both architectures. Specifically, if threat modeling has
already been conducted on the modeled architecture, we need
to consider only the differences between the implementation
and the specified architecture.

We evaluate our approach with the help of two real-world
case studies, namely, an e-government application and a lo-
gistics application.

In summary, our contributions are as follows:
1) automated extraction of the security architecture from

the source code by employing static code analysis as
well as reverse engineering,

2) automated analysis of the extracted security architecture
with respect to architectural vulnerabilities using threat
modeling,

3) consideration of architectural security weaknesses as, for
example, listed in the Common Weakness Enumeration
(CWE) [18] as well as mitigations for common archi-
tectural threats,

4) a visualization plugin for Eclipse to inspect the results
of the automatic reengineering process and to refine the
generated models,

5) evaluation of our approach with two real-world case
studies.

To the best of our knowledge, this is one of the first works
combining well-established software-security practices such as
threat modeling with reverse engineering techniques.

The remainder of this paper is organized as follows: Sec-
tion II briefly describes the background of our work, whereas
Section III gives an overview of our approach of extracting the
implemented security architecture from code. The evaluation
of our approach is described in Section IV, followed by a dis-
cussion of limitations and further prospects. After discussing
related work in Section VI, we conclude our paper.

II. BACKGROUND

Our work builds on techniques of static code analysis and
threat modeling, which are described subsequently.

A. Static Code Analysis

In our approach, we employ static code analysis to ex-
tract an implemented software security architecture of exist-
ing systems. In particular, we use Soot [14] to analyze Java
bytecode and extract an abstract and framework-independent
security architecture that can be visualized with the Bauhaus
tool suite [15]. We now briefly discuss both tools.

1) The Soot Tool: Soot is a widely-used static analysis
framework for Java bytecode that was developed at McGill
University. It supports a large set of standard analyses, such
as call-graph generation, points-to analyses and reflection han-
dling, that are necessary to solve sophisticated analysis prob-
lems statically. Soot uses a typed 3-address intermediate rep-
resentation that can be transformed into a single static assign-
ment (SSA) form, a well-known representation from compiler
construction to conduct dataflow analysis.

The Soot framework integrates different points-to analyses
to support different degrees of accuracy during the call-graph
construction and later analysis. In particular, Soot implements
context-sensitive and context-insensitive analyses to allow the
user to balance between the accuracy of the results and the
runtime and memory footprint.

2) The Bauhaus Tool-Suite: The Bauhaus tool-suite is a
mature reverse-engineering platform that focused very early
on the topic of reverse-engineering software architectures. Be-
yond its visualization capabilities, it is able to check an exist-
ing architecture for conformance with a defined one to identify
the differences between them. For this purpose, it implements
the reflexion analysis [16], [17].

B. Threat Modeling

Threat Modeling was introduced by Microsoft as a pro-
cess of reviewing the security of an application’s architec-
ture in order to detect security design flaws [19], [13]. A
strategy to conduct threat modeling methodically from the
attacker’s point of view is STRIDE, which is also presented in
the aforementioned publications. During the STRIDE process,
the system is first decomposed into different processes, entities
and dataflows. This step can be documented with dataflow
diagrams (DFDs). Afterwards, a security expert writes down
existing threats and assigns them to the different STRIDE
categories, which are explained below in more detail. Finally,
the planned mitigations are written down and assigned to the
threats they address.

1) Dataflow Diagrams: Within the frameworks of threat
modeling, the system architecture is described graphically by
means of DFDs. DFDs support five different types of mod-
eling elements, namely, processes, data stores, connections,
trust boundaries as well as interactors [13]. Figure 1 gives
an example of a DFD. Circles represent processes, which are
running programs; arrows stand for dataflows (e.g., network
connections, API calls, or remote procedure calls). Examples
of data stores are database tables or files (represented as paral-
lel lines). External entities, which are not subject to a security
analysis, such as users or external systems, are depicted as
rectangles, whereas dashed lines denote trust boundaries. A
trust boundary divides a system into parts of different trust
levels which implies that certain measures have to be under-
taken to guarantee the security of the system.

Swiderski and Snyder mention the possibility to decompose
systems hierarchically and to use different diagrams to show
different levels of decomposition. To express the membership
of nodes, each top-level node has a unique number and all
nodes that are contained by that node start with the same
number, followed by a dot and a unique child number.

Figure 1 shows a dataflow diagram for a typical Java-based
enterprise system with a web interface. Some external clients
exist, such as a web browser as well as web-service clients
that communicate with the web-container process. The web-
container process in turn exchanges data with the application
container (named “EJB container” in Figure 1), which persists
domain data to a database. Each process reads some configu-
ration data—modeled as data stores—and the database process
additionally stores data to its data store. Furthermore, we have
defined two trust boundaries; the first one—with the longer
dashes—stands for the machine boundary and the second one
for a process boundary because the web container and the
application container mostly run within the same process to
improve performance.

2) Threat Categories in STRIDE: In addition to the DFDs,
the STRIDE approach defines six threat categories. In fact,
STRIDE is an acronym, which stands for the six attack cat-
egories spoofing, tampering, repudiation, information disclo-
sure, denial of service, and elevation of privilege. These threats
shall be applied to each element of a DFD during the threat

Client

Web-
Container

EJB-
Container

Database

Configuration

Configuration

Data,
Configuration

Figure 1. Exemplary dataflow diagram for a dynamic Java-based web site.

modeling process. Based on the determined threats, appropri-
ate mitigation strategies have to be developed (e.g., authenti-
cation and authorization mechanisms).

To illustrate the aforementioned categories, we extend the
example introduced in the previous section and give some
possible threats for the dataflow between the client and the
web container.
Spoofing Authentication schemes can be improperly imple-

mented, e.g. by using IP addresses as authentication cre-
dentials (see also the CWE entry CWE-602 [20]). An
attacker may forge its IP address to get access to the
system.

Tampering An attacker may try to manipulate the data on
the communication channel between the client and the
web container. Digital signatures (e.g., based on XML
security) are a possible solution to this threat, specifically,
if additionally end-to-end security is needed.

Repudiation An attacker may repudiate a certain transaction.
Again, digital signatures (maybe augmented with times-
tamps) might be a mitigation in this case.

Information Disclosure An attacker may try to eavesdrop
on the communication between the client and the web
container. A valid mitigation would be to ensure that
SSL/TLS is used for transport security (see [21]).

Denial of Service The enterprise application may be flooded
with requests, in particular, the database process may be
attacked. Often, such attacks are mitigated on the level of
the IT infrastructure rather than by the application itself.

Privilege Escalation An attacker can try to bypass client-side
authorization by communicating directly with the web
container (see also CWE-602 [22]). If the web container
has been set up correctly, it enforces an access-control
policy, which mitigates this threat.

3) Annotated Dataflow Diagrams: Beyond the DFDs de-
scribed by Swiderski et al., Dhillon introduces annotated data-
flow diagrams to increase their expressiveness [23]. An anno-

tation holds additional information that cannot be modeled
with traditional dataflow diagrams, such as used programming
languages, the type of dataflow, encrypted or authenticated
dataflows, and sensitive data. Using these annotations, a data-
flow diagram is enriched with design decisions, which help an
analyst performing threat modeling more effectively.

Returning to Figure 1, one can imagine useful annotations
to improve the dataflow diagram. For instance, it would be
helpful to mark the dataflows between the client and the web
container with respect to encryption (encrypted, unencrypted)
or the kind of database (e.g., SQL-based or object-based).

4) Interaction Points: Another practical refinement, which
Dhillon introduces, is the concept of interaction points [23].
These are dataflows where data enters the system under inves-
tigation. The motivation behind introducing interaction points
is that only those elements an attacker can interact with can
be used as a basis of an attack. Consequently, this procedure
saves an analyst from performing redundant work by focusing
on the relevant parts of a DFD.

III. OUR APPROACH

Our goal is to enable software vendors to employ threat-
modeling techniques to their existing software. Therefore, we
aim to extract a security architecture from an implementation
for two reasons. On the one hand, it simplifies the threat-
modeling process and on the other hand, the implemented
architecture differs from the documented architecture in most
cases, a lesson learned from software architecture recovery [17].

Our approach is divided into different stages as illustrated in
Figure 2. Starting with an implemented software, we employ
reverse engineering techniques to extract a security architec-
ture. This step is specific to the software frameworks that
are used within the analyzed program. More details about
this process are given in Section III-B. The extracted security
architecture is framework independent and based on DFDs,
which have been described in Section II-B1. Furthermore, we
enrich the architecture automatically with annotations, which
represent security measures, found in the implementation or
within configuration files.

To take advantage of the annotated security architecture, we
built a knowledge base which stores well-known threats and
“best practices” on how to mitigate these threats. We match an
extracted security architecture with the known threat patterns
from our knowledge base and add corresponding threats to
the STRIDE categories. A dataflow, for instance, can be an-
notated to transport sensitive information, such as credentials
or other user-related data. A rule within our knowledge base
maps this pattern to a threat for the confidentiality of the
transported data, which is mapped to the STRIDE category
“information disclosure”. Afterwards, the DFD is scanned for
annotations that represent mitigations for these threats; these
annotations are then linked to the corresponding threats. In the
above mentioned example, we link annotations that represent
transport or message encryption for the transport channel to the
threat of information disclosure since they prevent a possible
attacker from reading the transferred information. Proceeding

this way, we automatically detect security vulnerabilities at the
architectural level. The rules are explained in Section III-C
in more detail. It is also possible to inspect the generated
security architecture manually to identify additional threats,
not covered by our knowledge base.

Another useful option is to refine the generated security
architecture with additional knowledge that cannot be found
in the implementation and is related to the environment of the
software, such as existing firewalls. This enhanced architecture
can also be given as input to the aforementioned automatic
checks.

Best-Practice
Rules

Implementation

Security
Architecture

Knowledge Base

Static
Analysis

Automated
Checks

Framework
Know-How

Manual
Inspection

Vulnerabilities

Expert Knowledge

Process
Step

Data Artifact Knowledge

Figure 2. Process of extracting the implemented security architecture.

For didactic purposes, the security architecture as well as
its representation are explained first because the following
sections will refer to details of this architecture.

A. Security Architecture

To model our security architecture, we use DFDs defined
by Swiderski and Snyder [19] and Dhillon [23]. An abstract
meta-model of our DFDs is depicted in Figure 3 in an UML-
like notation, where we omitted all class attributes. Our model
basically consists of hierarchical elements, trust boundaries,
and dataflows. Each aforementioned model element can host
an arbitrary number of annotations, which are in turn hierar-
chical as well, so we can express refinements of annotations.
These refinements allow us to model threat patterns and cor-
responding mitigations at an abstract level, whereas the ex-
traction phase generates low-level annotations. The hierarchy
links the two levels in a form where concrete security measures
are children of more abstract ones. To give an example, we
can take a look at the annotation named “Encryption“, which
symbolizes that a dataflow is encrypted. We split this general
security measure into “Transport Encryption” and “Message
Encryption”. A special kind of transport encryption is TLS
over HTTP [21].

Figure 3. Meta-Model of our DFDs.

B. Static Analysis

Reverse engineering a security architecture is a challenging
task for different reasons. Firstly, it is necessary to understand
and support all software frameworks used by an application.
Depending on the framework, an analyst must use different
strategies to gather as much information as possible from the
source code. Secondly, one must find suitable mappings be-
tween implementation artifacts and the abstract architecture
model.

Before stepping into the details, we give a high-level over-
view of the steps that constitute our analysis. Our static analy-
sis process is divided into a sequence of five consecutive steps,
depicted in Figure 4 and is also applicable to programs of other
technical domains, such as Android applications. In a first
step, the general procedure divides the system automatically
into different components, such as processes, Web Services,
Java Enterprise Beans, and dynamic web pages (also known
as “Servlets”). Each such component (e.g., a web module)
is transformed into a component in the DFD, which in gen-
eral is hierarchical. After decomposing the application, each
component is scanned for entry and exit points of data and
control flow. These entry and exit points are then connected
in a consecutive step, in which inter-component dataflows are
determined. Based on information gathered from the different
components, we derive trust boundaries during the next step,
followed by the identification of already implemented secu-
rity measures, which are then annotated at the architecture
elements. Please note that it is nearly impossible to extract
information about external entities from the source. Currently,
we generate a single external “user” who communicates with

all public interfaces, such as HTTP ports. It is a task of the
refinement process to revise information about external enti-
ties.

C
om

po
ne

nt
 D

et
ec

ti
on

D
at

a
S

to
re

 D
et

ec
ti

on

E
nt

ry
- &

 E
xi

t-
Po

in
ts

In
te

r-
C

om
po

ne
nt

 D
at

a
F

lo
w

Tr
us

t
B

ou
nd

ar
ie

s

S
ec

ur
it

y
A

nn
ot

at
io

ns

3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6

Figure 4. Static analysis process (displaying the numbers of the correspond-
ing subsections detailing these steps at the top).

In the following subsections we describe some details of
the separate steps of our static analysis and conclude with a
discussion of a subset of the currently supported frameworks.
We also report some challenges we faced during the case
studies described in Section IV and how we were able to
address them.

1) Component Detection: The component or process detec-
tion scans the deployed artifacts to find indicators for different
processes or logical decomposition. These indicators depend
on the frameworks that are used and in some cases, they can
be found in additional configuration files deployed together
with the compiled program. In a first step, all those checks
are carried out that identify processes, and afterwards, each
process is scanned for its substructure, such as web compo-
nents, enterprise beans or web services. For each identified
component, a corresponding DFD element is generated, which
is then extended by its children.

2) Data Store Detection: To detect data stores, one must
consider the source code as well as additional configuration
files. Within these artifacts, one can identify access to differ-
ent persistent objects, such as files and databases. Data-store
detection is closely coupled with dataflow detection since the
usage of a data store is always connected with a dataflow
between a component and a data store.

3) Entry- and Exit-Point Detection: Entry and exit points
are methods and calls that implement inter-process communi-
cation, user interaction or file access. Therefore, the entry and
exit point detection searches for program points where data or
control flows enter or leave the component under investigation.
An example of an entry point are methods that can be called
by a framework, for instance, on behalf of a web request.
Such methods that are callable remotely may be attacked and
therefore correspond to the interaction points, having been
vaguely introduced by Dhillon. Since we cannot distinguish
external entities reliably, we create one single artificial external

entity that is connected to each entry point accessible for other
processes.

Entry and exit points can be categorized into general and
framework-specific ones. To the first group, for example, be-
long network communication and remote method invocation.
The second group, for instance, contains web service methods,
Enterprise Session Beans, and JSP files. Currently, we just
support framework-specific entry and exit points since the
systems in our case studies use only framework-specific entry
and exit points.

4) Extract Inter-Component Dataflow: Up to this point,
the different elements of the extracted DFD have not been
connected yet. Therefore, we try to connect the entry and exit
points of the different components where possible, i.e., we
need to extract dataflow elements (see also Section II-B1),
which is complicated in distributed systems where several
processes communicate with each other. To address this prob-
lem, we use different kinds of static analyses augmented with
framework know-how to find all existing dataflows within the
analyzed system. More framework-specific details are given in
Section III-B7.

5) Trust Boundary Derivation: The semantics and the im-
plications of trust boundaries can be very different, which
makes it hard to extract them automatically. A possible mean-
ing of trust boundaries is that two processes rely on the proper
functionality of each other to work correctly. Another meaning
may be that all processes within this boundary run on the
same trusted machine and therefore it is not necessary to use
encryption or carry out additional access control checks.

Some of these trust boundaries can be derived from the
deployment information that is stored along the application.
However, it may be a quite rough estimation of the actual
trust boundaries. Therefore, it is necessary to revise the trust
boundaries manually after the extraction process.

6) Security Annotations: To represent the security rules
and framework-specific security features, we created a set of
predefined security annotations that can be extended during
the extraction step as well as during the manual inspection.
This allows the user to add additional information during the
manual refinement step. As long as the annotations are associ-
ated with already known security concepts, they are considered
during the automatic analysis steps.

7) Supported Frameworks: In the following subsections,
we describe some of the frameworks we support and the DFD
artifacts that we generated. Furthermore, we give some details
of the used static analysis techniques.

a) Java Applications: Normal Java applications start with
methods with the signature public static void main
(String [] args). To identify these methods, we can
easily scan the type information for all classes belonging to
the system. At the moment, we generate a process node for
each matching method. Currently, we do not subdivide these
processes, for instance into single threads. In the next step, we
generate a context-(in)sensitive call graph by means of Soot for
each main method to identify the part of the implementation
that is used within the application. All reachable methods are

then scanned for further elements of interest.
b) Java Enterprise Edition: Enterprise applications, im-

plemented with the help of the Java platform, Enterprise Edi-
tion (JEE), are divided into different modules, each having its
own task. There are modules for web frontends, fat clients,
business logic, and libraries. All participating modules are
listed in specific XML files, which are called deployment
descriptors. For each enterprise application, a process node is
generated, which contains sub-nodes for each defined module
within the application.

Within the business logic modules, programmers use Enter-
prise Java Beans to expose the business logic to the front-end
classes. Depending on the JEE version, Enterprise Java Beans
are declared either with the help of configuration files or with
the help of Java annotations. In some cases, Enterprise Java
Beans are accessible for other processes, a fact that we note
in the DFD by generating dataflows from an external user to
the business logic module.

Until the version 1.4 of the JEE specification, Entity Beans
are means to persist data to a database. If we find Entity Beans
in the implementation, we read the according configuration
files to determine the used database and create a corresponding
data-store node.

For web modules, we search for existing Servlets, such as
JavaServer Pages, which are Java classes that dynamically
generate content for web sites. Since Servlets are exposed
via HTTP, web modules are entry points to the system, an
information we note in the DFD. A special kind of Servlet
are web services, which are discussed below.

Beside this structural information, JEE offers a number of
security-related services. Container-based authentication makes
sure that each client of a web module is authenticated before
it receives any result. Furthermore, container-based authoriza-
tion is supported— based on role-based access control —and
provides two different kinds of information. On the one hand
we can derive the fact that authorization is used and on the
other hand, we can determine different external entities, one
for each role. Last but not least, JEE supports encryption of
data sent to other hosts.

c) Web Services: Web services, which are implemented
according to the Java API for XML web Services (JAX-WS),
are software components that can be called remotely. For each
web service, a DFD process element is generated. The in-
terface of a web service is represented by WSDL and XML
Schema files, describing the available operations, or by runtime-
visible annotations in the Java source. Using these annotations,
one can find the calls between clients and the web service.
Based on these calls, dataflow edges are added to the DFD.

The web-service description can be extended with policies
that enforce security measures on message level, such as mes-
sage encryption, message signing, or a timestamp. These poli-
cies are translated into corresponding DFD annotations.

d) File Access: File access is available through a prede-
fined set of Java classes, located in the java.io package.
By means of Soot, we search for uses of these classes and
extract the names of the files that are accessed. Therefore, it

is necessary to conduct a flow-sensitive and inter-procedural
constant propagation and to use points-to information to iden-
tify the file names (see Carini et al. [24]). Nevertheless, not
all file names can be determined statically, for instance, if the
file name is entered by the user, which leads to a number of
unnamed files. These unnamed files symbolize every existing
file that can be accessed on the machine that runs the program.

For each identified file, a data store element is generated
with a file name (if it can be determined). A dataflow between
the component that accesses the file and the data store element
is also added to the DFD.

e) Java Persistence API: Based on Java annotations and
the configuration file persistence.xml, we search for the
use of the Java Persistence API, a standard Java API to persist
objects to SQL-based databases. For each identified database,
a data-store element is created and dataflow edges are added,
depending on the usage of the database.

f) Java Messaging Service: The Java Messaging Service
is a framework that supports means to asynchronously commu-
nicate with an arbitrary number of clients. Messages are sent
using specific topic or queue names that every client needs to
know. Therefore, we use inter-procedural constant propagation
to identify the topics and queues a program is connected to. In
general, this is not possible for all programs, since the names
of the queues and topics might be constructed at runtime but
this was not the case in our case study. Afterwards, we track
all operations that are executed on the queues and topics to
extract whether they are used for receiving or sending mes-
sages. Proceeding this way, we can find dataflows between
applications, using the Java Messaging Service.

C. Best Practices

To create our knowledge base containing well known threats
as well as possible mitigations, we inspected the CWE [18],
which lists a number of security problems, their consequences
as well as potential mitigations (as CWE entries). Sometimes,
the mitigations refer to the architecture and design phase. If
possible, we translated the threats to DFD patterns as well
as to annotation-based mitigations. During this process, we
created a set of annotations that provide information about the
security properties of DFD elements as well as mitigations to
the security threats. We then defined rules that derive required
security mitigations based on the security properties of the
elements. These rules are formulated using the Object Con-
straint Language (OCL, see [25]) standardized by the Object
Management Group (OMG) [26]. OCL allows one to specify
constraints for a model instance on the level of the model’s
meta-model. In our case, the rules refer to the elements de-
picted in Figure 3.

A simple example rule is given in Listing 1. The rule checks
that if there is a dataflow with the Data.Is Confidential anno-
tation, then there must also be the annotation DataFlow.Is -
Encrypted. With the help of this simple rule, we can test for the
CWE-5 J2EE Misconfiguration: Data Transmission Without
Encryption entry [27].

Listing 1. An OCL rule, checking CWE-5.

c o n t e x t DataFlow inv E n c r y p t e d C h a n n e l :
s e l f . a n n o t a t i o n s−>

e x i s t s (d | d . name = ’ Data . I s C o n f i d e n t i a l ’)
i m p l i e s s e l f . a n n o t a t i o n s−>

e x i s t s (d | d . name = ’ DataFlow . I s E n c r y p t e d ’)

D. Implementation Aspects

We implemented our prototype by means of different frame-
works, namely Bauhaus, Eclipse, and Soot. Bauhaus gives us
a solid foundation for architecture reengineering and allows
us to create visualizations of the architecture. Soot is used
to implement all necessary static analyses to extract the DFDs
from the application’s bytecode. Finally, we used the modeling
framework made available by Eclipse [28] for our DFD model.

Depending on the analysis problem, we employ different
kinds of static analysis that are implemented in the Soot frame-
work. Starting with simple type information for some tasks, we
also use, where necessary, context-sensitive call graph gener-
ation. This gives us accurate information. Based on the gener-
ated call graph, we employ inter-procedural dataflow analysis,
such as inter-procedural constant propagation, which includes
evaluating statically the effect of operations on constant values.

The data gained from the static analysis is stored in the
DFDs, which we modeled with the help of the EMF meta-
model Ecore, which is depicted in Figure 3. One advantage of
using Ecore is the possibility to use Eclipse OCL, an OCL im-
plementation for ecore-based models. Furthermore, we started
to implement a visualization using the Eclipse Graphiti project;
a screenshot is depicted in Figure 5.

IV. CASE STUDIES

We conducted two case studies with commercial applica-
tions to answer a set of predefined questions. The applications
are implemented in Java and make use of JEE. To better
assess our findings, we discussed the result of our evaluation
with developers as well as a quality assurance representative
responsible for the software under investigation.

The questions we wanted to answer are the following:
RQ1 Is the extracted DFD similar to the one that was created

by a security-aware developer?
RQ2 Which part of the architecture can be extracted automat-

ically?
RQ3 Can we find security issues with the proposed approach?

In this section, we first describe the applications that we
analyzed, and thereafter summarize the results we obtained.
At the end, we give a short summary of our findings.

A. Case Study Set-up

Our first case study was selected from the e-government
domain and is based on the Web Service technology. It is
implemented using SOA and consists of web services, tradi-
tional JEE applications, and normal Java applications. During
our case study, we focused on a subsystem that is responsible

for creating qualified digital signatures1 for arbitrary docu-
ments. In particular, this application makes available a batch-
signature mechanism for signing many similar documents with
the same key at the same time. This software contains all the
aforementioned component types and uses different kinds of
inter-process communication means. Due to the application’s
task, security is a crucial aspect.

The second case study is a commercial business application
from the logistics domain that helps companies to declare
goods electronically for import and export and is used by hun-
dreds of customers every day. It is implemented following the
JEE specification in version 1.4, and its source code comprises
600k LoC and more than 1000 dynamic web pages (JSP files).
The software is offered to customers on a software-as-a-service
basis, which implies different security requirements, such as
confidentiality and non-repudiation.

B. Results

We automatically extracted a security architecture for both
case study objects and applied our knowledge base to automat-
ically identify possible threats and framework-based security
means. We inspected the results and discussed them with ap-
plication experts.

1) Case Study: E-Government Application: The DFD that
we extracted for the first case study needed only a few refine-
ments to satisfy the needs of the security expert. It is depicted
in Figure 5 where the names of the elements are changed for
the sake of confidentiality. Our process detected a set of nine
top-level components as well as a set of subcomponents that
implement the provided functionality. Four of the top-level
components are not depicted in Figure 5 because they were
test programs that are related to third-party libraries that were
not relevant for the expert.

Besides the structure, we also identified security measures,
such as authentication based on client-certificates and the use
of WS-Security [29] to enable message-level security and time
stamping. We were not able to identify automatically vul-
nerabilities in the extracted security architecture because all
identified threats were mitigated. This result is not surprising
as the application has been evaluated according to the Com-
mon Criteria (CC), a standard for the security evaluation of IT
products several times and therefore different kinds of security
reviews have already been carried out.

There were several differences between the manually cre-
ated DFD and the automatically extracted one. We found sev-
eral processes that, according to the security expert, do not
belong to the system (the aforementioned test programs related
to third-party libraries). Nevertheless, these programs could be
started by employees and therefore interact with the system.
Furthermore, our technique was not able to detect the trust
boundaries manually added to the diagram.

Nevertheless, the extracted security architecture helped us
to understand and manually assess the security aspects of the

1Qualified digital signatures are legally binding in Germany and are hence
the counterpart of hand-written signatures. Consequently, special measures
must be put in place to secure the process of signature generation.

Figure 5. Extracted data-flow diagram of the e-government application.

system leading us to security-relevant components. Based on
the extracted diagram, we were able to manually identify an
authorization vulnerability allowing every authenticated client
to use all smart cards to sign any document.

2) Case Study: Customs Application: From the second case
study, we extracted a DFD with three top-level elements. There
is an external entity—a web browser—that communicates with
the application container using HTTP. The container exchanges
data with a data store, namely, an SQL database. The overall
architecture is similar to that depicted in Figure 1.

Based on the deployment information the application-con-
tainer process is subdivided into a web frontend and a business
logic part. We were able to refine the dataflow described earlier
to the point that the external entity communicates with the web
frontend. The web frontend in turn communicates with the
business logic as well as with the database. The business logic
itself is also connected via dataflow edges to the database.

We detected security measures that were used within the
software, such as authentication, and we added this informa-
tion to the DFD. Employing the resulting DFD, we applied rel-
evant threats and mitigations, which are defined in our knowl-
edge base, and detected several architectural vulnerabilities.
We explain two of them in more detail now.

Our extraction reveals that the dataflow between the client
and the web frontend transports authentication information
over HTTP. Based on that fact, our analysis added the threat
“An attacker captures authentication information by sniffing
network traffic” to the Spoofing category of STRIDE. A valid
countermeasure would be to use transport- or message-level
encryption, but we could not find any hint concerning transport-
level security by means of our analysis process. Inspecting the
implementation, we found that the programmers failed to con-
figure the framework correctly to ensure that TLS over HTTP

is used. In particular, this problem corresponds to the entry
CWE-5 J2EE Misconfiguration: Data Transmission Without
Encryption (see above).

Furthermore, we refined the existing external entities be-
cause the developers told us that there were different kinds of
users, normal users and administrators. This refinement led us
to the threat “A client may bypass the authorization measures
taken place in the client by directly communicating with the
server.” (CWE-602), which belongs to the Privilege Escalation
category. To mitigate this threat, the server must perform the
authorization itself, but our analysis did correctly not find any
authorization check on the server side.

V. DISCUSSION AND THREATS TO VALIDITY

We automatically extracted two DFDs for commercial JEE
systems and discussed two examples of architectural vulnera-
bilities as well as their underlying threats and possible mitiga-
tions. All this information was extracted from the source code
of the JEE applications based on the approach described in
Section III. The extracted DFDs helped us to understand the
structure, the security requirements, and the security measures
of the software although we did not know the internals of
the program. Furthermore, we found that the extracted DFDs
were similar to the ones that were created by the security
experts (see RQ 1). On the one hand, we were able to iden-
tify different processes, data stores and the communication
channels between these objects. On the other hand, we were
not able to extract the trust boundaries and external entities
accurately (see RQ2). This is not surprising because external
entities, on the one hand, are not within the analysis scope.
On the other hand, Hernan et al. state that trust boundaries
are very subjective concepts [13]. In the second case study,
we identified security vulnerabilities automatically employing
our knowledge base (see RQ3).

Several threats to the validity of our results exist that can be
attributed to the static analysis techniques as well as the envi-
ronment, which we cannot analyze. There are some limitations
concerning the threats and mitigations that can be found, too.

First of all, static analyses tend to be inaccurate based on
the pessimistic assumptions they have to make to guarantee
the soundness of the analysis. To improve the precision of
the employed analysis, we use deployment and configuration
information to reduce the number of false positives. Therefore,
the results are only valid for the analyzed setup. Depend-
ing on the required accuracy of the static analysis, time and
memory consumption are factors that must not be neglected.
This problem increases with the number of used frameworks
within the analyzed system as well as the size of the systems.
Secondly, our approach detects only those security and inter-
component communication means that belong to the supported
frameworks. Consequently, this entails a large amount of im-
plementation and engineering work.

A problem of our approach is to extract information about
the environment of the system under investigation since it is
not part of the implementation that we analyze. There is no

possibility for us to detect different kinds of external enti-
ties, existing security measures (such as network firewalls and
application-layer firewalls), and the distribution of the software
to different machines is also hard or even impossible to extract.
Nevertheless, the possibility to refine the extracted DFD allows
an analyst to add this external information and take it into
account for the analysis process.

At the moment, our knowledge base with architecture-related
security flaws is still preliminary, extracted from CWE entries.
An incomplete knowledge base may overlook possible threats.

In addition, not all kinds of threats and mitigations can
be identified automatically. For instance, mitigations to the
STRIDE category Denial of Service are very hard to imple-
ment at the application level because the process must handle
all requests made by an attacker to determine whether the
request is valid or not.

Another aspect is to apply our approach during the evalua-
tion of software according to the CC security standard. Discus-
sions with CC evaluators revealed that they often do not have
the time and expertise to understand the implemented security
architecture such that they must trust in the vendor’s state-
ments concerning software security [30]. Our approach helps
one to pinpoint security-critical regions in the code and eases
the work of an evaluator by identifying common architectural
weaknesses.

VI. RELATED WORK

Static security analysis of software has evolved into an ac-
tive research area over the years. There are several works on
static checking for software security [2], [6], [4], [5], [31].
Important research prototypes from static security analysis are
e.g. MOPS [5], Eau Claire [4], and LAPSE [2]. MOPS uses
temporal logic as formalism and model checking to discover
issues such as race conditions in C programs. The tool xg++
by Ashcraft and Engler was used to detect vulnerabilities in
the Linux Kernel [6]. Eau Claire can detect general security
problems, such as buffer overflows and race conditions, based
on static type checking. Moreover, there is work by Livshits
and Lam who present a tool to detect common low-level vul-
nerabilities, such as SQL injections and Cross-site-scripting
vulnerabilities [2]. Felmetsger et al. employ the Daikon tool
[32] to dynamically infer security specifications for web ap-
plications. Thereafter, they use a model checker to detect ap-
plication logic vulnerabilities violating the specifications [31].
All the aforementioned approaches focus on finding common
low-level security bugs. Our approach is complementary to all
those works because we analyze the implemented architecture.

Other works deal with the topic of detecting covert channels
in applications, e.g., based on non-interference properties [33].
For example, Myers et al. introduced the JFlow language, an
annotation-based extension of Java, which allows a developer
to define security labels on variables. Proceeding this way,
hidden information flows, e.g., induced by an application’s
control flow, can be detected. This approach, however, assumes
that a developer uses the annotation language and hence does
not work with legacy code.

Another approach to software security is model-driven de-
velopment, most notably, based on the concepts of UML as
well as its constraint language OCL. For example, Basin et
al. coined the term “model-driven security” (MDS) by intro-
ducing the security specification language SecureUML [11].
In particular, SecureUML focuses on RBAC and allows a
developer to automatically generate an application’s access
control infrastructure via MDS. In parallel work, Jürjens et al.
introduced the UMLSec language, also a security extension of
UML, with a slightly broader application area [12]. Beyond
access control, this specification language allows a developer
to define confidentiality and integrity policies. As stated by
McGraw, both languages tend to focus on security functional-
ity and do not consider an attacker’s view on software security
[1]. In addition, MDS does not consider legacy code, and even
if MDS were adopted by industry to a large scale, often the im-
plemented architecture may erode over time from the specified
architecture due to pressing ad-hoc customer requirements.

Jung et al. describe their SiSOA approach in several publica-
tions [34], [35], [36]. They extract security artifacts from SOA
systems that are implemented in Java using Apache Tuscany2.
The security artifacts are detected based on syntactic source-
code elements, such as Java annotations and configuration
elements. Afterwards, the artifacts are aggregated into security
tags with the help of a knowledge base. Security tags are
abstract security measures which ensure that certain security
goals are fulfilled. Their approach is currently limited to sys-
tems using the Tuscany framework and is just evaluated by
simple examples.

Abi-Antoun and Barnes [37] annotate the source code of
an application to extract Ownership Object-Graphs statically.
Ownership Object-Graphs represent a hierarchical runtime-
architecture of the objects within a system. Furthermore, they
compare the extracted graph with a given DFD to find data
flows that are not allowed. The approach is currently tested
for small and non-distributed systems.

Threat modeling takes an attacker’s viewpoint in matching
possible attacks to DFD elements [13] (see also Section II-B).
However, again one cannot be sure that the implementation
is in sync with the architecture developed by the threat mod-
eling process. For example, based on the experience which
was gained by practical projects at the EMC corp., Dhillon
proposes to employ testing to detect inconsistencies between
the modeled security architecture and its implementation as
future work [23]. We, however, take the position of employing
static security analysis to regain and analyze the implemented
architecture. We gave a preliminary outline of our method in a
position paper [38]. The position paper does not describe the
technical details and has no evaluation.

In summary, our analysis method, which checks the imple-
mented against the specified architecture, is complementary to
well-established approaches to the static security analysis of
software, such as bug finding, MDS, language-based security,
and threat modeling. Our focus lies on combining techniques

2http://tuscany.apache.org/

http://tuscany.apache.org/

from reverse engineering with architectural security analyses.

VII. CONCLUSION AND OUTLOOK

In this paper, we described a method to automatically extract
the security architecture from the source code of Java-based
business applications with the help of static analysis. On this
extracted architecture, we automatically carried out analyses to
detect architectural vulnerabilities employing threat modeling.
These security analyses are based on a knowledge base that
we partly extracted from the Common Weakness Enumeration
and that contains possible mitigations. To inspect and refine the
extracted security architecture, we implemented a visualization
plugin for Eclipse. Finally, we evaluated our approach with the
help of two real-world case studies.

In future work, we will extend our framework to support
other kinds of platforms and frameworks, such as Android.
Along this way, we need to extend the knowledge base to
support a larger set of threats and mitigations. Also, it would
be useful to apply methods from artificial intelligence to find
a better representation of the knowledge in form of rules.

ACKNOWLEDGMENTS

This work was supported by the German Federal Ministry of
Education and Research (BMBF) under the grant 01IS10015B.

REFERENCES

[1] G. McGraw, Software Security: Building Security In. Addison-Wesley,
2006.

[2] B. Livshits and M. Lam, “Finding Security Vulnerabilities in Java
Applications Using Static Analysis,” in Proceedings of the 14th USENIX
Security Symposium, Aug. 2005.

[3] B. Chess and J. West, Secure Programming with Static Analysis.
Addison-Wesley, 2007.

[4] B. Chess, “Improving Computer Security Using Extended Static Check-
ing,” in IEEE Symposium on Security and Privacy, 2002, pp. 160–173.

[5] H. Chen and D. Wagner, “MOPS: an infrastructure for examining
security properties of software,” in Proceedings of the ACM Conference
on Computer and Communications Security. New York, NY, USA:
ACM, 2002, pp. 235–244.

[6] K. Ashcraft and D. Engler, “Using Programmer-Written Compiler Exten-
sions to Catch Security Holes,” in Proceedings of the IEEE Symposium
on Security and Privacy. IEEE Computer Society, 2002, p. 143.

[7] Fortify Software, “Fortify Source Code Analyser,” 2012, http://www.
fortify.com/products.

[8] Coverity, “Coverity Prevent,” 2012, http://www.coverity.com.
[9] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri, “A Study of

Android Application Security,” in Proceedings of the 14th USENIX
Security Symposium, Aug. 2011.

[10] J. H. Allen, S. Barnum, R. J. Ellison, G. McGraw, and N. R. Mead,
Software Security Engineering: A Guide for Project Managers (The SEI
Series in Software Engineering). Addison-Wesley Professional, 2008.

[11] D. A. Basin, J. Doser, and T. Lodderstedt, “Model Driven Security: From
UML Models to Access Control Infrastructures,” ACM Transactions on
Software Engineering Methodology, vol. 15, no. 1, pp. 39–91, 2006.

[12] J. Jürjens and P. Shabalin, “Automated Verification of UMLsec Models
for Security Requirements,” in Proceedings of UML 2004 - The Uni-
fied Modelling Language: Modelling Languages and Applications, ser.
LNCS, vol. 3273. Springer, 2004, pp. 365–379.

[13] S. Hernan, S. Lambert, T. Ostwald, and A. Shostack, “Uncover Security
Design Flaws Using the STRIDE Approach,” MSDN Magazine, Nov.
2006. [Online]. Available: http://msdn.microsoft.com/en-us/magazine/
cc163519.aspx

[14] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan,
“Soot – a Java Bytecode Optimization Framework,” in Proceedings
of Conference of the Centre for Advanced Studies on Collaborative
Research. IBM Press, 1999, p. 13.

[15] A. Raza, G. Vogel, and E. Plödereder, “Bauhaus—A Tool Suite for
Program Analysis and Reverse Engineering,” in Ada-Europe, ser. Lecture
Notes in Computer Science, vol. 4006. Springer, 2006, pp. 71–82.

[16] G. C. Murphy, D. Notkin, and K. J. Sullivan, “Software Reflexion
Models: Bridging the Gap between Design and Implementation,” IEEE
Transactions on Software Engineering, vol. 27, no. 4, pp. 364–380, Apr.
2001.

[17] R. Koschke, “Incremental Reflexion Analysis,” in European Conference
on Software Maintenance and Reengineering. IEEE Computer Society
Press, Mar. 2010.

[18] MITRE Corporation, “The Common Weakness Enumeration (CWE)
Initiative,” 2012, http://cwe.mitre.org/.

[19] F. Swiderski and W. Snyder, Threat Modeling. Redmond, WA, USA:
Microsoft Press, 2004.

[20] MITRE Corporation, “The Common Weakness Enumeration (CWE)
Initiative — CWE-290: Authentication Bypass by Spoofing,” 2012,
http://cwe.mitre.org/data/definitions/290.html.

[21] E. Rescorla, “HTTP over TLS,” may 2000, http://tools.ietf.org/html/
rfc2818.

[22] MITRE Corporation, “The Common Weakness Enumeration (CWE) Ini-
tiative — CWE-602: Client-Side Enforcement of Server-Side Security,”
2012, http://cwe.mitre.org/data/definitions/602.html.

[23] D. Dhillon, “Developer-Driven Threat Modeling: Lessons Learned in
the Trenches,” IEEE Security and Privacy, vol. 9, no. 4, 2011.

[24] P. R. Carini and M. Hind, “Flow-sensitive Interprocedural Constant
Propagation,” in Proceedings ”of the ACM SIGPLAN 1995 Conference
on Programming Language Design and Implementation”, ser. PLDI ’95.
New York, NY, USA: ACM, 1995, pp. 23–31.

[25] Object Management Group, “OMG Object Constraint Language,” 2012,
http://www.omg.org/spec/OCL/2.3.1/PDF/.

[26] ——, “Object Management Group,” 2012, http://www.omg.org/.
[27] MITRE Corporation, “The Common Weakness Enumeration (CWE) Ini-

tiative — CWE-5: J2EE Misconfiguration: Data Transmission Without
Encryption,” 2012, http://cwe.mitre.org/data/definitions/5.html.

[28] The Eclipse Foundation, “Eclipse Modeling Framework,” 2012, http:
//www.eclipse.org/modeling/emf/.

[29] OASIS, “Web Services Security: SOAP Message Security 1.1,” 2006,
https://www.oasis-open.org/committees/download.php/16790/wss-v1.
1-spec-os-SOAPMessageSecurity.pdf.

[30] S. Maseberg, “Personal communication,” 2011.
[31] V. Felmetsger, L. Cavedon, C. Kruegel, and G. Vigna, “Toward Au-

tomated Detection of Logic Vulnerabilities in Web Applications,” in
USENIX Security Symposium. USENIX Association, 2010, pp. 143–
160.

[32] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.
Tschantz, and C. Xiao, “The Daikon System for Dynamic Detection of
Likely Invariants,” Sci. Comput. Program., vol. 69, pp. 35–45, December
2007.

[33] A. C. Myers, “JFlow: Practical mostly-static Information Flow Control,”
in POPL ’99: Proceedings of the 26th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, 1999, pp. 228–241.

[34] P. Antonino, S. Duszynski, C. Jung, and M. Rudolph, “Indicator-based
Architecture-level Security Evaluation in a Service-oriented Environ-
ment,” in Proceedings of the Fourth European Conference on Software
Architecture: Companion Volume, ser. ECSA ’10. New York, NY, USA:
ACM, 2010, pp. 221–228.

[35] C. Jung, M. Rudolph, and R. Schwarz, “Security Evaluation of Service-
Oriented Systems Using the SiSOA Method,” International Journal of
Secure Software Engineering, vol. 2, no. 4, pp. 19–33, 2011.

[36] ——, “Security Evaluation of Service-oriented Systems with an Ex-
tensible Knowledge Base,” in Proceedings of the Sixth International
Conference on Availability, Reliability and Security (ARES). IEEE,
2011, pp. 698–703.

[37] M. Abi-Antoun and J. M. Barnes, “Analyzing Security Architectures,”
in Proceedings of the IEEE/ACM International Conference on
Automated Software Engineering, ser. ASE ’10. New York, NY, USA:
ACM, 2010, pp. 3–12. [Online]. Available: http://doi.acm.org/10.1145/
1858996.1859001

[38] K. Sohr and B. Berger, “Idea: Towards Architecture-Centric Security
Analysis of Software,” in Engineering Secure Software and Systems.
Springer-Verlag, 2010.

http://www.fortify.com/products
http://www.fortify.com/products
http://www.coverity.com
http://msdn.microsoft.com/en-us/magazine/cc163519.aspx
http://msdn.microsoft.com/en-us/magazine/cc163519.aspx
http://cwe.mitre.org/
http://cwe.mitre.org/data/definitions/290.html
http://tools.ietf.org/html/rfc2818
http://tools.ietf.org/html/rfc2818
http://cwe.mitre.org/data/definitions/602.html
http://www.omg.org/spec/OCL/2.3.1/PDF/
http://www.omg.org/
http://cwe.mitre.org/data/definitions/5.html
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/
https://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
https://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://doi.acm.org/10.1145/1858996.1859001
http://doi.acm.org/10.1145/1858996.1859001

	Introduction
	Background
	Static Code Analysis
	The Soot Tool
	The Bauhaus Tool-Suite

	Threat Modeling
	Dataflow Diagrams
	Threat Categories in STRIDE
	Annotated Dataflow Diagrams
	Interaction Points

	Our Approach
	Security Architecture
	Static Analysis
	Component Detection
	Data Store Detection
	Entry- and Exit-Point Detection
	Extract Inter-Component Dataflow
	Trust Boundary Derivation
	Security Annotations
	Supported Frameworks

	Best Practices
	Implementation Aspects

	Case Studies
	Case Study Set-up
	Results
	Case Study: E-Government Application
	Case Study: Customs Application

	Discussion and Threats to Validity
	Related Work
	Conclusion and Outlook
	References

