
Using the GPU to Green an Intensive and Massive Computation System

Giuseppe Scanniello, Ugo Erra, Giuseppe Caggianese

Dipartimento di Matematica e Informatica
Universitá della Basilicata, Italy

Email: {giuseppe.scanniello, ugo.erra, giuseppe.caggianese}@unibas.it

Carmine Gravino

Depart. of Management & Information Techonlogy
University of Salerno, Italy

Email: gravino@unisa.it

Abstract—In this paper, we present the early results of an
ongoing project aimed at giving an existing software system
a more eco-sustainable lease of life. We defined a strategy
and a process for migrating a subject system that performs
intensive and massive computation to a Graphics Processing
Unit (GPU) based architecture. We validated our solutions on
a software system for path finding robot simulations. An initial
comparison on the energy consumption of the original system
and the greened one has been also executed. The obtained
results suggested that the application of our solution produced
more eco-sustainable software.

Keywords-Green Computing; Greening; GPU; Migration;

I. INTRODUCTION

In recent years, the power consumption of servers, data

centers, and electronic devices has become a major concern.

For example, the power consumption of businesses in the

USA doubled between 2000 and 2006 [1]. In order to tackle

this problem and in the context of an increasing desire

for eco-sustainable development, a new era for software

development and evolution is being born. This era could

be called the “green era”. Its relevance is widely recognized

in information technology and is demonstrated by the exis-

tence of new conferences and workshops (e.g., IEEE/ACM

GreenCom, HotPower, and GreenS).

Very often in the past, the shift from one era to another

has resulted in the adapting, porting, migrating, and re-

engineering of existing software systems [2]. It is easy to

imagine that in the next few years an increasing interest in

green technology could be manifested in the definition of

methods, techniques, and tools which offer existing systems

a new lease of life and satisfy the desire for energy reduction

and environmental sustainability.

In this paper, we present the early results of an ongoing

project aimed at developing a migration strategy and process

to green subject systems, performing intensive and massive

computation, to a target environment based on a Graphics

Processing Unit (GPU1). A system for path finding robot

simulations has been migrated to validate our solutions. The

migrated system has been compared with the original one

1They are graphics chips that provide fine-grained and coarse-grained
data and task parallelism. Modern GPUs are designed as computational
accelerators or companion processors optimized for scientific and technical
computing applications.

with respect to their energy consumption and execution time.

We used an energy logger tool to get the magnitude of the

alternating current needed. We considered both execution

time and energy consumption because of the nature of the

GPU: a possible reduction in the execution time could not

lead to less energy consumption (e.g., [3]).

II. MIGRATION AND SUSTAINABILITY

Software migration is the process of moving a given

software from one operating environment (hardware and/or

software) to another operating environment (i.e., the target

environment), while retaining the original system data and

functionality [4]. Migration does not mean installing a given

system into an hardware operating environment that has been

implemented using low-power techniques (e.g., multiple

voltage planes or dynamic voltage-frequency scaling).

A. Benefits
Recent reports (e.g., [5]) show growing concern over

the energy consumption of hardware/software systems and

indicate how current trends could make energy a dominant

factor in the Total Cost of Ownership (TCO). TCO also

includes additional costs such as the cooling infrastructure

and provisioning. Energy reduction represents one of the

main drivers towards environmental sustainability. To a first

approximation [6], both cooling and provisioning costs are

proportional to the average energy consumed, therefore

improvements in energy efficiency should reduce all the

related costs. It is reasonable to assume that there will be an

increasing interest from academia and industry in defining

methods, techniques, and tools to migrate software systems

that help to promote the construction of an ecologically

sustainable economy. The definition of these new technolo-

gies may offer the following benefits: (i) preserving the

value of past investments, (ii) reviewing marketed systems,

(iii) meeting the new needs of the software market, (iv)
reducing energy wastage, (v) increasing the performance of

new systems, and (vi) promoting a new business engine for

software companies.

III. MIGRATION STRATEGY AND PROCESS

A. Migration Strategy
The first step to migrate a software system is to assess

it from both the technical and the managerial perspectives.

2013 17th European Conference on Software Maintenance and Reengineering

1534-5351/13 $26.00 © 2013 IEEE

DOI 10.1109/CSMR.2013.55

384

Successively, the target environment has to be chosen and

the possible problems and risks have to be assessed [2]. We

instantiated this strategy as follows:

1) Assessing the Current System: We analyzed the subject

software system, which has been developed at the University

of Basilicata within a regional research project conducted in

cooperation between the Department of Computer Science

and the Department of Telecommunication Engineering.

The software system regards a massive robot simulation

in the path planning of thousand of robots with respect

to random obstacles in any two dimensional environments.

The system enables to identify all potential obstacles in

order to find a suitable path for all robots given a set of

start positions. The objective of this project is to develop

a simulation system to identify difficulties facing mobile

robot navigation in several application scenarios, such as

instance manufacturing, mining, military operations, search

and rescue missions, and so on. We renewed this system

because additional regional funds were received. We were

asked to focus on the following goals: (i) increasing the

parallelization, (ii) improving the performances, and (iii)
reducing energy waste.

To migrate this system, we used all the available docu-

mentation and resources (e.g., use cases, source code, fault

history, operational profile, and developers’ knowledge).

Since the documentation was incomplete, we analyzed the

source code (static analysis) and the system execution

behavior (dynamic analysis) and exploited the knowledge

of the developers who implemented some of the software

components of the system.

The assessment of the system revealed that it had a good

level of decomposability. For example, the presentation logic

was separated from the application logic and data access

logic. The dynamic analysis also showed that some of the

components performed computationally intensive tasks. We

performed a manual analysis on these components. This

analysis revealed the massive usage of concurrent threads,

so making these components suitable to be migrated or

reengineered to meet the project requirements.

2) Defining the Target Environment: With the advent of

compute-capable integrated GPUs having a power consump-

tion of tens of Watts, it is possible to save energy and

outperform the CPUs of a multi-core system [7]. This was

the rationale for defining and using a target environment

based on integrated GPUs.

GPUs are programmed through a serial program called

kernel that executes in parallel a set of threads each with a

private local memory. The developer organizes these threads

into a hierarchy of thread blocks and grids. A thread block

is a set of concurrent threads that can cooperate among

themselves and have access to the shared memory. The grid

is a set of thread blocks that can be executed independently.

The threads have access to the same global memory. The

three kinds of memory have different time access and then

can be used for different purposes. The GPUs can be

programmed using a language such as CUDA [8]. A CUDA

program consists of several phases that are executed on

either the host (i.e., the CPU) or a device (i.e., the GPU).

Host code exhibits little or no data parallelism while the

device code exhibits rich amount of data parallelism. The

developer supplies a single source code encompassing both

host and device code. The NVIDIA C Compiler separates the

two. The host code is straight ANSI C code and is compiled

with the host’s standard C compilers and runs as an ordinary

process. The device code is written in ANSI C extended

with keywords for labeling data-parallel functions, namely

the kernels.

3) Identifying Problems and Risks: In our case, the most

relevant risks are concerned to the effective improvement in

terms of energy efficiency and computational performances.

For example, it could be possible that the migrated sys-

tem does not meet the expected migration goals. Other

issues could be related to the limited understanding of the

system, impact analysis, testing, and identification of the

target environment. The complexity of the GPU architecture

represents another risk. In this context, coding needs in-

depth knowledge of resources available in terms of thread

and memory hierarchy.

B. Migration Process

Our migration process is based on the following phases:

1) Reverse Engineering. In this phase suitable represen-

tations of a subject system are produced. This phase

has also the effect of increasing the comprehension of

the system and source code, in particular.

2) Reengineering. Components that perform computa-

tionally intensive tasks are identified and reengineered.

3) Integration. The newly developed components are

wrapped and integrated within the migrated system.

4) Testing. The migrated system is tested.

These steps represent the baseline for a migration process

(e.g., [2]), while their instantiation is new here. In the

following subsections, we discuss the steps 2 and 3.

1) Reengineering: The component that performed inten-

sive computation was the one implemented the A* search

algorithm [9]. The input of this algorithm is: a set of robots’

starting positions, a goal position, and moving costs. For

each position s, a heuristic h[s] is used to estimate the

goal distance, which is the cost of a minimal path from

the position s to a goal state. Classical heuristics are based

on Manhattan, diagonal, or Euclidean distance calculations.

During its execution, A* maintains two values, g[s] and

f [s]. The value g[s] is the smallest cost of any discovered

path from a start position sstart to position s. The value

f [s] = g[s] + h[s] estimates the distance from sstart to the

goal position via s. At each iteration, A* expands the states

from which all adjacent states have been explored and tries

to update the g-value of each visited state with a lower value.

385

At the end, the g-value of each visited position s will be the

distance from the start position sstart to position s. The

main drawback of this algorithm is the computational time.

This makes the algorithm unsuitable for massive robots path

planning in large state spaces where the simulation must

be performed in real-time. A possible solution to deal with

this issue is to parallelize the execution using a multi-core

CPU. Since the CPUs have a limited number of cores this

approach offers a partial solution when the number of robots

increases. Conversely, GPUs offer the execution of many

number of threads enabling to perform concurrently much

more A* searches. To reengineer software components, we

used here the CUDA 4.0 programming language.

2) Integration: In the GPU parallel pathfinding, a robot

is a CUDA thread. In our case, the kernels are four. One

kernel is in a charge of executing the A* algorithm. Other

two kernels are for the initializations needed for the algo-

rithm execution. The latter kernel concerns the output to be

visualized in the graphical user interface.

Figure 1 shows an excerpt of the source code for invoking

the implementation for GPU of the A* algorithm. The

statements from 2 to 5 are in charge of allocating the

memory for the CPU, while those from from 8 to 15 are

for the allocation of GPU memory. The copy from the CPU

memory to the GPU memory is executed by the statements

from 18 to 20. The statements from 23 to 32 are used for

the starting configuration. The four kernels are invoked in

the statements from 35 to 38. In particular, the A* algorithm

implementation is invoked in the statement 36. Finally, the

statement 41 is in charge of moving the output of that

algorithm from the GPU to the CPU.

The input is a grid map that represents the search space

and includes the start and goal positions of each robot

in the simulation. For each robot the output consists in a

path that is built backward from the goal node to the start

node. The output is then visualized in the graphical user

interface. Figure 2 shows a screenshot of that system. The

dots represent the start and goal positions of the robots and

the lines the paths. The graphical user interface is the same

for both the original and migrated systems.

IV. ASSESSMENT

A. Definition and Context

The main goal of this investigation is quantitatively

evaluating the benefit deriving from the application of the

proposed migration strategy in terms of execution time and

reduction of the energy consumption. We considered both

execution time and energy reduction because they could be

not directly related [3]. The comparison was performed over

12 different input configurations on the same grid map of

256×256 tiles. Each configuration was constituted of a fixed

number of robots and of a fixed number of obstacles to be

avoided by each robot. The number of robots were: 5120,

 1. //CPU memory allocation
 2. int *h_map = (int *) calloc(map_width * map_height, sizeof(int));
 3. int *h_start = (int *) calloc(robot_number, sizeof(int));
 4. int *h_goal = (int *) calloc(robot_number, sizeof(int));
 5. int *h_path = (int *) calloc(robot_number * map_width, sizeof(int));
 6.
 7. //GPU memory allocation
 8. int *d_map, *d_path, *d_start, *d_goal;
 9. size_t size_map = map_width * map_height * sizeof(int);
10. size_t size_robot = robot_number * sizeof(int);
11. size_t size_path = robot_number * map_width * sizeof(int);
12. cudaMalloc((void**)&d_map, size_map);
13. cudaMalloc((void**)&d_start, size_robot);
14. cudaMalloc((void**)&d_goal, size_robot);
15. cudaMalloc((void**)&d_path, size_path);
16.
17. //Copy data from the CPU to the GPU
18. cudaMemcpy(d_map, h_map, size_map, cudaMemcpyHostToDevice);
19. cudaMemcpy(d_start, h_start, size_robot, cudaMemcpyHostToDevice);
20. cudaMemcpy(d_goal, h_goal, size_robot, cudaMemcpyHostToDevice);
21.
22. //Execution configuration
23. int threadForBlock = 128;
24. int block_x = threadForBlock;
25. int block_y = 1;
26. int block_z = 1;
27. int grid_x = 1;
28. int grid_y = 1;
29. block_x = threadForBlock;
30. grid_x = (robot_number + (threadForBlock - 1)) / threadForBlock;
31. dim3 dimBlock(block_x, block_y, block_z);
32. dim3 dimGrid(grid_x, grid_y, 1);
33.
34. //Kernels invokation
35. initialize_gpu_memory<<<dimGrid, dimBlock>>>();
36. initialize_a_star<<<dimGrid, dimBlock>>>();
37. a_star_algorithm<<<dimGrid, dimBlock>>>();
38. build_paths<<<dimGrid, dimBlock>>>();
39.
40. //Copy output from the GPU to the CPU
41. cudaMemcpy(h_path, d_path, size_path, cudaMemcpyDeviceToHost);

Figure 1. Source code to invoke the greened component.

Figure 2. A screenshot of the system.

51200, 512000, and 5120000. On the other hand, the number

of obstacles was 0, 2%, and 4% of the number of tiles.

B. Data Collection and Analysis

The evaluation was performed on a PC equipped with

an Intel Core 2 Duo E7400 2.80Ghz processor, a NVIDIA

Fermi GTX 480 1.5GB video card, and Windows 7 as the

operating system. To get the execution time of the origi-

nal and the migrated systems on each input configuration

chosen, we instrumented the source code of both these

386

�� ��� ��� �� ��� ���
�����	
�
�
� ������	
�
�
�

���� �������� �������� �������� �������� �������� ��������

���� �������� �������� �������� �������� �������� ��������

��

�����

������

������

������

������

��
�
��

�� ��� ��� �� ��� ���
�������	
�
�
� ��������	
�
�
�

���� ������� ��������� ������� ���������� �������� ����������

���� �������� �������� �������� ������� ������� �������

��

�������

��������

��������

��������

��������

��
�
��

(a)

�� ��� ��� �� ��� ���
�����	
�
�
� ������	
�
�
�

���� ������� ������� ������� �������� �������� ��������

���� ������ ������ ������ ������� ������� �������

�����

�������

��������

��������

��������

��������

��
��
��

�� ��� ��� �� ��� ���
�������	
�
�
� ��������	
�
�
�

���� ��������� ��������� ��������� ���������� ���������� ����������

���� �������� �������� �������� ��������� ��������� ���������

�����

���������

����������

����������

����������

����������

��
��
��

(b)

Figure 3. Graphics for (a) execution time (in seconds) and (b) energy consumption (in Joule)

systems. The computation time was measured in seconds.

To measure the total energy consumption in Joule, we used

the EcoDHOME MCEE USB energy logger. We employed

an energy logger because there are not accepted metrics to

estimate the consumption of GPU based implementations.

C. Results

Figure 3 shows the results achieved in terms of execution

time and energy consumption for all the input configura-

tions. The execution time of the greened system is always

lower (see Figure 3.a) than the original one. Moreover, the

differences in the execution time is more evident when the

number of robots increases. It is also clear that the number

of obstacles affects the execution time only in the case of

the original system, whatever is the number of robots.

As for energy consumption, the migrated system needed

less Joule than the original one (see Figure 3.b). This is true

for all the input configurations. As for the execution time, the

number of obstacles slightly affect the energy consumption

of the greened system. Differently, the energy consumption

of the original system is affected by the number of obstacles.

V. CONCLUSION

In this paper, we have presented a strategy and a process

to migrate and existing system to a target environment

based on the GPU. We validated our solutions on a system

for massive robot simulations. The migrated system has

been compared with the original one through a preliminary

quantitative evaluation. The results indicated that the energy

consumption of the greened system is lower and then more

eco-sustainable.

REFERENCES

[1] S. Rivoire, M. A. Shah, P. Ranganathan, C. Kozyrakis, and
J. Meza, “Models and metrics to enable energy-efficiency
optimizations,” IEEE Comp., vol. 40, no. 12, pp. 39–48, 2007.

[2] A. De Lucia, R. Francese, G. Scanniello, and G. Tortora,
“Developing legacy system migration methods and tools for
technology transfer,” Softw., Pract. Exper., vol. 38, no. 13, pp.
1333–1364, 2008.

[3] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D.
Nguyen, N. Satish, M. Smelyanskiy, S. Chennupaty, P. Ham-
marlund, R. Singhal, and P. Dubey, “Debunking the 100x gpu
vs. cpu myth: an evaluation of throughput computing on cpu
and gpu,” SIGARCH Comput. Archit. News, vol. 38, no. 3, pp.
451–460, 2010.

[4] J. Bisbal, D. Lawless, B. Wu, and J. Grimson, “Legacy infor-
mation systems: Issues and directions,” IEEE Softw., vol. 16,
no. 5, pp. 103–111, 1999.

[5] J. G. Koomey, “Estimating total power consumption by servers
in the u.s. and the world,” 2007.

[6] L. A. Barroso and U. Hölzle, “The case for energy-proportional
computing,” IEEE Comp., vol. 40, no. 12, pp. 33–37, 2007.

[7] M. Rofouei, T. Stathopoulos, S. Ryffel, W. Kaiser, and M. Sar-
rafzadeh, “Energy-aware high performance computing with
graphic processing units,” in HotPower. USENIX Association,
2008, pp. 11–11.

[8] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable
parallel programming with CUDA,” Queue, vol. 6, no. 2, pp.
40–53, 2008.

[9] P. E. Hart, N. J. Nilsson, and B. Raphael, “Correction to ’A
formal basis for the heuristic determination of minimum cost
paths’,” SIGART Bull., no. 37, pp. 28–29, 1972.

387

