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Abstract— The aim of this paper is to asses simultaneous 

spectrum access situations that may occur in Cognitive Radio 

(CR) environments. The approach is that of one-shot, non-

cooperative games describing CR interactions. Open spectrum 

access scenarios are modelled based on continuous and discrete 

reformulations of the Cournot game theoretical model. CR 

interaction situations are described by Nash and Pareto 

equilibria. Also, the heterogeneity of players is captured by the 

new concept of joint Nash-Pareto equilibrium, allowing CRs to be 

biased toward different types of equilibrium. Numerical 

simulations reveal equilibrium situations that may be reached in 

simultaneous access scenarios of two and three users.  

Keywords - open spectrum access, cognitive radio 

environments, spectrum-aware communications, non-cooperative 

one-shot games. 

I.  INTRODUCTION 

Cognitive radio (CR) technology is seen as the key enabler 

for next generation communication networks, which will be 

spectrum-aware, dynamic spectrum access networks [1], [2], 

[3]. Cognitive radios (CRs) hold the promise for an efficient 

use of the radio resources and are seen as the solution to the 

current low usage of the radio spectrum [2], [4], [5]. In a CR 

environment users strategically compete for spectrum resources 

in dynamic scenarios. 

In this paper the problem of simultaneous, open spectrum 

access is addressed from a game theoretical perspective. Game 

Theory (GT) provides a fertile framework and the 

computational tools for CR interaction analysis. By devising 

GT simulations, insight may be gained on unanticipated 

situations that may arise in spectrum access. Clearly CR 

interactions are strategic interactions [8]: the utility of one CR 

agent/player depends on the actions of all the other CRs in the 

area.  

The proposed approach relies on the following 

assumptions: (i) CRs have perfect channel sensing and RF 

reconfiguration capabilities [2], [6], [7], (ii) CRs are myopic, 

self-regarding players, (iii) repeated interaction among the 

same CRs is not likely to occur on a regular basis [9], and (iv) 

CRs do not know in advance what actions the other CRs will 

choose.  

These are reasons to consider one-shot, non-cooperative 

games for the open spectrum access analysis.  

An oligopoly competition game model – Cournot – is 

reformulated in terms of spectrum access. Continuous and 

discrete instances of the game are analyzed. 

Nash and Pareto equilibria are revisited for the discrete 

instance of the game. Heterogeneity of players is captured by 

joint Nash-Pareto equilibria, allowing CRs to be biased toward 

different types of equilibrium.  

The paper is structured as follows: Section II provides some 

basic insights on game-equilibria detection. The reformulation 

of Cournot game theoretic model for simultaneous, open 

spectrum access is described in Section III. Section IV 

discusses simulation results obtained for continuous and 

discrete instances of the game. Conclusions are presented in 

Section V. 

II. GAME EQUILIBRIA IN BRIEF 

A strategic-form game model is defined by its three major 

components: a finite set of players, a set of actions, and a 

payoff/utility function which measures the outcome for each 

player, determined by the actions of all players [8], [10]. 

A game may be defined as a system G = ((N, Si, ui), i = 

1,…, n) where: 

(i) N represents the set of n players, N = {1,…, n}. 

(ii) for each player i є N, Si represents the set of actions Si = 

{si1, si2, …, sim}; nSSSS ...21 ××=  is the set of all possible 

game situations; 

(iii) for each player i є N, ui :S → R represents the payoff 

function. 
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A strategy profile in which each player’s strategy is a best 

response to the strategies of the other players is a Nash 

equilibrium (NE) [8], [11]. Informally, a strategy profile is a 

Nash equilibrium if no player can improve her payoff by 

unilateral deviation. 

Considering two strategy profiles x and y from S, the 

strategy profile x is said to Pareto dominate the strategy profile 



y (and we write x <P y) if the payoff of each player using 

strategy x is greater or equal to the payoff associated to 

strategy y and at least one payoff is strictly greater. The set of 

all non-dominated strategies (Pareto frontier) represents the set 

of Pareto equilibria of the game [8]. 

In an n-player game consider that each player i acts based 

on a certain type of rationality ri, i = 1,…, n. We may consider 

a three-player game where r1 = Nash, r2 = Nash, and r3 = 

Pareto. The first two players are biased towards the Nash 

equilibrium and the other one is Pareto-biased. Thus, a new 

type of equilibrium, called the joint Nash-Pareto equilibrium 

(N-P), may be considered [15]. The considered generalization 

involves heterogeneous players that are biased towards 

different equilibrium types or may act based on different types 

of rationality [15]. 

Games can be viewed as multiobjective optimization 

problems, where the payoffs of the participating players are to 

be maximized [15]. An appealing technique is the use of 

generative relations and evolutionary algorithms for detecting 

equilibrium strategies. The payoff of each player is treated as 

an objective and the generative relation induces an appropriate 

dominance concept, which is used for fitness assignment 

purpose [21]. 

Game equilibria may be characterized by generative 

relations on the set of game strategies [21]. The idea is that the 

non-dominated strategies with respect to the generative 

relation equals (or approximate) the equilibrium set. 

Let us denote by IN the set of Nash-biased players and by IP 

the set of Pareto-biased players. We may write: 

�� = �� ∈ �1, . . , 
�|
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�� = �� ∈ �1, . . , 
�|
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E(x,y) measures the relative efficiency of strategy x with 

respect to strategy y, and is defined by: 

 

���, �� = ��
���� ∈ ��|����� , � �� ≥ �����, �� ≠ ���� +
	��
���������, ��	, 

 

where  

����, �� = �
1, �%	� <� �,

0, ��ℎ�
(���.
 

 

The N-P dominance relation <NP, defined as x <NP y if  

E(y,x) < E(x,y), 

 

may be considered as the generative relation for joint Nash-

Pareto equilibria. 

In the following, both continuous and discrete instances of 

a game are considered. As there is no direct calculus method 

for discrete equilibria an heuristic method based on other 

principles is needed. We propose the use of a method 

combining the algorithmic character of a game (through 

generative relations) with an evolutionary technique [15]. The 

generative relation allows comparison of two strategies and 

may serve for fitness assignment purposes in an evolutionary 

procedure. 
Numerical experiments aim the detection of pure equilibria 

or a combination of equilibria paralleling CRs interaction. A 

slight modification of NSGA2 [19], called GTNSGA2 is 
considered. 

III. OPEN SPECTRUM ACCESS MODELLING 

The problem of open spectrum access is modelled as a non-
cooperative, one-shot game. We consider the Cournot standard 
oligopoly competition model, reformulated in terms of radio 
resource access. CR simultaneous access situations are 
considered and modelled as one-shot games. As simultaneous 
spectrum access scenarios do not imply large numbers of users, 
two and three-player games are considered relevant. 
Continuous and discrete instances of the game are analyzed.  

We analyze different types of game equilibria, as they 

describe several types of strategic interactions between 

cognitive agents – each CR’s action directly affects the other 

CRs payoffs. 

Open spectrum access model – Cournot reformulation 

In the Cournot economic competition model players are 

firms that simultaneously choose quantities [8].  

We consider a general open spectrum access scenario that 

can be modelled as a reformulation of the Cournot oligopoly 

game [12].  

Suppose there are n radios attempting to access the same set 

of available channels, simultaneously. Each CR i may decide 

the number ci of simultaneous channels to access. The 

question is how many simultaneous channels should each CR 

access in order to maximize its operation efficiency? 

As mentioned before, a strategic-form game model is 

defined by its three major components: set of players, set of 

actions, and payoffs. For a general open access scenario the 

Cournot competition may be reformulated as follows:  

 

Players  cognitive radios simultaneously attempting to 

access a certain set of channels W; 

Actions  the strategy of each player i is the number ci of 

simultaneously accessed channels;  

A strategy profile is a vector c = ( c1,…,cn). 

Payoffs  the difference between a function of goodput 

P(C)ci and the cost of accessing ci simultaneous 

channels Kci. 

 

A linear inverse demand function is considered – the 

number of non-interfered symbols P(C) is determined from 

the total number C of accessed channels (occupied 

bandwidth). 

The demand function may be defined as: 
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where W > 0 is the parameter of the inverse demand function, 

and C = ∑
=

n

i

ic
1

is the total number of accessed channels. 

The goodput for CR i is P(C)ci . Radio i’s cost for 

supporting ci simultaneous channels is Kci.  

The payoff of CR i may then be written as: 



iii KccCPcu −= )()( . 

The payoff function is kept simple in order to focus on the 

emergent phenomena. The computational model allows for 

more complex payoff functions to be implemented, accounting 

for various parameters, but the essence is captured here. In 

general, P decreases with the total number of implemented 

channels C, and the total cost for supporting ci simultaneous 

channels, Kci, increases with ci (more bandwidth implies more 

processing resources and more power consumption) [12].  

If these effects are approximated by linear functions, the 

payoff function can be rewritten as: 
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where   

W is the number of available channels, and   

K is the cost of accessing one channel.  

 

The Nash equilibrium, considered the solution of this game, 

can be calculated as follows: 

Ν∈∀+−= inKWci ),1/()(*
. 

Pareto and Nash-Pareto equilibria are described by the 
generative relations [15] presented in Section II. 

    

IV. NUMERICAL EXPERIMENTS 

In order to illustrate open spectrum access situations, 

scenarios with two and three CRs simultaneously trying to 

access a given set of channels are considered. CR strategies 

and payoffs are represented two- and three-dimensionally. As 

the continuous modelling captures only partially the variety of 

possible equilibrium situations, discrete instances of the game 

are also considered. 

The results represent a sub-set of more extensive 

simulations. For equilibria detection the evolutionary 

technique from [15] is considered. A population of 100 

strategies is evolved using a rank based fitness assignment 

technique. In all experiments the process converges in less 

than 100 generations. Our tests indicate that the evolutionary 

method for equilibrium detection is scalable with respect to 

the number of available channels [20]. 

Following the game formulation in Section III, the 

simulation parameters are chosen: W = 10 (available channels) 

and K = 1 (cost of accessing one channel). 

A. Continuous Cournot modelling, 2-player simultaneous 

access 

Simulation results are presented for the Cournot 

competition with two CRs simultaneously trying to access a 

set of channels. The stable interaction situations are captured 

by the detected equilibria (Fig. 1): Nash, Pareto, Nash-Pareto, 

and Pareto-Nash. The four types of equilibria are obtained in 

separate runs. Fig. 2 illustrates the payoffs of the two CRs 

u1(c1, c2) and u2(c1, c2). 

As illustrated in Fig. 1, the NE corresponds to a situation 

where each of the two CRs activates 3 channels (from 10 

available). The NE indicates the maximum number of 

channels a Nash-biased player may access without decreasing 

its payoff (Fig. 2). NE is a stable point from which no CR has 

any incentive to individually deviate. 

The Pareto equilibrium (Fig. 2) describes a larger range of 

payoffs, capturing unbalanced as well as equitable situations 

(the two ends of the front vs. the middle). Although each CR 

tries to maximize its utility, none of them can access more 

than half of the available channels: c ∈  [0, 4.5] (Fig.1). The 

Pareto payoffs (Fig. 2) are in the range [0, 20] and their sum is 

always larger than the NE payoff (9,9). 

 
Figure 1.  Cournot modelling – two radios (W = 10, K = 1). Evolutionary 

detected equilibria: Nash (3,3), Pareto, Nash-Pareto, and Pareto-Nash 

 
Figure 2.  Cournot modelling – two radios (W = 10, K = 1). Payoffs of the 

evolutionary detected equilibria: Nash (9, 9), Pareto, N-P, and P-N. 

In some cases, a Nash-Pareto situation enables the CR to 

access more channels than for the NE strategy (Fig.1). A N-P 

equilibrium captures the situation where one CR wants to keep 

its payoff (and chooses a Nash leading strategy) whereas the 

other CR goes for the maximum payoff (and chooses a Pareto 

leading strategy). In the performed experiments the P-N 
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equilibrium is symmetric to the N-P equilibrium with respect 

to NE. In the continuous instance of the game none of the N-P 

strategies actually reach NE (Fig. 1). 

Even if the N-P strategies allow the CRs to access more 

channels (Fig. 1), the payoffs are smaller than for the Pareto 

strategies (Fig. 2). This mirrors the effect of interference 

increasing with the number of accessed channels. 

B. Discrete Cournot modelling – 2-player simultaneous 

access 

Continuous Cournot modelling does not capture the variety 

of possible situations. A discrete instance of the game seems 

more realistic as CRs’ strategies represent the number of 

accessed channels. A generalization of Cournot game allowing 

discrete strategies is proposed. 

The evolutionary detected Nash, Pareto, N-P, and P-N 

equilibria, for the discrete instance of the game, are captured 

in Fig. 3. The discrete instance of the game reveals new 

equilibria: there are three NE strategies (2,4), (3,3), and (4,2). 

The existence of multiple NEa indicates a flexibility in 

choosing the number of accessed channels. There are more 

situations from which the CRs have no incentive to 

unilaterally deviate. Also, the three NE payoffs (6,12), (9,9), 

(12,6) offer a satisfactory diversity of utilities (Fig.4). 

Whether in the continuous instance of the game none of the 

N-P or P-N strategies actually reach NE, in the discrete 

instance they overlap the three NEa (Fig. 3). 

The (3,3) NE is the most stable game situation as it 

maintains even for N-P and P-N strategies (the overlapping of 

symbols in Fig.3). The other two NEa, (2,4) and (4,2), are also 

stable and are maintained for one of the joint strategies – N-P 

or P-N, respectively. 

We may also notice the overlapping of most N-P and P-N 

equilibria onto Pareto equilibria (Fig.3 and Fig.4). This may 

indicate that Pareto optimality is maintained in most cases 

even if a CR plays Nash and the other one plays Pareto. 

We may say that, for this particular instance of the game 

(W=10, K=1), heterogeneity of players does not affect the 

game equilibria. 

C. Continuous Cournot modelling, 3-player simultaneous 

access 

Fig. 5 and Fig. 6 illustrate the equilibrium situations for 

three CRs simultaneously sharing a set of channels W=10.  

The NE (Fig. 5) corresponds to a situation where each of 

the three CRs activates 2 channels (from 10 available). The 

NE indicates the maximum number of channels a Nash-biased 

CR may access without decreasing its payoff (Fig. 5). NE is a 

stable point from which no CR has any incentive to 

individually deviate. 

 

 
Figure 3.  Discrete Cournot modelling – two radios (W=10, K=1). 

Evolutionary detected equilibrium strategies: Nash (2,4), (3,3), (4,2) Pareto, 

Nash-Pareto, and Pareto-Nash. 

 
Figure 4.  Discrete Cournot modelling – two radios (W=10, K=1). Payoffs of 

the evolutionary detected equilibria: Nash (6,12), (9,9), (12,6), Pareto, N-P, 

and P-N. 

As expected, when 3 CRs share the same set of available 

channels, the number of accessed channels per CR and their 

respective payoffs decrease (compared to the 2-CR access 

scenario): NE strategy is (2.25, 2.25, 2.25) and NE payoff is 

(5.05, 5.05, 5.05). 
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Figure 5.  Continuous Cournot modelling – three radios (W=10, K=1).  

Evolutionary detected equilibrium strategies: Nash (2.25, 2.25, 2.25), Pareto, 

N-N-P, and N-P-P. 

 

Figure 6.  Continuous Cournot modelling – 3 radios (W=10, K=1).  Payoffs 

of the evolutionary detected equilibria: Nash (5.05, 5.05, 5.05), Pareto, N-N-P, 

and N-P-P. 

In the 3-player game the variety of joint Nash-Pareto 

equilibrium situations increases combinatorially. For 

illustration we chose Nash-Nash-Pareto and Pareto-Pareto-

Nash equilibria (Fig. 5 and Fig. 6). In order to get a better 

view of the equilibria we turn to the discrete instance of the 

game.  

D. Discrete Cournot modelling, 3-player simultaneous access 

Fig. 7 and Fig. 8 capture the equilibrium situations for the 

discrete modelling of the 3-CR simultaneous access.  

Seven Nash equilibria (2,2,2), (2,2,3),  (2,3,2),  (3,2,2), 

(1,3,3),  (3,1,3), (3,3,1) can be identified. This indicates an 

even higher flexibility in choosing the number of accessed 

channels for each CR. Also the range of satisfactory payoffs is 

increased. NE payoffs are (6, 6, 6), (4, 4, 6), (4, 6, 4) , (6, 4, 

4), (2, 6, 6), (6, 2, 6), (6, 6, 2). 

 
Figure 7.  Discrete Cournot modelling, 3 CRs (W=10, K=1). Strategies: 

Nash: (2,2,2), (2,2,3),  (2,3,2),  (3,2,2), (1,3,3),  (3,1,3), (3,3,1), Pareto, N-N-P, 

and N-P-P. 

 

Figure 8.  Discrete Cournot modelling, 3 CRs (W=10, K=1). Payoffs: Nash 

(6, 6, 6), (4, 4, 6), (4, 6, 4), (6, 4, 4), (2, 6, 6), (6, 2, 6), (6, 6, 2), Pareto, N-N-

P, and N-P-P. 

We may notice that N-N-P and P-P-N no longer overlap 

Pareto and Nash equilibria. The heterogeneity of players has a 

visible impact on the game equilibria – new equilibrium 

situations appear (the distinct Nash-Pareto equilibria). 

 

V. CONCLUSIONS 

One-shot games are considered in order to assess non-

iterative spectrum access scenarios. Open spectrum access 

scenarios are modelled based on continuous and discrete 

reformulations of the Cournot game theoretical model. 

Simultaneous access of two and three CRs is analyzed. Nash 

and Pareto equilibria are revisited in the discrete instance of 

the game. Heterogeneity of players is captured by joint Nash-

Pareto equilibria. 

Numerical simulations reveal equilibrium situations that 

may be reached in simultaneous access scenarios. Besides 
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Nash and Pareto equilibria new equilibrium situations 

establish, especially in the 3-player game. 

Continuous Cournot modelling does not capture the variety 

of possible situations. Discrete instances of the game reveal 

multiple Nash equilibria and distinct Nash-Pareto equilibria. 

This indicates more flexibility for the CRs in choosing 

satisfactory spectrum access strategies. 

 

ACKNOWLEDGMENT 

This paper was supported by CNCSIS –UEFISCDI, Romania, PD, project 

number 637/2010. This work was also supported by the project "Develop and 

support multidisciplinary postdoctoral programs in primordial technical areas 

of national strategy of the research - development - innovation" 4D-

POSTDOC, contract nr. POSDRU/89/1.5/S/52603, project co-funded from 

European Social Fund through Sectorial Operational Program Human 

Resources 2007-2013. D. Dumitrescu acknowledges the support of a grant 

from the John Templeton Foundation. The opinions expressed in this 

publication are those of the authors and do not necessarily reflect the views of 

the John Templeton Foundation. R. Nagy acknowledges the support of 

POSDRU/88/1.5/S/60185 – “Innovative Doctoral Studies in a Knowledge 

Based Society”. 

REFERENCES 

[1] I. Akyildiz, W. Lee, M. Vuran, S. Mohanty, “NeXt generation/dynamic 
spectrum access/cognitive radio wireless networks: a survey,” Computer 

Networks: The Int. J. of Computer and Telecommunications Networking, 
vol. 50, no. 13, pp. 2127 –2159, 2006. 

[2] C. Cordeiro, K. Challapali, D. Birru, “IEEE 802.22: An Introduction to 
the first wireless standard based on cognitive radios”, J. of Comm., vol. 
1, no.1, pp.38-47, 2006. 

[3] S. Deb, V. Srinivasan, R. Maheswari, “Dynamic Spectrum Access in 
DTV Whitespaces: Design Rules, Architecture and Algorithms”, 
MobiCom2009. 

[4] S. Srinivasa, S.A. Jafar, “The Throughput Potential of Cognitive Radio: 
A Theoretical Perspective”, IEEE Comm. Mag., pp.73-79, 2007. 

[5] Linda E. Doyle, Essentials of Cognitive Radio, Cambridge U.P., 2009. 

[6] P. Kolodzy, “Communications policy and spectrum management”, in 
Fette, Bruce, A. (Ed.): Cognitive Radio Technology, Elsevier, 2006, 1st 
edn.,  pp. 29-72. 

[7] D. Niyato, E. Hossain, “Microeconomic models for dynamic spectrum 
management in cognitive radio networks”, Cognitive Wireless 

Communication Networks, Hossain, E., Bhargava, V.K. (eds.), Springer 
Science+Business Media, NY, pp. 391-423, 2007. 

[8] M.J. Osborne, An Introduction to Game Theory, Oxford U.P., 2004. 

[9] P. Weiser, D. Hatfield, “Policing the spectrum commons,” Fordham 
Law Review, vol. 74, pp. 101–131, 2005. 

[10] B. Wang, Y. Wu, K. J. R. Liu, “Game theory for cognitive radio 
networks: an overview”, Computer Networks, The Int. J. of Computer 

and Telecommunications Networking, vol. 54, no. 14, pp.2537-2561, 
2010. 

[11] J. Nash, “Non-Cooperative Games”, The Annals of Mathematics, vol. 
54, no. 2, pp. 286-295, 1951. 

[12] J.O. Neel, J.H. Reed, R.P. Gilles, “Game Models for Cognitive Radio 
Algorithm Analysis”, 

 http://www.mprg.org/people/gametheory/presentations.shtml , 2004. 

[13] A. MacKenzie, S. Wicker, “Game Theory in Communications: 
Motivation, Explanation, and Application to Power Control”, 
Globecom2001, pp. 821-825, 2001. 

[14] J.W. Huang, V. Krishnamurthy, “Game Theoretic Issues in Cognitive 
Radio Systems”, J. of Comm., vol.4, no.10, pp.790-802, 2009. 

[15] D. Dumitrescu, R. I. Lung, T. D. Mihoc, “Evolutionary Equilibria 
Detection in Non-cooperative Games”, EvoStar2009, Applications of 
Evolutionary Computing, Lecture Notes in Computer Science, Springer 
Berlin / Heidelberg, Vol. 5484, pp. 253-262, 2009. 

[16] M. Maskery, V. Krishnamurthy, Q. Zhao, “GT Learning and Pricing for 
Dynamic Spectrum Access in Cognitive Radio”, E. Hossain, V.K. 
Bhargava, (eds.) Cognitive Wireless Communication Networks, Springer 
Science +Business Media., NY, 2007. 

[17] D. Monderer, L. Shapley, “Potential Games, Games and Economic 
Behavior”, 14, pp. 124–143, 1996. 

[18] D. Niyato, E. Hossain, “Microeconomic Models for Dynamic Spectrum 
Management in Cognitive Radio Networks”, E. Hossain, V.K. 
Bhargava, (eds.) Cognitive Wireless Communication Networks, Springer 
Science+Business Media, NY, 2007. 

[19] K. Deb, S. Agrawal, A. Pratab, T. Meyarivan, “A Fast Elitist Non-
Dominated Sorting Genetic Algorithm for Multi-Objective 
Optimization: NSGA-II”, Schoenauer, M., Deb, K., Rudolph, G., Yao, 
X., Lutton, E., Merelo, J. J., Schwefel, H.P. (eds.) Proc. of the 
PPSN2000, Springer LNCS, 1917, pp.849-858, 2000. 

[20] Ligia C. Cremene, D. Dumitrescu, Réka Nagy, “Oligopoly Game 
Modeling for Cognitive Radio Environments”, Balandin S., Dunaytsev, 
R., Koucheryavy, Y., (eds.) Proc. of the Smart Spaces and Next Gen. 
Wired/Wireless Networking, Springer LNCS, Vol 6294, pp. 219-230, 
2010. 

[21] R.I. Lung, D. Dumitrescu, “Computing Nash Equilibria by Means of 
Evolutionary Computation”, Int. J. Comput Commun, Vol.3, pp:364-
368, 2008. 

 


