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Abstract—This paper deals with the problem of designing an
exact nonlinear reconstructor for discrete-time chaotic encrypted
messages. More precisely, we investigate the problem of designing
a discrete-time dead-beat observer for nonlinear systems with
unknown inputs. The application of the proposed observer in
the context of secure communication and data transmission is
also investigated.

I. INTRODUCTION

Since the past two decades, there has been an increasing
interest in the problem of synchronization of chaotic systems
due to their potential application in secure communication.
In effect, in [11], Pecora and Carroll showed that when state
variable from a chaotically evolving system is transmitted as
an input to a copy of the original system, the replica subsystem
(receiver) can synchronize to the original system (transmitter).
In [10] they presented the synchronization of two Lorenz
systems with different initial conditions.

Following these two works, a huge attention to the synchro-
nization of chaotic systems was then paid due to their potential
applications in secure data transmission ([9], [7], [12], [11],
[7], [14], [5]...). For this, the idea of masking the messages
by the chaotic signal generated by the transmitter and then
transmitting the information to the receiver under the form of
a combined signal - consisting of the addition of the message
and the chaotic signal - was proposed. The message was then
recovered by synchronizing the receiver with the scalar signal
transmitted by the transmitter.

This synchronization may be viewed as an observer design
problem (see for example the work of H.Nijmeijer and I.
Mareels in [9]). Moreover, in [5] the authors have proved that
the design of observer for system with unknown input may be
used in the context of secure communication.

This paper proposes a new encryption algorithm based on
chaotic models and a nonlinear discrete time observer. The
main motivation in considering discrete time models id due to
the fact that, the information such as it employed nowadays is

in most cases digitalized and processed by computers. Thus it
becomes primordial to study systems at discrete time.

Additionally, the increasing development of broadband net-
works and services, alongside the recent demand for privacy
and paid services, has led to the need for systems and
algorithms to encrypt information [15]. The most important
applications include the encryption of video messages for
pay-TV services, voice over IP (Internet Protocol), and data
messages transmitted over telemetric networks (electronic sig-
natures, electronic banking and commerce, etc.).

As already mentioned above, chaotic signals and systems
for private or secured communications have been investigated
with increasing interest in the last few years (see references
of authors [1], [2], [3], [4]). The advantage of using methods
based on chaos theory lies in the high level of security
chaotic systems offer as compared with traditional encryption
techniques. At the same time they are very competitive due to
the fact that they are inexpensive to implement.

The application scenario of chaotic encryption mainly con-
sidered in literature is a traditional analog or digital commu-
nication system in which the transmitter and receiver must be
synchronized in order to have a correct decoding phase [20],
[21].

In particular in this paper, we describe the potential of a new
chaotic ciphering process applied to secured communications
based on the inclusion of the message in the structure of the
transmitter.

II. PROBLEM STATEMENT

The aim of our work consist in the design and the validation
of digital schemes for secure communications based on chaotic
maps. Past results have led to a prototypal realization of
schemes based on synchronization. The actual objective is to
optimize the choice of the chaotic system and its parameters,
investigating its behavior in a real application context and its
robustness against unauthorized receiver attacks. To realize



this objective, we adopt a technique based on inclusion of
the message in the system structure (see figure 1).
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Fig. 1: Inclusion Method

In order to illustrate the last method let us consider the
following discrete time system

x+ = f(x, u, p) (1)

With x+ used instead of x(k + 1) and the state vector x ∈
<n instead of x(k), u ∈ < is the control variable, p ∈ <m

is the parameters vector of the system, and the vector field
f : <n+m × < −→ <n . So, we can choose, without loss of
generality the output as any component of the state variables.

The idea consist in using the parameter p as carrier of the
message m, that is for example

u′ = u+M (2)

We replace u by u′ in the equation of the transmitter which
gives

x+ = f(x, u′, p) (3)

where, each iteration of the state convey to the k − th byte
of the message (text file, sound or image ...). In the public
channel, only the output y will be sent to the receiver. To
obtain the message, we have to synchronize both transmitter
and receiver. This last one is the copy of the original system
(1) of the form

x̂+ = f(x̂, u, p) (4)

the error between the transmitter and the receiver
e = x− x̂ is

e+ = f(x, u′, p)− f(x̂, u, p) (5)

the method consist in trying to extract M from the equation
of the error (5).

Remark 1: The inclusion method may be seen as an ob-
server design with unknown input (M in the equation 3).

III. MAIN CONTRIBUTION

Recall that chaos is a deterministic, random-like process
found in non-linear dynamical system, which is non-periodic
and bounded. Moreover, it has a very sensitive dependence on
its parameters and initial conditions generating it. A chaotic
Mandelbrot map is a discrete-time dynamical system running
in chaotic state and of the form:

x+ = f(x, u, p)
y = h(x)

(6)

with:

f(x, u, p) =

 b+ (a+ b)x1 + x3 + x21 − x22
b+ c+ 2x1x2
u



where p = (a, b, c)T is the parameters vector, u is the control
that we apply to the system in order to preserve the chaotic
behavior (for the simulations we will set u = 0.09). The
constants b and c consist of the key shared between the sender
and the receiver. The initial conditions are also a part of the
key, but they are known to the transmitter. This system formed
by basic function f : <6 × < −→ <3 is a chaotic generator
and has the following properties:
• f has sensitive dependence on initial conditions;
• f is topologically transitive; i.e. if, given any two intervals
U and V , there is some positive integer k such that
fk(U)∩ V 6= ∅. Vaguely, this means that neighborhoods
of points eventually get flung out to ”big” sets so that they
don’t necessarily stick together in one localized clump.

Intuitively, a map possesses sensitive dependence on initial
conditions if there exist points arbitrarily closed to x which
eventually separated from x by at least δ > 0 under some
iterations of f . On the other hand, a topologically transitive
map has points which eventually move under iterations from
one arbitrarily small neighborhood to any other. Thus a chaotic
system is unpredictable because of the sensitivity on initial
conditions perturbations.

Any chaotic system should be mixing, i.e. the phase space
<n should be randomly mixed by repeated action of f . Further,
most chaotic systems depend on some control parameters and
exhibit sensitivity with respect to those parameters.

An ideal chaotic signal presents the main properties of a
secure cryptographic system: it is unpredictable and it cannot
be reliably reproduced. Starting from different parameters,
in fact, it is impossible to obtain two identical series, even
though the difference between the parameters is a very slight
one. This is an essential feature of chaotic systems. Roughly
speaking, encryption and chaos exhibit remarkably similar
features. The parameters and the initial conditions can be
used as the encoding key. Furthermore, some variations of
parameters can be used as support of the message to amount;
it is the idea of the method by inclusion (see figure 1).

Chaotic sequences are uncorrelated when their initial values
are different. In addition, it is possible to synchronize two
copies of a discrete-time chaotic system, in the sense that their
state trajectories tend asymptotically to be identical when one
system is suitably driven by the other. If the driving signal is
selected appropriately, the discrete-time synchronization will
be immediate.

To achieve the transmitter-receiver synchronization imme-
diately, we try to apply the discrete-time synchronization to
chaotic spread-spectrum communication systems by proposing
a novel communication scheme.

In this work, we consider the nonlinear discrete time map
given in (6). It is assumed that the output y is measured at dis-
crete instances. We will consider conditions which guarantee
that these measurements determine x exactly. Consequently,
we describe how x can be computed by an observer with
features similar to a dead-beat observer. This map exhibits
a chaotic behavior in a large neighborhood of the parameter
values.



The encryption algorithm proposed in our application, is
based on the synchronization of both transmitter and receiver,
which are represented by the same chaotic model and the
message is hidden in the chaotic structure of the transmitter,
for more security. Where the synchronization problem has
been resolved quite simply by exploiting the intrinsic syn-
chronization offered by the use of a dead-beat observer.

To study the problem of synchronization in discrete-time
context, we assume the following system :

x+1 = f1(x1, x2, u
′, p)

x+2 = f2(x1, x2, u
′, p)

Such that x = (x1, x2)
T , where x1 ∈ <n−1, x2 ∈ <, and u′

(defined in (2)) is the unknown control applied to the system.
Let us choose y = x2 as output.

Then the observer equations are:

x̂+1 = f̂1(x̂1, x2, u, p, y, ...., y
N−) (7)

where yi− = y(k − i) ∀ i = 0, .., N , and the observation
errors are:

e+1 = x+1 − x̂
+
1 (8)

= f1(x1, x2, u
′, p)− f̂1(x̂1, x2, u, p,k , ...., yk−N )

Synchronization of both systems now corresponds to required
condition, that is:

lim
k−→∞

‖x− x̂‖ −→ 0 (9)

This condition of asymptotic synchronization, will not be
satisfied in general and, in fact, assumptions on f1 and f2
that guarantee this condition are only partially known. The
technique which we propose in this paper, ensures a faster
convergence, independently of the chaotic structures of f1 and
f2. Indeed, our secure transmission scheme enable, a finished-
time synchronization of the original system and the observer
. i.e.

∀ k � k0, ‖x− x̂‖ = 0, where k0 a small integer (10)

Remark 2: It is important to note that in our technique, the
system may have some singularities bifurcations. However,
it is impossible to use the implicit function theorem and in
the same time the methods developed in [7] and [14] in
order to reconstruct the state vector of the transmitter. In
our case, we will use the information of delayed outputs
values yk, ...., yk−N and the observation error to reconstruct
the transmitted message.

So we can see that the observation errors will reach exactly
zero in three steps regardless of their initial values. This,
means that chaotic systems achieve synchronization after three
steps. Due to the deterministic nature of chaotic motions,
once synchronization has been achieved, both systems remain
synchronized.

Now let us consider the Mandelbrot system, and let us note
that M represent the message and only the information y =

x2, the chaotic output, is transmitted to the receiver via a
public channel. Then, the transmitter will have the following
form

x+1 = b+ (a+ b)x1 + x3 + x21 − y2
x+2 = b+ c+ 2 x1y
x+3 = u+M

(11)

While the receiver will have the following form

x̂+1 = b+ (a+ b)x̂1 + x̂3 + x̂21 − y2
x̂+2 = b+ c+ 2 x̂1y
x̂+3 = u

(12)

The dynamic error is given by

e+1 = x+1 − x̂
+
1

= (a+ b)e1 + e3 + x21 − x̂21
e+2 = x+2 − x̂

+
2 = 2 x̂1y

e+3 =M

(13)

We can see from these equations that we have to compute
e3 to find the message. Before that, we must prove the
synchronization of both systems (transmitter and receiver). For
this, it is enough to show that e1 −→ 0.

So the second equation gives e1 =
e+2
2y

, which tends to zero

for y 6= 0 (because e2 −→ 0). Consequently, when y = 0 this
leads to a singularity. However, to overcome this problem we
will adopt the following definition of e1 as:

e1 =
e+2 y

2y2 + ε

Where ε > 0 is a small parameter. Under this consideration
e1 still converges to zero ∀ y ∈ <.

So, to compute the error e+1 we need y++ which is not
available at time (k + 1), to bypass this problem, we have to
compute x̃1 the reconstructed state of the transmitter x1as:

x̃1 = e1 + x̂1

then, we obtain:

x̃1 =

 x̂1 +
e+2 y

2y2 + ε
if |y| � ε

x̂1 if |y| ≤ ε
And this will allows us to implement calculate x̃1 in the first
equation of the deed-beat observer

x̂+1 = b+ (a+ b)x̃1 + x̂3 + x̃21 − y2
x̂+2 = b+ c+ 2 x̂1y
x̂+3 = u

(14)

It is now possible to compute e+1 as:

e+1 = x+1 − x̂
+
1

= (a+ b)e1 + e3 + (x̂1 + e1)
2 − x̂21

= (a+ b+ 2x̂1)e1 + e21 + e3

from which we extract the observation error e3

e3 = −(a+ b+ 2x̂1)e1 − e21 + e+1



then, we obtain

e− −3 = −(a+ b+ 2x̂−−1 )e−−1 −
(
e−−1

)2
+ e−1

= −(a+ b+ 2x̂− −1 )

(
e−2 y

− −

2(y− −2) + ε

)
−
(

e−2 y
− −

2(y− −2) + ε

)2

+

(
e2y
−

2(y− 2) + ε

)
Now, from the equation e+3 = M, to find the message we
delay e3 two times for seek of causality:

e− −3 = x−−3 − x̂−−3 =M− −−

which means that e3(k− 2) =M(k− 3). So we have to wait
three steps before starting to receive the message (i.e. recover
M ).

The delays applied to the reconstructed message depends
strongly on the length of the chaotic system and on the position
of the implemented message. In this example, the system is
three dimensional and the message intervenes in the third
equation, which explains the delay of three steps to recover
the message.

Remark 3: In order to avoid the loss of information, we
can add to the beginning of our confidential message, another
message without particular meaning. This message should not
be long, only three words (some bits are enough, the time that
the transmitter and the receiver synchronize).

IV. SIMULATIONS RESULTS

To illustrate the efficiency of the proposed technique of
ciphering, we consider the Mandelbrot system (11) as a
transmitter and (12) as a receiver with the following initials
conditions and parameters values: a = 0.8, the keys: b = 0.2
and c = −0.7. Finally, the initial condition: x1(0) =
−0.2744, x2(0) = −0.452, x3(0) = 0.091.

We carried out a computer-based experiments which allow
us to encrypt and decrypt given files as well text as image or
sound. The encryption and decryption programs were written
with the Visual C++ version 6.0. The Following experiment
results show that the synchronization of both systems (trans-
mitter and receiver) is immediate and the communication result
is correct and reliable.

It is necessary in this technique that the parameters of
the system stay in a certain domain, appointed by a “Arnold
tongues” [22] because if they exceed it, the system diverges
from the chaotic trajectory and “blow up” completely. This
occurs also for a bad choice of the initial conditions.

We can exploit this other characteristic of the chaos, in order
to tighten up the transmissions security; by implementing high-
dimensional chaotic systems, having a significant number of
parameters, these possessing a rather wide “Arnold tongues
”. Because, more this strip is wide, more the probability
to success an “exhaustive attack” (for example) against the
system, is weak.

We noticed that the second state of the system contains
an important singularity, that we can isolate in the form of
hyperplane. We can exploit this singularity to increase the

security of our technique and this by introducing a function θ
which will prolongs the singularity the necessary time to dis-
orientate the possible “pirate” when he will try to intercept the
chaotic signal, by making diverge its process of deciphering.
This function is defined as follows

θ(x2) =

{
0 if |x2| ≤ “threshold”
x2 else

The “threshold” is chosen so as to respect the chaotic behavior
of the used generator (10−4 in this example). This modification
applied, as well to the transmitter as to the receiver, may
perturb the trajectory of the chaotic signal and imply afterward
a loss of punctual information. However, we do not have to
choose between the quality of the reception and the security,
if we use a good filter, allowing us to offset this loss of
information.

The algorithm has been successfully applied to sound,
pictures (see Figure 2 and Figure 3), texts and tested on the
Visual C++ version 6.0.

Fig. 2: Original picture

Fig. 3: Encrypted picture

It is important to note that in our case, this output is not
used as a carrier signal for the message. It is included in
the structure of the chaotic system (transmitter). The correct
transmitter/receiver synchronization has been verified using
several testing examples, but only the Mandelbrot model is
presented in the paper. These test shows that the decryption



algorithm does not depend on the type of information trans-
mitted (audio, video, data) or the processing (if any) that the
messages undergoes (compression, etc.).

V. CONLUSION

In this paper, we have designed an exact nonlinear re-
constructor for discrete-time chaotic encrypted messages. The
application of the proposed observer for secure communication
and data transmission was studied. In order to optimize the
transmission time, it was shown that it is better to minimize
the ratio between the clear message and the encrypted one. For
this, one can for example, transmit, at the same time, three
characters instead of one. Hence, for three characters input,
we obtain four characters output, which reduce significantly
the encrypted text size on the transmission line. However, to
realize this type of encoding, one must be very careful as for
pre-established boundaries of the given chaotic system and
envisage a reducing factor of the digitized value of the message
(ASCII code for text). This, in order to do not overflow
variation field, this, necessary, leads the chaos to diverge from
its trajectory. This last remark holds, for a signal transmission,
whose amplitude should be known beforehand to calculate the
suitable reduction to insert in the chaotic structure.

REFERENCES

[1] I. Belmouhoub, M. Djemaı̈ , J-P. Barbot, “Observability
quadratic normal forms for discrete-time systems”, IEEE Trans.
On Automatic Control, Vol. 50, No. 7, pp. 1031-1038, July,
2005.

[2] M. Djemaı̈, J.P. Barbot and D. Boutat, ”New type of data
transmission using a synchronization of chaotics systems” In-
ternational Journal of Bifurcations and Chaos, Vol 15, No 1,
1-17, 2005.

[3] M. Djemaı̈, J.P. Barbot and I. Belmouhoub,Discrete time normal
form for left invertibility problem, in European Journal of
Control, EJC Issue, in European Journal of Control, N2, Vol-15,
pp 194-204, 2009.

[4] L. Boutat-Baddas, J-P. Barbot, D. Boutat and R. Tauleigne,
“Observability bifurcation versus observing bifurcations”. In
Proc. Ifac World Congress, 2002.

[5] H.J.C. Huijberts, T. Lilge, H. Nijmeijer,“Nonlinear Discrete-
Time Synchronization Via Extended Observers”,International
Journal of Bifurcation and Chaos, Vol 11, No 7, pp 1997-2006.
2001.

[6] U. Kotta,“Inversion method in the discrete-time Nonlinear con-
trol systems synthesis problems, lecture notes in control and
information sciences”, Vol 205. Springer-Verlay. 1995.

[7] T. Lilge, “ Nonlinear Discrete-Time observers for synchro-
nization problems”, LNCIS 244, New Direction in nonlinear
Observer Design, pp 491-510. 1999.

[8] S. Monaco and D. Normand-Cyrot, “Functional expansions for
nonlinear discrete-time systems”, Math.systems.theory,Vol 21,
pp 235-254. 1989.

[9] H. Nijmeijer and I.M.Y. Mareels, “An observer looks at synchro-
nization”, IEEE Trans. on Circuits and Systems-1: Fundamental
Theory and Applications, Vol 44, No 10, pp 882-891. 1997.

[10] L.M. Pecora and T.L. Carroll, ”Synchronizing in chaotic sys-
tems”. Phy. Rev. Let. 64, pp 821-823. 1990.

[11] L.M. Pecora and T.L. Carroll, ”Synchronizing chaotic circuits”.
IEEE Trans. Circuits Systems 38, pp 453-456. 1991.

[12] U. Parlitz, L.O. Chua, Lj. Kocarev, K.S. Halle and A. Shang,
Transmission of digital signals by chaotic synchronization, Inter.
Journal of Bifurcation and Chaos, Vol 2, No 4, pp 973-997.
1992.

[13] A. Rapaport and A. Maloum,“Embedding For Exponential
Observers Of Nonlinear Systems”, In 39th CDC Confer-
ence.CDROM. 2000.

[14] H. Sira-Ramirez, C. Aguilar Ibanez and M. Suiarez-Castanon, “
Exact state reconstructors in the recovery of messages encrypted
by the states of nonlinear discrete-time chaotic systems”. Per-
sonal communication. Internal report (CINVESTAV-IPN). 2001.

[15] W. Stallings, “Cryptography and Network Security: principles
and practice”, Prentice Hall, New Jersey. 1998.

[16] D. R. Frey, “Chaotic Digital Encoding: An Approach to Secure
Communication”, IEEE Trans. on Circuits System, Part II, Vol
40, No 10, pp 660-666. 1993.

[17] M. Gotz, K. Kelber and W. Schwarz, “Discrete-Time Chaotic
Encryption Systems - Part I: Statistical Design Approach”, IEEE
Trans. on Circuits and System, Vol. 44, No 10, pp 963-970, Oct.
1997.

[18] T. Stojanovski, L. Kocarev and U. Parlitz, “Digital Coding via
Chaotic System”, IEEE Trans. on Circuits and System, Vol. 44,
No 6, pp 562-565, 1997.

[19] F. Dachselt, K. Kelber and W. Schwarz,“Chaotic Coding and
Cryptoanalysis”, Proceedings of ISCAS’97, pp 1061-1064.
1997.

[20] G. Kolumban, M. P. Kennedy and L. O. Chua, “The Role of
Synchronization in Digital Communications Using Chaos-Part
I: Fundamentals of Digital Communications” IEEE Trans. on
Circuits and Systems, Vol 44, No 10, pp 927-936, Oct. 1997.

[21] A. De Angeli, R. Genesio, and A. Tesi, “Dead-Beat Chaos
Synchronization in Discrete-Time System”, IEEE Trans Circuits
Syst.-Part I, Vol 42, No 1, pp 54-56. 1995.

[22] S. Wiggins, “Introdusction to applied Nonlinear Dynamical
Systems and Chaos”, Springer-Verlag. 1990.


