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Abstract—This paper presents two new space time block codes
(STBCs) with quasi orthogonal structure for an open loop multi-
input single-output (MISO) systems. These two codes have been
designed to transmit from three or four antennas at the trans-
mitter and be given to one antenna at the receiver. In this paper
first, the proposed codes are introduced and their structures
are investigated. This is followed by the demonstration of how
the decoder decodes half of transmitted symbols independent
of the other half. The last part of this paper discusses the
simulation results, makes performance comparison against other
popular approaches and concludes that the proposed solutions
offer superiority.

Index Terms—Multi-input single-output, 5G, space time block
codes, fading channels, multipath channels

I. INTRODUCTION

OWADAYS, on the one hand explosion of data traffic

in wireless communication is real and undeniable [1],
on the other hand, spectrum is the most valuable and scarce
asset in communication. In order to achieve a high data
transmission rate in narrow band wireless communication with
an acceptable performance, we need to combat the interference
between received symbols at the receiver which is called
fading phenomenon in Rayleigh channels. One of the most
advanced methods that is commonly deployed is space and
time diversity which means the transmission of symbols not
only from different places, but also at different times, requiring
neither extra bandwidth nor more transmission power. The
codes which benefit from these types of diversity are called
space time block codes (STBCs).

Today, many STBCs with various characteristics designed
for open loop multi-input multi-output (MIMO) systems are in
existence. We can categorize some of codes into two groups,
those with orthogonal and those with quasi orthogonal struc-
tures. Although orthogonal space-time block codes (OSTBCs)
decoder is much simpler than quasi-orthogonal space-time
block codes (QOSTBCs) one, the rate of QOSTBCs is higher
than that of OSTBCs for more than two transmitter antennas.
Let ponder on the STBCs which are presented in [2], [3[]
for quasi-static flat fading channels. An OSTBC with very
simple decoder and full rate is Alamouti code [2] and since
of this feature it is a good choice for practical applications.

Relaxing the simple decoding capability of OSTBCs, not
being exist full rate OSTBCs for more than 2 transmitter
antennas is a drawback for these codes. To overcome this
shortcoming, QOSTBCs was introduced for the first time in [4]]
. The presented code was for four transmitter antennas which
can be approached to full rate at the expense of diversity.
Subsequently, both full rate and full diversity QOSTBC which
was an enhancement of [4] appeared in [5], [6]. In both
aforementioned studies, diversity has been improved from 2M
to 4M, in which M is the total number of antenna on the
receiver side, by constellation rotation for some symbols. The
orthogonality space between the two groups of columns makes
independent decoding of pairs of transmitted symbols possible.

Some codes with different structure from that of OSTBCs
and QOSTBCs with dramatically better performance have also
been reported. For instance, the code proposed in [[7] known as
Golden Code, is full rate, full diversity and also non-vanishing
constant minimum determinate with 2 X 2 transmission ma-
trices, likewise Perfect Codes with 3 x 3,4 x 4, and 6 X 6 is
studied in [[8]] . The main advantage of these codes is that their
rates are more than one, nonetheless this is at the expense of
ML detection with high complexity and the requirement for
more than two receiver antennas.

In this paper, we present two new STBCs, one for three
and the other for four transmit antennas with quasi-orthogonal
form. For more clarification, consider a codeword in which
some groups of its columns are orthogonal to the opposite
groups’ columns, while columns in the same group are not.
That was the reason that they have been called QOSTBCs.
Due to the space created between column, we can decode half
of transmitting symbols without dependence the other half.

These two codes are both full rate and full diversity. Note
that full diversity can appear when some of the transmitted
symbols are selected from a constellation and the others are
selected from the rotation of that constellation. This derivation
has been proven in both [5]] and [[6]. In fact, the strategy which
is used in this paper is to combat destructive fading coeffi-
cients. In other words, we have combined symbols through
scarifying of neither full rate nor full diversity.

The rest of the paper is organized as follows; In section



IT system model is introduced and in Section III structure of
the codes and the decoders are investigated. Simulation results
are provided in Section IV. Finally, Section V concludes the

paper.
Notation: We used bold letter for matrices. Superscripts
(), ]I.]|F, and (.)* to indicate Hermitian, Frobenius norm and

complex conjugation, respectively. In addition, we use CM >V

to represent the set of M x N matrices over field of complex
numbers.

II. SYSTEM MODEL
A. Transmission Model

Let consider a quasi-static flat fading channel with M+ and
My antennas at the transmitter and the receiver, respectively.
Throughout this paper, we assume that there is no informa-
tion about the channel state on the transmitter side, but the
receiver has informed about channel state information well. In
addition they have been perfectly synchronized. Suppose that
the transmitter sends the codeword C € CT*M7 over T time
slot, thus we can model the system as below:

Y =CH+N, (1)

in which Y € CT*M=r js the received signal, H €
CMr*Mr jg fading matrices and N € CT*Mr s the Additive
White Gaussian Noise (AWGN). For a system that has been
designed for two blocks fading the following expression can
be written as follows:

Y, |C: 0] H, N,
SO A 1 RS R
where codeword can be defined as below:
C = diag{C;, Cy} € C?Tx2Mr 3)

B. Decoder Model

For maximum-likelihood (ML) detection at the receiver, the
decoder examines all possible answers for this equation and
then decides on the minimum of the following equation:

C = argmin|[Y — C'HI[}. “)

III. PROPOSED METHOD
A. Four Transmitter and One Receiver Antennas

In this section, we present our two QOSTBCs and also its
proposed decoder. We begin with the QOSTBCs for My =4
and Mpr = 1, and proceed with the analysis of ML decoder
before returning to consider the case of M7 = 3 and Mg = 1.
By using the Alamouti scheme [2]] we can define ¢ as matrix
generator,

G (v1,12) & [I;/; E] : (5)
Note that it is obvious that the two columns of this matrix are
orthogonal to each other. To construct C; and C,, we should
write as follows:

a 4(S1 +752)
€= [—(go% S

g(gg + j§4)

@S, +j52))*} - ©

and,

G(51—752)
—(9(S5 — jS4))*

(S5 — jSu)

€= @S, — jS2))"]”

(N
where S), = Sy, x €% for k = 3,4,7,8. The aforementioned
codewords are the outcome of a case where the careful
combination of the two symbols results in the best possi-
ble performance. In this case, as Eq. (6) and Eq. (7), are
showing we combine Sy, and Sj4, Where k = 1,2,...,4,
orthogonally. After substituting (3) in both (€) and (7), we
can represent C; and Co, as follows:

[ S + 4S5 So + 756 gg, +j§z 54 +j»§8_
C, = =53 +jS¢ ST —JS;  —Sp+jSs S53—j57
=535 +JS7 —=Sp+jSs ST —jS5  S53—7S§
| S4+3jSs —S3—3jSr —S2—3jSe S1+ 7S]
(3
[ S1 -34S S2—jSe  S3—jSr  Si—jSs]
C, = =53 —jS¢ ST +jS;  —5;—jSs S3+jS7
=535 —jS7 —S5;—jSs ST +jS5 53475
| =S4 —JSs —S3+3S7 —S2+3jS¢ Si1-— ng@)

The final codeword can be concluded using Eq. (3).

When a system utilize this QOSTBC (the quasi-
orthogonality will be provided) structure, it transmits C; in
the first four time slots from its four transmitter antennas,
on the other side, the receiver receives Y1, and buffer that,
the second four timeslots is the time to send the next sub-
codeword C,, and on the receiver side an approximation of
C, (Y5), will be received. Note that the channel state while
transmitting Cy, should be different from while the transmitter
is transmitting C,. This recent scenario can implemented by
using a reconfigurable antenna such as PIXEL antenna [9] on
the receiver side. PIXEL antennas are capable to provide up
to 5 uncorrelated channel propagation states simultaneously,
therefore even more diversity gain is achievable. It can be
stated, therefore, that by employing the proposed strategy the
channel changes from quasi static to block fading and as
a result the probability of destructive fading effect, will be
mitigated near to zero.

Given that eight symbols are transmitted in eight time slots,
the code rate is one and because it employs one antenna on
the receiver side (MISO structure), it is a full rate code. In
order to achieve full diversity and to maximize the minimum
of code gain distance (CGD), we have to select Sk, in which
k=1,2,...,8, from rotated constellation. Let v, denotes the
k™ column of codeword, and then we can write:

< V,V; >:O7Z'7é174 R
<wvo,v; >=0,1#2,3

< Us,V; >= O,Z'7£5,8,

. (10)
<vg,v; >=0,1#6,7,

in which < v;,v; >= 3", VkiVi;s and vy is refer to Eth
element from vector v;.

The orthogonality between some columns made by ¢ can
help to simplify our ML decoder. As mentioned before, this



type of coding creates block fading channels [[10] which allows
us to formulate an ML decoding equation as follows:

2
C= argnéivnz Y, — CLH.||
L=1
2 . . (11)
= arg min Z Tr{(C:H,)"CLH}
¢ =
— 2Re[Te{ (I (CLTY L.

On account of the quasi-orthogonal structure of the code-
word, the above equation can be simplified into two indepen-
dent parts. Due to space limitation, we proposed these two
detection formulas on top of the next page.

In Eq. and Eq. (I3), y; € Y and similarly, h;, € H, Vi.
Since Fj(.) is independent from Fy(.), entirely, we can state
that the receiver is capable to decode (57,54, S5,Ss) and
(S2,S3,S6,S7) separately. It means that the ML decoder is
talented to minimize both Eq. (IZ) and Eq. (I3) over all
possible symbols. It is therefore clear that the complexity of
the ML decoder for such proposed codeword and the system is
O(m*), instead of O(m?®). All the reasons for this dramatic
mitigation is creative symbols combination in the proposed
codeword.

B. Three Transmitter and One Receiver Antennas

By omitting the fourth column from both C; and Cs in
and [9] respectively, a full rate QOSTBC can be recommended
for My = 3 and Mg =1 as it is illustrated in (I4) and (T3),

[ S1+34%  S2+iS  S3+iS7 ]
=S5 +jS7 —Si+iSs ST —iSs |’
L Sa+jSs  —S3—jS7 —S2— 7S]
[ S1-JS5  S2—jS  S3—jSr ]
-85 —4SE Sy +4S8F  —S;— 45

2 =53 —jS7 —=S;—7jS§ ST+S3
[—S1—3jSs —S3+jS7  —S2+ 7S]

The same approach applies when considering full diversity
and maximizing the minimum of CGD. After constructing
codeword C’ based on Eq. , it is easy to understand the
following expressions,
<v,v >=0,i#1 ,
<vg,v; >=10,i# 2,3 ,

<uvs, v >=0,i#4
<vg,v; >=0,i#5,6

(16)
Given (I6), we have a quasi-orthogonal structure; Thus again
we can break ML into two independent parts almost similar
to Eq. (12), and Eq. (I3). Thus it is again possible to reduce
complexity of the ML decoder from O(m?), to O(m?). Note
that in order to minimize decoder complexity we can also use
sphere-decoding algorithm based on [[11] for both codewords
C, and C'. In this case, two independent sphere-decoders can
be used, one for detecting (51,54, 55,5s), and the other to
detect (SQ, S3, Sg, 57)
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Fig. 1. Bit error rate versus signal to noise ratio for BPSK constellation 1
bit/sec/Hz (M1 = 4).

IV. SIMULATION RESULTS AND DISCUSSION

In this part of the paper, we scrutinized the performance of
our proposed codes and a popular approach namely QOSTBC.
Simulations were executed in an open loop MISO system us-
ing two separated sphere-decoding algorithm for detection and
then the results were compared against quasi-orthogonal codes
in [5], [6]], and [12]. Fig. 1| shows bit-error-rate (BER) versus
signal to noise ratio (SNR) for the codeword C, in which
Mp =4, and Mg = 1, using BPSK constellation. Likewise,
Fig. [2] depicts the results based on a 4QAM constellation and
finally Fig. [3| represents the result for codeword C’, where
Mr = 3, and Mpr = 1, using similar constellation to Fig.
2. As simulations for CGD shows, the optimal rotation is
¢ = 7, using aforementioned constellation. With this amount
of rotation we can reach the best performance for both two
codewords. Consider that this code scheme is flexible and
can be implemented with higher order of QAM without any
limitation.

By recent FPGA deployment, which provides higher speed
for processing, if we ignore complexity of the decoder, the
simulations were run under fair conditions. Therefore, accord-
ing to the simulations, the proposed codes outperform those
reported in [[6] and [12] by an amount near to 4 dB.

V. CONCLUSION AND FUTURE WORK

In this paper, we unveiled two full rates and full diversity
quasi-orthogonal space-time block codes for open loop MISO
systems employing three and four transmitter antennas and one
antenna at the receiver. We demonstrated that ML decoder
can be separated into two independent functions to reduce
complexity of the decoder. By exploiting these codes, we
changed property of the channel from quasi-static fading to
block fading and discovered that this alteration improved the
proposed codes’ performance by up to 4dB in comparison with
(6] and [12].

We can now pose this question: is it possible to reduce
complexity of the decoder for these codewords? Finding an
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Fig. 2. Bit error rate versus signal to noise ratio for 4QAM constellation 2
bits/sec/Hz (M1 = 4).

answer to this question is an open field problem for future
work.
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