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Outdoor Visible Light Positioning Using Artifcial 
Neural Networks for Autonomous Vehicle 

Application 
Abdulrahman A Mahmoud, Zahir Ahmad, Yousef Almadani, Muhammad Ijaz, Olivier C L Haas, 

Sujan Rajbhandari 

Abstract—In this paper, a novel outdoor 2-D vehicular visible 
light positioning (VLP) using a linear array of streetlights 
and artifcial neural network (ANN) is proposed. The classical 
position methods which are mostly based on triangulation will 
not work with the linear array of the street light. Hence, we 
proposed a spatial diversity receiver with ANN to overcome the 
collinearity condition. The proposed system is simulated for a 
realistic outdoor condition and provides an accurate positioning 
with an average RMS error of 0.53m. 

Index Terms—visible light positioning, outdoor positioning, 
Artifcial neural network, receiver diversity 

I. INTRODUCTION 

Autonomous vehicles are expected to beneft the intelligent 
transport system (ITS) through improved effciency, reduced 
traffc congestion and increased road safety. The practical 
realization of these expected benefts requires autonomous 
vehicles to have effcient communication, perception (to 
identify the surrounding and obstacles), precise localization 
and control functionalities [1]. The vehicles need to have 
precise localization often at centimeter accuracy for safety 
requirement. Widely used outdoor localization method such 
as Global positioning systems (GPS) and differential GPS 
(dGPS) used by autonomous vehicles relies on artifcial 
satellites transmitting position information using the radio 
frequency (RF) spectrum. The localisation accuracies of these 
technologies are in the meter range and worsen in adverse 
conditions [2], [3]. Although recent developments of dGPS 
for autonomous vehicles provide decimeter-level accuracy [4], 
these signals do not extend to tunnels and underground areas. 
Hence, there is a need for alternative localisation techniques to 
either complement or replace GPS (in the case of GPS failure) 
to improve the current localisation availability and accuracy 
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for safety requirements and also to facilitate indoor navigation 
for smart parking. 

The popularity and wide availability of solid-state lighting 
(SSL) such as light emitting diodes (LEDs) for indoor and 
outdoor illumination, traffc signalling and display provide a 
unique platform to utilize them for high-speed communica-
tion and accurate localisation [5]. The current energy-saving 
schemes funded by the European Commission aiming to re-
place current street lighting solutions with LED streetlamps is 
attractive for outdoor positioning systems due to its ubiquity, 
especially in tunnels and underground roads. 

Though several of studies already proved that VLP system 
can provide unparallel accuracy in centimetre range for indoor 
positioning, the use of VLP for outdoor positioning, especially 
for autonomous vehicle application is relatively at infancy. 
Outdoor localisation for vehicular applications is challeng-
ing due to the unavailability of a distributed light network. 
Streetlights are generally in a straight line and thus techniques 
such as triangulation or similar algorithms cannot be applied. 
This is because a reference plane equation is formed for 
each transmitter which is required not to be collinear for the 
algorithms to compute any valid output. Hence, most of the 
outdoor localisation strategies are on estimating the relative 
position or separation between vehicles (using the streetlight 
with head and tail light of vehicles) which is only adequate for 
vehicle collision avoidance. However, autonomous navigation 
requires accurate absolute positioning that these techniques 
fail to offer. A study in [6] demonstrated the feasibility of 
accurate localisation using tunnel infrastructure and car tail 
lamp. The work uses a camera sensor receiver and image 
processing to extract information. However, this is based on 
the assumption that there is always a neighbouring car on the 
road several meters ahead continuously sending its updated 
position information. In [7], the vehicle position was estimated 
using traffc light and TDoA of optical signal estimated using 
two photodiodes. The TDoA, however, requires the time 
synchronization among traffc light which may be diffcult 
in heterogeneous environments. Furthermore, for accurate 
positioning, the receiver separation needs to be comparatively 
large in the meter range (2m in this particular study, which is 
not practical in all the case) so that TDoA can be estimated. 
Moreover, the algorithm is accurate only for a known fxed 
speed of the vehicle moving towards or away from the traffc 
light. Hence, to provide a ubiquitous and accurate position for 
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an autonomous and intelligent transportation system, there is 
a need for highly accurate VLP using existing infrastructure 
such as streetlights. As the streetlights are located linearly, this 
makes triangulation or other existing algorithms challenging 
due to collinearity condition [8]. Moreover, modifcation in 
the location of the streetlights is not an option as it is not 
cost-effective. 

To overcome these issues, in this work, we propose outdoor 
VLP localization based on the existing streetlight with super-
vised artifcial neural network (ANN). Receiver diversity is 
later introduced in an effort to reduce the effect of collinearity 
in VLP. To the best of the authors’ knowledge, this is the 
frst work to use ANN with receiver diversity to mitigate the 
collinearity condition and further provide accurate outdoor 
positioning. Though there are some prior work on use of 
ANN for indoor VLP (see [9], [10] ), they are mostly for 
indoor localisation using distributed transmitters. For example, 
a three-dimensional indoor localisation was proposed in [9] 
using ANN. However, [9] assumes the availability of dis-
tributed receivers. As described above, this is not practical 
for outdoor ITS application. 

The rest of this paper is structured as follows; the system 
description is provided in Section II. Section III describes the 
proposed application of supervised feed-forward back propa-
gation multilayer perceptrons (MLP) for 2-D localization. The 
performance of the proposed system is discussed in Section 
IV. Finally, conclusions are drawn in Section V. 

II. SYSTEM DESCRIPTION 
The proposed VLP system confguration is given in Fig. 1. 

Streetlights are the most consistent and available light sources 
in urban areas thus considering them as transmitters for the 
model. Each transmitter transmits time division multiplex 
(TDM) or frequency division multiplex (FDM) signals as 
outlined in [11]. The generic scenario adopted is that the 
streetlights are only located at the side of the road. The 
vehicles are assumed to have two degrees of freedom by 
travelling on the x-axis and changing lane across the y-axis. 
Hence, we consider 2D localisation in both x-axis and y-axis. 

The proposed model is based on received signal strength 
(RSS), which prompts the estimation of the received power 
Pr,i at various locations. The latter is given by: 

Pr,i = Hlos(0)Pt,i (1) 

where Pt,i is the transmitted optical power from the ith LED, 
Hlos(0) is the DC channel gain between the PD and the ith 

LED. 
The DC channel gain depends on the channel confguration 

(line of sight (LOS), the angle of incidence and the link 
distance. For a LOS link with Lambertian radiation pattern, 
the DC channel gain is given by: ( 

(m+1)A 
2πd2 cosm(φ)Ts(φ)g(ψ)cos(ψ)0 ≤ ψ ≤ Ψc

Hlos(0) = 
0, ψ > Ψc 

(2) 
where m is the Lambertian emission order, A is the PDs 

physical area, φ is the irradiance angle, Ts(ψ) is the optical 

Fig. 1. Street light localization model for VLP 

flter gain, ψ is the angle of incidence, g(ψ) as the optical 
concentrator gain, d is the distance between the receiver and 
the transmitter, Ψc is the PDs feld of view. The Lambertian 
emission order is calculated as: 

−ln2 
m = (3)

ln(cosφ1/2) 

where φ1/2 represents the half power angle of the LED. The 
optical concentrator gain is calculated as: 

2nc g(ψi) = (4)
sin2Ψ 

where nc is the refractive index of the concentrator. 
As the simulation is considered to be in an outdoor environ-

ment, sunlight is expected to increase the noise level. Hence, 
the scenario adopted aims to demonstrate the effectiveness of 
the system at extreme conditions under the assumption that 
streetlights are turned on all the time. The noise comprises 
thermal noise and shot noise. This type of noise is generally 
modelled as additive white Gaussian noise (AWGN) [12]. 
The background light and the photo-current generated by the 
desired signal is known as the shot noise and its variance is 
calculated as: 

σ2 Pr,iB (5)shot,i = 2qIbgI2B + 2qRp

where B represents the bandwidth, Rp is the receiver 
responsivity, I2 is a noise bandwidth factor of the current, Ibg 

is the background current and q is the electronic charge. The 
thermal noise that arises from the amplifer at the receiver is 
given as: 

8πkTk 16π2kTkΓ 
σ2 = ηAI2B

2 + η2A2I3B
3 (6)thermal G gm 

where k represents the Boltzmann’s constant and q repre-
sents the electronic charge. G, Tk and η, represent open-loop 
gain, absolute temperature and fxed capacitance of the PD. 



Fig. 2. Schematic of proposed VLP using ANN 

I3 is the noise bandwidth factor. Γ and gm represent FET 
channel noise factor and FET trans-conductance, respectively. 
Hence, the total noise variance is given as: 

σ2 = σ2 (7)noise shot + σ2 
thermal 

Therefore, the received signal is given by: 

Prec,i = Pr,i + Pn,i (8) 

where Pn is the AWGN signal, with power spectral density 
(PSD) of σ2 as given by (7). noise 

III. OUTDOOR LOCALIZATION BASED ON ARTIFICIAL 
NEURAL NETWORK 

This section describes the supervised feed-forward back 
propagation MLP ANN for 2-D localization as shown in 
Fig. 2. A two-layer ANN with M × N neurons in the 
input layer, 60 neurons in the hidden layer and two neurons 
in the output layer is considered. Two neurons are in the 
output layer corresponding to the (x, y) coordinates required 
for 2-D positioning. This ANN uses Log sigmoid transfer 
function at the hidden layer and a linear transfer function at 
the output layer. The received signal given by (8) through 
free space optics with respect to the receiver position is 
simultaneously fed to the network. The ANN is trained with 
1000 random samples within the road to estimate the x 
and y co-ordinates of the vehicle. The Levenberg-Marquardt 
supervised training algorithm was adopted to train a feed-
forward back-propagation network. Once the ANN is trained, 
the ANN can predict the unknown vehicles position based on 
the received signals. Up to 28, 704 random locations across 
the road were used to test the trained network. The details 
of the ANN structure and training algorithm can be found in 
[13]. 

IV. RESULTS AND DISCUSSION 

The performance of the proposed ANN algorithm is eval-
uated in this section. The method used to evaluate the results 
is root mean square (RMS) error and cumulative distributive 
function (CDF) of the RMS error. The RMS error is given 
by: p

RMSerror = (x − x̂)2 + (y − ŷ)2 (9) 

where (x, y) is the real position and (x̂, ŷ) is the estimated 
position of the receivers. 

TABLE I 
PARAMETERS USED FOR SIMULATION 

Parameter Value 
Road parameters [L × W × H] (m) 60 × 5 × 7 
Number of neurons 60 
Number of transmitters (M ) 3 
Transmitter power Pt (W) 90 
Transmitter semi-angle (degree) 60 
No. of receiver (N ) 2 
Receiver area, A (cm3) 1 
Optical flter gain 1 
Noise bandwidth, B (MHz) 1 
Noise bandwidth factor (I2) 0.562 
FET channel noise factor Γ 1.5 
Fixed capacitance of PD (pF/cm2) 112 
Temperature Tk (K) 295 
FET transconductance (mS) 30 
Background current (Ibg ) (mA) 5.1 
Noise bandwidth factor (I3) 0.0868 
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Fig. 3. CDF of VLP as a function of number of receiver. 

We consider a road with dimensions of 60m×5m×7m with 
each transmitter located 30m apart from each other and a 
height of 7m at the side of the road [14]. The generic scenario 
adopted is the streetlights are only located at the side of the 
road. Up to 1000 randomly distributed locations within the 
road are considered to estimate the 2-D position using the 
MLP-ANN. We consider up to 2 receivers and compared the 
performance of the system with single and multiple receivers 
to evaluate the impact of receiver diversity. Note that due to 
the large separation of the transmitters, the receiver is able 
to obtain signals from up to 3 transmitters in the majority of 
the cases. The main parameters used for the simulation are 
shown in Table I [12], [15] . 

Fig. 3 shows the RMS error versus CDF for scenarios 
using 1 and 2 receivers. Using a single receiver, at 0.95 
CDF, an RMS error of 2.34m is noted. However, when 
receiver diversity is introduced, the RMS error is seen to drop 
1.06m at 0.95 CDF. Hence, this shows the effect of receiver 
diversity gain on the accuracy in VLP. Therefore, the diversity 
technique is adopted for the rest of the studies. 

The models performance was studied using different re-
ceiver feld of view (FOV). A CDF analysis is done for these 
results to identify the best receiver FOV. The optical gain at all 
the FOVs are considered as unity in an effort to differentiate 
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Fig. 4. CDF of VLP as a function of receiver FOV. 

Fig. 5. RMS error distribution across the road. 

the performance improvement due to FOV. Fig. 4 shows the 
CDF analysis starting from 40◦ to 90◦ with a step size of 10. A 
signifcant improvement is noticed when the FOV is increased 
from 40◦ to 60◦. However, increasing the FOV beyond 60◦ 

does not offer any improvement in RMS error. Increasing 
receiver FOV increases the chance of signal reception across 
the road, but at the cost of increased noise; leading to an 
overall reduction in the accuracy of the system. From this 
results it can be concluded that 60◦ FOV provides the best 
trade off between signal to noise ratio. 

Having evaluated the impact of key simulation parameters, 
the performance of the model is now analysed across the road. 
Fig. 5 shows the RMS error distribution across the road using 
the receiver diversity. An average RMS error of 0.53m is 
calculated even when the effect of sunlight is considered. The 
rise in RMS error is noticed at the side of the road. This is 
due to the lower received power reception at the receivers as 
the light intensity drops at the edges of the road. Moreover we 
evaluate the systems performance in the absence of sunlight 
(at night). With the absence of ambient noise, an average 
RMS error of 0.41m is calculated. A percentage difference 
of 25.5% shows the impact of sunlight on the performance of 
the system. 

V. CONCLUSIONS 

In this paper, we propose a novel outdoor positioning 
algorithm using receiver diversity for autonomous vehicle 
application. The linear transmitter array setup of street lights 
makes traditional positioning methods inadequate for VLP. 
Hence, we introduce the use of ANN and receiver diversity to 
solve this problem. The error performance of the VLP system 
using MLP-ANN is studied by considering receiver diversity 
and different receiver FOV. The optimum receiver FOV of 60◦ 

and 60 neurons in the two-layer neural network, an average 
RMS error of 0.53m is achieved at the presence of sunlight. 
Future works include the study of different road scenarios at 
different transmitter setup. In addition, the impact of receiver 
tilting with a different number of receivers in VLP will be 
investigated. 
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