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Abstract—The performance of communication systems de-
pends on the choice of constellations, designed in an end-to-end
manner. In case of a mathematical intractability, either because
of complexity or even lack of channel model only sub-optimal so-
lutions can be provided with an analytical approach. We present
end-to-end learning, a recent technique in communications to
learn optimal transmitter and receiver architectures based on
deep neural networks (DNNs) architectures. We discuss cases in
which this technique has been used to design constellations in
which channel model intractability repressed from a mathemat-
ical analysis.

Index Terms—Machine learning, end-to-end learning, channel
imperfections, constellation design.

I. INTRODUCTION

N important topic in digital communications is the design

of constellation schemes for digital modulations. Over
the years of digital communications [1], several constellation
types have been defined. When designing constellations, we
need to find the best location of the constellation points in
transmission and the best decision regions in reception for
those transmitted symbols. Therefore, this is an end-to-end
problem which must be solved in both transmitter and receiver,
to usually minimize the bit-error-rate (BER) or some other
performance criteria.

From an information theory perspective, the aim is to max-
imize the mutual information (Xy; X,.) of the channel output
X, with the input X; by finding an optimal constellation
[2]. This can be solved through an analytical approach only
when the channel distribution f(X|X,) is known. For simple
scenarios, such as additive white Gaussian noise (AWGN)
channels, a complete knowledge of f(X;|X,) is available.
Thus, optimal constellations can be designed mathematically
[1].

There are other scenarios in which the channel distribution
is extremely complex or even unknown, thus making it impos-
sible to mathematically design constellations, unless several
assumptions are made, that lead us to sub-optimal solutions.
An example of a very complicated non-linear channel is the
one present in [3]. In this case, high power amplifiers operate
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in compression to maximize SNR and power efficiency. This
forces the use of lower-order or constant modulus constella-
tions to cope with the severe non-linear distortion caused by
the amplifier. Other non-linear channels are those present in
fiber optics communications [4]. In these cases, assumptions
must be made to make the problem tractable, thus leading to
sub-optimal solutions.

Several approaches to the application of machine learning
(ML) in telecommunications have been made in the last years
[5]. With the emergence of deep learning (DL), researchers
have started to work towards its application in communica-
tions networks [6]. Among the applications of deep learning
in communications, which is an emerging field, there is a
technique called end-to-end learning which aims at learning
transmitter and receiver architectures to properly communicate
under any imperfection or intractability of the channel [7].
Concretely, end-to-end learning can be applied to solve the
problem of constellation design in the context of intractable
channel models [8]-[10].

The aim of this paper is to serve as a survey in which
the different approaches for designing constellations with ML
are presented. Some examples of the use of this technique for
different constellation design problems in communications are
presented and explained. To the best knowledge of the authors,
this is the first survey that specifically focuses on constellation
design using ML tools.

The rest of this paper is organized as follows. Section II
serves as a review of machine learning techniques. Section III
introduces the classical approach for constellation design and
explains the concept of end-to-end learning in communication
systems. Section IV shows some of the results obtained
from applying end-to-end learning for constellation design is
different scenarios. Finally, Section V concludes the paper.

II. MACHINE LEARNING

Machine Learning is a subfield of artificial intelligence (AI)
that provides a system with the ability to automatically learn
and improve from experience without explicitly programming
that system to do it. The learning process begins with the use
of data, such as examples, direct experience or instruction, so
as to look for patterns in data and perform better in the future
based on the data provided. More information of any of the
techniques explained can be found in [5].



A. Supervised Learning

Supervised machine learning algorithms starts from the
analysis of a known training dataset and produces an inferred
function to make predictions about the output values. The
system is able to provide targets for any new input after
sufficient training. Determining whether an image contains
a certain object, would be a supervised learning problem,
where the training data would include images with and without
that object as input, and each image would have a label as
output designating whether it contained the object. Defining
(zi,yi) ~ p(z,y), i = 1,...,N be samples taken from a
training set ® belonging to a probability density function
(PDF) p(z,y), the aim is to find a mapping between all pairs
of input-output. An inferred function y ~ f(a; @) would map
input vector x to output y, after it has learned the parameters
6. In an ideal scenario, unseen samples & will be mapped to
the correct unknown target ¢. Regression problems are those
with continuous outputs, while problems with discrete output
are classification problems. The learning process is approached
through the definition of a cost function, which evaluates the
quality of the predictions, and is defined as

where § is a measure of distance between the wanted target
y and the prediction y, and E denotes expectation. Some
examples of supervised learning techniques include: nearest
neighbors, support vector machines and neural networks,
among others.

B. Unsupervised Learning

Unsupervised learning is used when the information used
to train is neither classified nor labeled. The aim is to in-
fer a function to draw inferences from datasets to describe
hidden structures from unlabeled data. Letting x; ~ p(x),
i=1,---, N be sampled from a training set D belonging to
the PDF p(x), the aim is to extract certain features y which
are not available in the training set D. Different tasks can be
solved with unsupervised learning: clustering, which divides
the data into clusters, feature extraction, which transforms
data in a different latent space easier to handle and interpret,
and synthesis of new samples, with the goal of learning
the distribution p(x) and to produce new samples from it.
Unsupervised learning, contrary to supervised learning, does
not have a unified accepted formulation. Many unsupervised
learning tasks require the introduction of a hidden variable z;
for each sample, leading to the selection of different models
under a probabilistic approach.

C. Reinforcement Learning

Reinforcement learning (RL) is a method that interacts with
a dynamic environment by producing a series of actions and
receives rewards according to the performance of such action
with respect to the environment situation. The aim is to max-
imize the reward in the long-term. Basic RL can be modeled
as a Markov Decision Process (MDP). Let S; be the state
environment provided to the agent at time ¢. The agent reacts

by selecting an action A; to obtain from the environment the
updated reward Rt; 1, and the next state S;;1. In particular,
the agent-environment interaction is formalized by a tuple
(S, A, T,r,~), where S is a finite set of states, A is a finite set
of actions, T'(s,a,s’) = P[Si+1 = §'|St = s, A = a] is the
transition probability from state s to state s’ under the action
a, r(s,a) = E[R¢11|St = s; A¢ = a] is the reward function,
and v € [0,1] is a discount factor. The agent builds a policy
in order to find out which actions are good. 7 : SxA — [0, 1]
defines the probability of taking an action a when state is s.

D. Deep Learning

Deep learning, a subset of ML, utilizes a hierarchical level
of artificial neural networks to carry out the learning process,
processing data with a nonlinear approach. Neural Networks
(NN5s) are among the most popular tools in the ML field, since
they are known as universal function approximators [5] and
can be trained by gradient backpropagation. A feedforward
neural network with L layers maps a given input x, € R"° to
an output 7 € RPL by implementing a function f(x¢;8),
where 0 represents the parameters of the NN. The input is
processed through L successive steps

x; = fi(xi-1;6;),

where f;(x;—1;60;) maps the input of the [-th layer to its
output. The most used layer is the fully connected layer,
defined as

=1L 2

fi(xi—1;6;) = o(Wimi—1 + b)) (3)

where W, and b; are weights between layers and bias of each
layer, respectively. Meanwhile, o(-) is the activation function,
which has to be non-linear in order to benefit from the multi-
layer structure. Depending on the application, several different
types of layers and activation functions can be defined.

III. END TO END LEARNING
A. Classical Design Approach

Classically, constellation design main goal is to maximize
the mutual information I(Xy; X,.) of the channel output X,
with the input X;, which is equal to maximizing channel
capacity C' = maxy(,,) x, 1(X; X;), where p(x;) is the
marginal distribution of X;. Both p(z;) and f(X;|X,) must
be known to solve the problem of capacity maximization.
For simple scenarios, such as additive white Gaussian noise
(AWGN), a complete knowledge of f(X:|X,) is available. If
p(x) is uniform, the symbols in the constellation are equally
probable and the maximum likelihood is used as a decision
criterion
iwL = arg )I(na)}(( {f(xr|xt)’ . € X, 24 € Xt} “4)

Tyt

X

When f(xz,|z;) is unknown or too complicated to be mathe-
matically tractable, we cannot rely on the maximum likelihood
approach to solve the problem of constellation design.
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Fig. 1: Should you investigate ML in your problem?

B. End-to-end Learning

The application of machine learning in any discipline must
be assesed following the scheme in Fig. 1.

End-to-end learning aims to learn transmitter and receiver
implementations optimized for a specific performance metric
and channel model. It was first presented in [7]. The initial
idea is to interpret the whole communication chain as an
autoencoder, an unsupervised learning technique. In commu-
nications, the autoencoder wants to learn representations x;
of a set of possible messages s that are transmitted through
a channel with impairments and then recover the message s
in reception as S, with a small error probability. The main
limitation relates to the training of the whole autoencoder,
since the channel must be represented as a neural network,
i.e. it must be differentiable. For any real system, the channel
is a black-box with an unknown transfer function f(x,|z;),
so gradient backpropagation is impossible. To overcome this
problem, 3 main approaches are proposed:

o Analytical channel model and receiver fine-tuning [11].
o Learn a generative channel model [12].
o Reinforcement learning in transmission [9].

The first approach starts with end-to-end training on an
analytical channel differentiable model f(x,|z;). It does not
cover all hardware and channel inefficiencies, so the perfor-
mance is limited by the accuracy of the model. The second
step is to fine-tune the receiver by using a physical realistic
channel. The TX weights are fixed and we only train the
receiver. This approach benefits from an easy fine-tuning of
the receiver but lacks of not being able to fine-tune the
transmitter. Another limitation is that an analytical channel
model is required, which is never available for completely
unknown channels. It is easy to implement, since it is a simple
supervised training, but maximal performance can never be
reached due to transmitter mismatch.

The second approach first learns a generative channel model
from data and then train the full autoencoder over the learned
channel model. Generative adversarial networks (GANSs) [13],
whose aim is to learn to mimic the distribution of any
type of data, can be used to learn such generative channel
model. GANs are composed of the generator G(z) and the
discriminator D(z). The former generates new data samples
using a latent variable z (typically Gaussian noise) and tries to
deceive the discriminator, which attempts to distinguish fake
from real samples. For communications, conditional GANs
are proposed, since the generator is varied to G(z, x), which
accounts for the presence of a signal x; to be transmitted over

the channel. This is a very elegant method to learn, purely
from observations, a NN implementation of a channel model.
Unfortunately, it is unclear how well GANs are capable of
modeling complex channels with a lot of randomness.

The third approach consists of implementing the transmitter
as an agent of reinforcement learning. In this case, no back-
propagation is needed from the receiver to the transmitter,
but some “reward” signal should be seen by the transmitter
to perform training. For instance, this reward signal can be
defined as R = —log,q(BER), since for smaller values
of BER, turns into bigger values. Another definition could
be R = 1/BER. The training process would be performed
alternatively between receiver and transmitter. Both start with
a random initialization, receiver is trained for fixed transmitter
for a certain receiver training time 75X, then transmitter is
trained for fixed receiver for a certain transmitter training
time T2 X. This is repeated several times until a certain stop
criteria is met. This approach benefits from the fact that it can
train over any type of channel without any modelling needed
and can be applied to real systems without modification,
but its convergence is slower and it is very difficult to do
hyperparameter tuning.

IV. EXAMPLES OF CONSTELLATIONS DESIGN USING
END-TO-END LEARNING

In the literature, constellations have been designed sub-
stituting the whole transmitter and receiver architectures by
neural networks [2], [7], [8], [10], [14]-[17]. In these papers,
the transmitter and receiver only purpose is to modulate and
demodulate, that is why whole transmitter and receivers where
substituted by neural networks and trained.

The concept of end-to-end learning was proposed and
applied to the two-user interference channel in [7]. In [14],
O’Shea showed the result of the application of end-to-end
learning to the problem in [3]. The autoencoder is capable
of creating an encoder network that learns a novel transmit
waveform optimized for the non-linear compression caused by
the amplifiers. The decoder network in the receiver is capable
of yielding a separable 32-symbol QAM-like constellation.
This is shown in Fig. 2.

The authors in [8] applied the first approach of end-to-end
learning explained in Section III to intensity modulation/direct
detection (IM/DD) fiber optics communications. Both the
constellations and pulse shapes are learned with the use of
neural networks and it is shown they can achieve bit error rates
below 6.7% hard-decision forward error correction (HDFEC)
threshold.

In [2], both geometric and probabilistic constellation shap-
ing is learned to get constellations that get closer than state-
of-the-art constellations to Shannon capacity limit. The trans-
mitter structure is adapted to account for the probability of
a symbol and the geometry of the constellation. The shape
learned by the system is similar to a two-dimensional Gaussian
distribution as shown in Fig. 3. The points with a greater
occurrence are placed in the center, and this occurrence is
greater for lower SNRs.
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Fig. 2: Fig. 5 in [14]. Learned transmit constellation (left),
received constellation (right), for an SNR of 15 dB.
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Fig. 3: Fig. 5 of [2] for an AWGN channel with constellation
size 64 and SNR 5dB (left) and 18dB (right). Points size
proportional to probabilities of occurrence.

In [15], Matsumine et. al. applied end-to-end learning for
the optimization of constellations in two-way relaying with
physical-layer network coding. DNN-based modulation and
demodulation are employed at each terminal and relay node.
Jones et. al. [16] did the same for geometric constellation shap-
ing including fiber nonlinearities. The channel model included
modulation dependent nonlinear effects. The algorithm yields
a constellation mitigating them, with gains up to 0.13 bit/4D.
In [17], Albergue used end-to-end learning in non-orthogonal
multiple access to define the constellations of users in the
downlink. Cammerer et. al. showed in [10] the constellations
learned when end-to-end learning is performed in the con-
text of bit-metric decoding receivers. Joint optimization of
constellation shaping and labeling is performed for iterative
demapping and decoding receivers. Fig. 4 shows that, when
only constellation shaping is done, the results are different
from those with both shaping and labeling.

V. CONCLUSIONS

In this paper, we make a brief survey about machine learn-
ing techniques and end-to-end learning. End-to-end learning
consists of a technique in which full transmitter and receiver
architectures based on DNNs can be learned. We present the
different ways to perform the training of end-to-end learning
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Fig. 4: Constellation and labeling for the bit-wise autoen-
coder (left) and without bit labeling (right). Obtained for 4
bits/symbol and SNR=4dB. Results come from Fig. 4 of [10].

and some cases in which end-to-end learning has been used
for constellation design.
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