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Abstract—The potential use of flexible substrate-based 

organic light emitting diodes (OLEDs) as curved or rolled 

lighting sources offers news opportunities for the implementation 

of visible light communications (VLC) in indoor environments. 

This paper outlines the use of such a system in a furnished office 

and investigates the impact of the beam pattern of OLED, which 

is symmetrical and wider than Lambertian, on the VLC system. 

We present new results of the VLC system performance in terms 

of the root-mean-square delay spread and the bit error rate 

(BER) for the link using both flat and half-circular OLEDs. We 

demonstrate a data rate of 4 Mb/s using both the curved and flat 

OLEDs for the transmitter’s half-angle within the range of ±90° 

and ±53°, respectively with a BER below the forward error 

correction BER limit.    

Keywords- flexible OLED; visible light communications; bit 

error rate. 

I.  INTRODUCTION 

In recent years, numerous efforts have been made in 
modeling the visible light communications (VLC) channel in 
order to determine the channel impulse response (CIR) and its 
characteristics in term of the root-mean-square (RMS) delay 
spread and the average optical path loss (OPL) [1]. The use of 
organic light emitting diodes (OLEDs) for lighting, TV, etc., 
has been increasing due to a number of advantages, including 
transparent displays, rich color, low power consumption and 
large active areas [2, 3]. However, the low modulation 
bandwidth Bmod (i.e., in the range of hundredth of kHz) of 
OLEDs is a drawback, which leads to restriction in 
transmission data rates Rb [3-6].  

In [7], Monte Carlo (MC) ray tracing was used to evaluate 
the CIR of an empty room at the visible wavelength range by 
considering fixed reflectance values for the surface materials. 
The first attempt to characterize the VLC channel with 
wavelength-dependent reflectance was reported in [8], where 
the authors claimed that, the total diffuse power and the delay 
spread were lower for VLC compared with the infrared band. 
In [9], the modified MC ray tracing approach was used for 
analysing the CIR as a function of the wavelength using a 
simplified matrix model. Alternatively, a three-dimensional 
(3D) simulation environment using a CAD software could be 

adopted to generate 3D vector-type graphics for the VLC 
system. In [10], a 3D CAD model based on MC algorithm was 
presented for the VLC system.  In [11, 12], a reference channel 
model-based on Zemax [13] was reported, which was endorsed 
by the IEEE 802.15.7r1 Task Group. In [14], a VLC channel 
model was proposed by considering the impact of the 
dimensions of obstacles within an environment. The point 
cloud of the obstacle was determined by detecting the received 
optical rays in photodetector (PD), where every solid angle of 
the LED illumination area transmit ray by beam steering. In 
[15], authors claimed that the use of flexible (i.e., curved) 
OLEDs in VLC systems offer lower RMS delay spread and the 
average OPL of 8.8% and 3 dB, respectively in comparison 
with Lambertian source.  

This work emphasizes on the evaluation of an attractive 
feature of OLEDs, which is the mechanically flexible potential 
for utilizing in VLC system. Our simulation has been presented 
to find the impact of symmetrical beam pattern of curved 
OLEDs, which is wider than Lambertian on the VLC channel. 
In this work, we consider a VLC system in a typical office 
environment with furniture, where a half-circular OLED, 
placed on the wall, is acting as a transmitter (Tx). The user, 
which represents the receiver (Rx), is moving along a circular 
path at the height of 1 m above the floor level. We investigate 
the proposed system optical features and show a new numerical 
model for the RMS delay-spread of the channel. We show that 
the curved OLED-based VLC link offers improved bit error 
rate (BER) performance for the angle of radiation > 45° 
compared with the flat OLED VLC.  

The rest of the paper is organized as follows. In Section II, 
the features of simulation are described. Section III discusses 
the results. Finally, conclusions are given in Section IV.  

II. SIMULATION ENVIRONMENT 

The proposed model is composed of three main steps. (i) 
Creating a 3D indoor environment (i.e., an office shown in 
Fig. 1) considering a specific geometry, imported CAD objects 
as furniture, types of materials and their reflection coefficients 
with respect to the wavelength, specifications of the Tx and the 
Rx. (ii) Use of the non-sequential ray tracing to determine the 
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detected optical power and path lengths from the Tx to the Rx. 
Note, a number of reflections from the floor, ceiling, walls and 
other objects are considered until the normalized intensity of 
ray after intercepting an object drops to 10-3. (iii) Calculations 
of CIR, which is carried out by means of importing the 
captured output data into MATLAB and it is expressed as [11]:  
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where Pi and 𝜏𝑖  are the power and the propagation time of the 
ith ray, respectively. 𝛿 is Dirac delta function and N is the 
number of rays received at the Rx.  

The spatial intensity distribution of light emitted from the 
light source is determined by the optical radiation pattern 
profile. The luminous intensity defined in terms of the angle of 
irradiance 𝜙 is given as [16]: 
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where I(0) is the center luminous intensity of the OLED and mL 
is Lambertian order, which is defined in terms of the Tx semi-
angle 𝜙1/2 as [16]: 
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In this work, measured characteristics of a flexible OLED 
from UNISAGA with a size of 200×50 mm2, see Fig. 2(a), 
were used as the simulations inputs. The measured beam 
pattern of the flexible OLED for a half-circular configuration is 
depicted in Fig. 2(b), showing symmetry but not fitting with 
Lambertian radiation pattern (the solid line for mL = 1). A close 
match between the simulated and the measured beam patterns 
can be seen in Fig. 2(b). The measured spectrum profile of the 
flexible OLED is presented in Fig. 2(c) showing the red, green 
and blue components at 620, 553 and 454 and 480 nm, 
respectively. Fig. 1 shows the location of the OLED and the 
Rx, which is moving over a semi-circular path of the radius d 
and an angle of radiation with respect to the normal from the 

center point of OLED (i.e., -90° <   < 90°). The Rx height is 
assumed to be 1 m above the floor to represent people holding 
mobile phones. 

III. RESULTS AND DESCRIPTION 

The proposed system performance is investigated in terms 
of the BER for both curved and flat OLEDs. All the key system 
parameters adopted are given in Table I. 

A. Power Distribution on the Rx height level 

In order to find the power distribution for both cases; flat 
and curved OLEDs mounted on the wall, we considered 200 
positions for the Rx located on the height of 1 m. As it can be 
seen in Fig. 3, the maximum power level at the center of the 
flat OLED is 280 𝜇W, which is higher than 140 𝜇W for the 
curved OLED. However, for the curved OLED, higher power 

intensity can be seen for a wider half-angle  of the Tx. Note, 

 = 0o corresponds to the normal from the center point of 
OLED.  E.g., at the Rx’s coordinate of (2,1) m, the power 
values are 40 and 16 𝜇W for the curved and flat OLED, 
respectively. 

4 m

33 cm

z

Rx
d

Tx

Fig. 1.The three-dimensional indoor environment and proposed scenario 

which shows the location of Rx and Tx giving a half-circular lighting. 

 

 

 
 

 

 

 
 

 
 

  
 

(a) (b) (c) 

Fig. 2. The flexible OLED panel and its characteristics adopted in the simulation: (a) photograph, (b) the emission pattern of light source modeled for a curved 

OLED, which is closely matched with the measured data and (c) the normalized optical spectrum where the peak wavelengths are marked. 
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B. RMS Delay Spread 

The delay spread provides a good estimate of how 
susceptible the channel is to inter-symbol interference (ISI), 
which leads to reduced Rb. The RMS delay spread is 
commonly used to define the time dispersion along the 
propagation path. The channel mean excess delay 𝜏 and the 
RMS delay spread 𝜏RMS are given as [11]: 
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Fig. 4 depicts the polar plot of 𝜏RMS for the flat and curved 

OLEDs. The angle of  was shown in Fig. 1 identifying the Rx 
location on the semi-circular path of the radius d. 𝜏RMS 

increases with  reaching the maximum value of 5 and 10.7 ns 

at  of 90° for curved and flat OLEDs, respectively. It is 
obvious that, for the curved OLED, there is a slight change in 

𝜏RMS by about 0.8 ns with respect to . However, 𝜏RMS has 

changed about 7.3 ns for the flat OLED. Note, there is a 

significant increase in 𝜏RMS for  > 40° for the flat OLED.  

Using a non-linear approximation algorithms for both 
cases, a 2-term power series model can be derived from 

simulations for 𝜏RMS as a function of  given by: 

2

RMS 1 3,pp p = +  (6) 

where p1, p2 and p3 are summarized in Table II.  Note, the 
empirical parameters can vary based on the number of objects 
in the room and the size of specified confined space. 

 

TABLE I.  THE SYSTEM PARAMETERS  

Item Parameter         Value 

 

Room 

Size 

Type of materials reflections 
Maximum reflection order  

10×10×3 m3 

Purely diffuse  
4 

 
Surface 

material 

refractivity 
in % (RGB) 

Chair, sofa (leather) 
Coffee cup (ceramics) 

Human clothes (cotton) 

Plant (leaf) 
Desk, book shelf, book (pine wood) 

Laptop, PC, printer, and telephone 

(black gloss paint) 

24, 18.8, 16.3 
97.1, 96.2, 92.3 

67, 58, 45.6 

14, 5.9, 8.2 
70, 51, 33.1 

 

3.4, 3.2, 3.2 

 

 

 
 
 

 

Tx 
 

Dimension 

Type 

Bandwidth 

Power of lighting 

Number of OLED panels 

Number of chip/ LED panel 
Power of each chip 

Curvature radius 

Location 
 

1×0.5 m2 

Flexible 

50 kHz 

10 W 

19 

64 
8.2 mW  

32 cm  

Fixed on the wall 
(4, 0.33, 1.5) m 

 
 

Channel 
Length d    

Time resolution 

2 m 

0.2 ns 
 
 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 
 

 

 

Rx 

Active area of PD 
Responsivity 

FOV 

Incident angle 
Height  

One sided noise power spectral 

density No  

1 cm2 

0.4 A/W  

90° 

0° 
1 m 

10-19 W/Hz 

 
 

 
 

Fig. 4. Comparison of a flat and curved OLEDs employed in the office 

in term of 𝜏𝑅𝑀𝑆. 

 
(a) 

 
(b) 

Fig. 3. The power distribution in the case of using: (a) flat OLED and 

(b) curved OLED. 
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C. System Performance 

For intensity modulation/direct detection (IM/DD) optical 
transmission systems, the electrical signal-to-noise ratio (SNR) 
is defined as [17]: 

2 2( ) ( (0) )
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b o b o
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where 𝛾 is the photodetector’s responsivity in (A/W), H(0) is 
channel DC gain, which defines the achievable SNR, No is one-
sided power spectral density of the additive white Gaussian 
noise, and PE and PR are the emitted and received optical 
power, respectively. Considering a channel with non-return-to-
zero on-off keying modulation, the BER is given as [17]: 

1 SNR
BER ( ).

2 2
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Fig. 5 shows the polar plots of the BER for flat and curved 
OLEDs at Rb of 4 and 6 Mb/s along with the 7% forward error 
correction (FEC) BER limit of 3.8×10-3 [18]. Note for 4 Mb/s 
the BER is below FEC for curved OLED. As illustrated, the 

BER plot displays a symmetry about the origin (i.e., at  of 0°) 
because of the same achievable SNR that is maintained across 
the entire face of OLED. It is obvious that for the curved 

OLED the BER is improved over a wider  compared with the 

flat OLED. Note, for the flat OLED with -30° <   < 30° the 
BER values are lower than the value of 10-6. At Rb of 4 Mb/s, 

the BER remains below the FEC limit for   within the range of 
±90° and ±53° for the curved and flat OLEDs, respectively. 

However, for Rb of 6 Mb/s,  drops by 15° and 4° for the 
curved and flat OLEDs, respectively. 

IV. CONCLUSION  

In this paper, we investigated the OLED VLC system 
performance and the channel characteristics in an office 
environment. The measured beam pattern profile of the curved 
OLED was compared with the simulation result showing a 
close match. We showed that, for the Tx with a half-angle 

  > 40° and using a flat OLED 𝜏RMS increased significantly 
(i.e., 7.3 ns) compared with 1 ns for the curved OLED. A 2-
term power series model was found to match 𝜏RMS as a function 

of . Contrary to the flat OLED, the curved OLED showed 

improved BER performance over a wider range of . A data 
rate of 4 Mb/s was achieved using both the curved and flat 

OLEDs for  within the range of ±90° and ±53°, respectively. 
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