
Ransomware Encrypted Your Files but You Restored Them from Network
Traffic

Eduardo Berrueta1, Daniel Morato1,2, Eduardo Magaña1,2, Mikel Izal1,2
1 Public University of Navarre, Department of Electrical, Electronic Engineering and Communications, Pamplona, Spain

2 Institute of Smart Cities, Pamplona, Spain
email: {eduardo.berrueta, daniel.morato, eduardo.magana, mikel.izal}@unavarra.es

Abstract— In a scenario where user files are stored in a net-
work shared volume, a single computer infected by ransomware
could encrypt the whole set of shared files, with a large impact
on user productivity. On the other hand, medium and large
companies maintain hardware or software probes that monitor
the traffic in critical network links, in order to evaluate service
performance, detect security breaches, account for network or
service usage, etc. In this paper we suggest using the monitoring
capabilities in one of these tools in order to keep a trace of
the traffic between the users and the file server. Once the
ransomware is detected, the lost files can be recovered from
the traffic trace. This includes any user modifications posterior
to the last snapshot of periodic backups. The paper explains
the problems faced by the monitoring tool, which is neither
the client nor the server of the file sharing operations. It also
describes the data structures in order to process the actions
of users that could be simultaneously working on the same
file. A proof of concept software implementation was capable
of successfully recovering the files encrypted by 18 different
ransomware families.

I. INTRODUCTION

In recent years, a new type of malware named ‘ran-
somware’ has raised in popularity due to its massive impact
on business [1] and home users alike [2]. This kind of
malware locks the access to user’s computer (lockscreen
ransomware) or encrypts user’s files (crypto ransomware or
cryptoware) and it asks for a payment in order to recover
them. During 2016, Europol declared that encrypting ran-
somware had become “the most prominent malware threat
(...) for citizens and enterprises alike” [3].

In medium and large enterprises, files are stored on
network shared volumes. Those volumes could be shared
among several users and hosts. This architecture allows
simple file sharing between end users and the implementation
of centralized backup policies for those volumes. However,
when crypto ransomware infects one user host in this LAN
(Local Area Network) it will be able to access and encrypt
the files in the shared volume. The result is a much larger
impact than for isolated hosts. In this paper we focus on this
scenario of LAN shared volumes and the recovery of lost
files due to an infection.

In situations of infection by ransomware there are cases
when the affected users pay the ransom [4]. This is the
reason for the lucrative illicit business around ransomware
[5], including the appearance of ransomware-as-a-service
offerings [6]. For the users that select avoiding the payment,
the prevalent solution is the recovery of lost files from

the most recent backup. However, all the new files and
modifications made after the last backup are lost. As most
enterprises execute nightly-backups [7], it could represent a
considerable lost of information. The backup solution must
keep its snapshots inaccessible from the user hosts and any
ransomware [8], or else it risks getting also the backup files
encrypted.

There have been several proposals for the detection of
ransomware [9] [10] [11]. Most of them require the malware
to take destructive actions before an alarm can be raised [12],
[13], which implies the loss of some files. The numbers are
in the range of 5-20 deleted files, depending on the detection
algorithm and the strain of ransomware. Proposals like [14]
[15] [16] avoid data loss by intercepting I/O (Input/Output)
system calls and keeping a backup of lost data. However,
these solutions present a burden on the user’s CPU and disk.
They must also be installed in all hosts and they could be
deactivated by ransomware that escalates privileges.

In this paper we propose the recovery of lost files thanks
to the monitored network traffic between the user hosts and
the shared volume. It is common the deployment of network
traffic monitoring tools for security auditing, performance
evaluation or accounting. They receive a copy of traffic
thanks to mirroring techniques implemented on the network
switches (Figure 1). Such a deployment does not require any
software installation on the user hosts or the file sharing
appliance. Compared to an in-path firewall or proxy server
it does not impair network traffic and it is not a point of
failure in the network. Also, the probe cannot be targeted by
malware as it is an off-path deployment that only receives
a copy of the traffic. Traffic mirroring is implemented at
line-rate thanks to modern switching electronics, without any
impact on data plane forwarding. Some examples of analysis
tools (hardware and software) are [17] [18] [19] [20]. They
are capable of storing traffic coming from 10Gb/s links.

If the computing power in the network monitoring tool
is enough, it could implement a ransomware detection al-
gorithm based on the file sharing activity. We assume a
detection algorithm is already implemented (such as [12] or
[13]) and we describe how the lost files can be recovered
from the traffic stored in the network probe.

Although there exist tools for recovering files based on
network traffic, they are generic and they do not take into
account the specifics of a ransomware alert scenario, where
the data to recover must not be the one encrypted by the



NAS filer

Users

Traffic analysis

probe

Mirrored 

traffic

Fig. 1. Network monitoring scenario. The traffic between the hosts and
the NAS (Network Attached Storage) filer is replicated from a switch into
the traffic analysis probe

ransomware but the previous version. Tools like [21] or
[22] extract files from HTTP or FTP traffic, which are not
common file sharing protocols in the corporate environment.
Wireshark is the reference traffic analysis tool and it supports
a module [23] for the recovery of files from file sharing
traffic that uses Server Message Block (SMB) protocol [24]
[25]. However, it recovers as many instances of the file as
they were opened in the trace file, without any distinction
between original or encrypted data. Finally, [26] uses file
format signatures in order to look for the beginning of a
file, and from there it recovers the file. However, it does
not consider the concurrent actions of different user on the
same file and according to [23], it losses data and it cannot
correctly recognize common file formats.

This paper describes the design, testing and evaluation of
a tool for the recovery of files transferred using SMB2 or
unencrypted SMB3 sessions, as this is the most common
file sharing protocol in the corporate environment. It serves
as a proof of concept implementation which can be extended
to other network file sharing protocols, as it does not require
any capability unique to SMB. It is based only on the
protocol messages used to open, read, write, close and
remove a network shared file. These messages are present in
SMB, NFS (Network File System) [27], AFP (Apple Filing
Protocol) [28] or any other protocol for file level access. The
unencrypted data flow case is the usual deployment scenario
in the corporate environment where the data network between
clients and server is controlled, so the performance impact
from traffic encryption can be avoided. Of course the file
content could be encrypted by the user (not the ransomware)
and it does not affect the tool behavior.

The tool is capable of recovering files that have been edited
in multiple connections and from different users in the time
period when the network traffic was captured. Based on the
estimated time for the beginning of ransomware action, it can
take advantage of the typical ransomware behavior in order
to recover the file content, using its own actions to defeat it.

The following sections are organized as follows: section II

describes the algorithms and data structures in the proposed
software for file recovery. Section III is devoted to the eval-
uation of correctness and completeness in the tool. Finally,
section IV presents the conclusions.

II. SOFTWARE STRUCTURE

We assume that the network probe stores all the SMB
traffic since the previous backup snapshot, for example in
pcap format [29]. A ransomware detection algorithm has
triggered an alarm, it has identified the destroyed files and
the start of the file sharing operations that destroyed the
data. However, the detection software could not block the
ransomware early enough because several destructive actions
were required in order to trigger the alarm [30] [13]. In this
section we describe the software structure for a tool that can
recover the files that were lost before the ransomware was
blocked.

SMB is transported over TCP and each host maintains
one TCP connection with the SMB server. This connection
transports all file access commands to the shared volumes.
Each of these TCP connections can be analyzed individually.
However, the target file can be modified by the actions
from different users, even simultaneously. Therefore, any file
operation, from any connection, must be taken into account
in a time ordered manner for the successful reconstruction
of the file content. We have not found any previous tool with
this capability.

For each TCP connection, SMB traffic cannot be analyzed
on a per-packet basis because SMB commands could extend
along several TCP segments. Therefore, each of the TCP
streams (one for each direction) must be reconstructed. Tools
like [31] [32] offer this functionality. For a proof of concept
we have implemented a TCP reconstruction function that for
each new packet added to any stream in a TCP connection
offers the possibility to request the continuous available data
in the reconstructed stream in any direction (Figure 2).

Analysis 

software

Reconstructed

traffic stream

Reconstructed

traffic stream

C
li
e
n
t

S
e
rv

e
r

Fig. 2. TCP stream reconstruction API behavior. Data from both streams
in the connection are available to the analysis software

The remaining of this section describes the internal soft-
ware architecture and the specific problems it must solve in
order to reconstruct the sequence of SMB commands and
finally reconstruct the lost file from the operations on its
original data and not on the ransomware encrypted version.



A. SMB traffic analysis

SMB, used as a file transfer protocol, is a binary protocol
based on a Request/Response design, where the client sends
the request messages to the file server. Every ‘Request’
message contains a unique client generated identifier called
a ‘MessageID’. The ‘MessageID’ is replicated in the corre-
sponding ‘Response’ message in order to pair both messages
(Figure 3). This protocol characteristic allows the client to
queue several request messages in the server (usually ‘Read’
or ‘Write’ requests). It also allows the server to avoid Head-
of-Line blocking by reordering the responses, sending first
whichever data it gets ready. Even if the responses do not
arrive at the client in the same order in which it sent the
requests, they can be paired using the ‘MessageID’ field. An
example could be the client sending several read operations,
for different files, and the server responding to them in a
different order, perhaps due to the data being obtained from
different hard disks with different response times (see Figure
3 for an example).

Using the above-mentioned functionality, an SMB client
implementation must keep a queue with the pending requests
sent to the server. On the other hand, a server implementation
could continue receiving requests from the SMB session
while it waits for the previous requested data to be ready.
However, an analysis probe is neither in a client nor in a
server position. An analysis probe is in a midpoint in the
communication, seeing both requests and responses in the
order they cross a network link. The probe is analyzing in
parallel the traffic from all the SMB sessions with the same
file server, therefore the ordering in processing the messages
is relevant to the task of obtaining the final state of the file.
Causality is preserved at the monitoring point (no response is
seen before its corresponding request), however, depending
on the order the TCP stream data is processed in the analysis
probe, a ‘Response’ message could be processed before its
request was seen.

In a naive algorithm the monitoring probe could try to
follow the Request/Response causality by reading first from
the client to server stream in order to see a ‘Request’ and
then read from the server to client stream in order to obtain
the ‘Response’ to the previous message. However, due to the
possible reordering in the SMB messages, it could obtain the
response to a different request. Figure 3 shows an example
of this situation. At time t1 the monitoring probe has seen
the first ‘Read request’, sent by the client at t0. If the
probe waits for data in the opposite direction it will not
obtain the corresponding response message but the response
to the request message sent at t2. Note that this situation
is unrelated to any network traffic disorder, as ordering is
recovered in the TCP stream reconstruction function. It is due
to the application level requests being served in a different
order than they were issued.

This situation requires the probe to simulate the queue of
client pending requests. In order to reproduce this queue,
any data available in the client to server stream must be
immediately processed. Whenever data is available in the

Read Request
Message ID: X

Read Request
Message ID: Y

Read Response

Message ID: Y

Read Response

Message ID: X

t0

t2

t1

t3

Client Server
Monitoring 

probe

ti
m

e

tim
e

Fig. 3. Example of SMB messages with reordering

server to client stream it will correspond to one of the
queued pending requests. This queue must be implemented
for any concurrent SMB session. In order to describe the
proposed data structures we describe first the different types
of identifiers used in SMB messages.

1) SMB identifiers: In an SMB session, after the initial
negotiation messages, the client requests access to a volume
using a ‘Tree Connect Request’ message (Figure 4). The
server assigns a ‘TreeID’ to the session, identifying the
accessed volume. Several ‘Tree Connect’ message pairs
could be sent using the same SMB session in order to
grant concurrent access to different shared volumes. These
messages must be analyzed as they contain the volume path
string and the rest of the commands will only specify paths
relative to the tree.

The messages to request access to a file (or to ‘open’
a file) use the ‘TreeID’ in order to refer to the volume
containing the file. The request message is named a ‘Create
Request’ and it is the only message that contains the file
name and the relative path. The response message assigns a
‘fileID’ (or FID in SMB documentation [25]) which identifies
the opened file. Subsequent read or write commands are
implemented using ‘Read Request/Response’ and ‘Write Re-
quest/Response’ messages. These request messages contain
the ‘fileID’ but their responses contain only the ‘messageID’
and the ‘TreeID’. The ‘TreeID’ is required in the responses
because the ‘messageID’ values are local per tree connection.
Note that none of the read/write messages contains the file
path or name.

2) Data structures: Figure 5 shows the data structures
used to follow the sequence of SMB messages when multiple
TCP connections are present and several files have to be
recovered. A list, hash list or hash tree contains the currently
established TCP connections. For each connection, a list,
named ‘TreeList’, is maintained. Each element in a TreeList
refers to the files accessed after a ‘Tree Connect’ to the
specific shared volume. The only ‘Tree Connect’ structures
stored are those for volumes that contain files that have to
be recovered.



Client Server
Negotiate Request
MessageID = 0TreeID = 0

Negotiate Response

MessageID = 0

TreeID = 0

Tree Connect Request
MessageID = 1TreeID = 0

Tree Connect Response

MessageID = 1

TreeID = 1

.

.

.

Create RequestMessageID = 5TreeID = 1FID = 0

Create Response

MessageID = 5

TreeID = 1

FID = wwww-xxxx-yyyy-zzzz

Read RequestMessageID = 6,7,8TreeID = 1FID = wwww-xxxx-yyyy-zzzz

Read Response

MessageID = 6,7,8

TreeID = 1

Write RequestMessageID = 9,10TreeID = 1FID = wwww-xxxx-yyyy-zzzz

Write Response

MessageID = 9,10

TreeID = 1

ti
m

e

tim
e

Fig. 4. Example of SMB messages including the different identifiers

Every element in a TreeList stores a TreeID and a list
of opened files in that tree for that SMB session. Initially,
the element for an opened file contains only the information
seen in the ‘Create Request’ message and after processing the
response message a MessageList structure is created in order
to store the read and write request messages for this file. This
MessageList implements the client pending requests queue
and its elements disappear when the corresponding response
messages are processed.

B. File reconstruction

Several files can be recovered simultaneously, hence a list
of target file names (FileList) is implemented. Each element
in the list will contain a file path and each one could be
located in a different shared volume.

The file content can be obtained from the read and
write operations. If any user has opened and read the file
then the whole original content is available in the traffic
trace. Any posterior file modification can be reconstructed
from the write commands (implemented using ‘Write Re-
quest/Response’ messages). Any read or write operation will

Connection 

1

TreeID

1

Files Opened

Create 

1

Create 

2
Create 

3

Create 

4

Requests without Response

(MessageLists)

TreeID

2

Files Opened

Create 

1

Create 

2
Create 

3

Connection 

2

TreeID

1

Files Opened

Create 

1

Create 

2

TreeList
Requests without Response

(MessageLists)

Requests without Response

(MessageLists)

Fig. 5. Data structures for SMB message processing

be considered valid only when the corresponding confirma-
tion is observed in the form of a response. In the case of read
operations the data are in the response but the file offset is
only in the request. For the write operations, both the offset
and the data are in the request but the operation could fail,
therefore its data cannot be used until the response has been
processed. These operations could come from different users
working on the same file and their actions must be correctly
interleaved following the temporal order stored in the traffic
trace. For example, a later write operation could overwrite
the data that was recovered from a previous read operation.

Some ransomware strains read the whole file and create
a new one with the encrypted content, then they delete
the original file. Other strains overwrite the original file
with the encrypted version. In any case, the whole file
content is read, therefore it is stored in the traffic trace as
payload of file sharing packets and it can be recovered from
them. The only requirement is that the ransomware detection
algorithm identifies the ‘Create Request/Response’ where the
ransomware started its action on the target file. After this
event, any write operation on the file could be due to the
ransomware and the data could be the encrypted version,
therefore it must no be included in the reconstructed file.
However, any other user could still be reading the file. If
this new user reads data that have not been overwritten by
the ransomware, they are still valid data from the file and
they can be used to recover it.

Figure 6 shows an example of the reconstruction proce-
dure. Read operations are marked with an arrow above the
time axis, while write operations use an arrow below the
axis. The timestamp tr marks when the ransomware opened
the file for its encryption. Any read or write operation before
tr contains data that can safely be included in the recovered
file, maintaining its time order. Any write operation after
tr is a suspected ransomware operation, however, any read
operation after tr on data that has not been overwritten after
tr is valid data that can be included in the restored file.

As a design option, if no read operations were included
in the reconstructed file after tr, we would not recover data
that is read by the ransomware or by other software during



timetr

b
y
te

s
 r

e
a
d

b
y
te

s
 w

ri
tt

e
n

R
:0

-2
0
0

R
:2

0
0

-5
0
0

W
:0

-1
0

0

R
:5

0
0

-1
0
0
0

W
:1

0
0
-7

0
0

R
:2

0
0

-4
0
0

R
:7

0
0

-1
0
0
0

tko

Fig. 6. Example of included and excluded operations in file recovery.
Each read (R) and write (W) operation after tr shows the file offset where
they read or write. Data read at tko is not included in the reconstructed file
because it was previously overwritten

ransomware operation. However, if every read operation after
tr was used, then if the ransomware reads what it writes or
any other process reads the encrypted version of the file we
would recover these data instead of the original one. Hence,
for each file to recover, a list of blocks (Figure 7) where the
ransomware has possibly written is maintained after tr. This
allows the inclusion or exclusion of read operations after tr.

File bytes

Written after tr

0 N

N+1 2N

2N+1 M

Read

Offset K

Length L 

0 N

N+1 2N

2N+1 M

K

K+L

Fig. 7. List of blocks for a file being reconstructed. (a) Some blocks in the
file (dark filled) have been overwritten after the ransomware started; (b) a
process reads data form the file but some blocks are from those overwritten
(light gray filled); (c) only bytes not overwritten (black filled boxes) are
included in the reconstructed file

A last event that must be taken into account is the
possibility of a rename or moving operation on the target
file. We assume that the file path to recover is the original
one when the traffic trace starts (from the previous backup).
If afterwards any SMB operation renames or relocates the file
then the program must take into account this new location.
This situations usually take place when the ransomware
renames the file to encrypt.

III. EVALUATION AND EXPERIMENTAL RESULTS

In order to evaluate the proposed recovery mechanisms
we have carried out two different sets of tests: (a) tests of
correctness, evaluating different user actions in the traffic
and (b) tests of completeness, evaluating whether any file
encrypted by a ransomware could be recovered.

For all the tests, the network scenario has been created
using several virtual machines (VMs) running in a single
host. One of the VMs acts as the SMB file server and the
rest act as clients that read or write files shared by the server
(Figure 8). The trace from the traffic crossing the virtual
switch is obtained using functionalities from the hypervisor
[33].

host A
host B file 

server

vSwitch
vRouter

Fig. 8. Testing scenario

For the completeness tests, 54 samples of ransomware
from 18 different families were obtained (Table I). Each
sample encrypted sets of files in the range of 2 Gbytes to 5
Gbytes, containing thousands of files.

Family Versions Number of
samples

Samples with all
files recovered

VirLock VirLock 1 1
CTBLocker CTBLocker v4.0 3 3
Teslacrypt Teslacrypt v3.0 1 1

TorrentLocker CryptoFortress 1 0
DMALocker DMALocker 1 1

Locky Locky v1.0, Aesir, Odin,
Osiris, Diablo6 10 10

Cerber
Cerber v2.0, Cerber v4.0,
Cerber v4.1.6, Cerber v5.0,
Cerber v4.1, Red Cerber

15 15

CryptXXX CryptMIC v5.001 1 1
Bart Bart v2.0 1 1

CryptoMix CryptFile2, Mole,
CryptoShield, Revenge 10 9

Crysis Crysis, Dharma 2 1
Sage Sage v2.0 1 1

MRCR MRCR1 1 0
Spora Spora 1 0

WannaCry WannaCry v2.0 2 2
Jaff Jaff 1 1

Globe GlobeImposter v2.0 1 0
Zeus Zeus 1 1

TABLE I
RANSOMWARE SAMPLES AND SUCCESS IN THE RECOVERY

A. Test of correctness

In order to check the file reconstruction algorithm des-
cribed in section II-B in a complex scenario, three programs
were created that edited the same file. These programs
emulate the behavior of two concurrent normal users and



a ransomware in action. Program ‘benign1’ was run in host
A (Figures 8 and 9). It read the first third of the file content.
Afterwards, program ‘benign2’ was run in host B and it read
the second third of the file. Next, program ‘benign1’ wrote
inside the first third of the file content and ‘benign2’ wrote in
the second third of the file. Afterwards, programa ‘malign’
was run in host A. This program emulated ransomware
behaviour by reading the whole file and overwriting its
content. Finally, both programs ‘benign1’ and ‘benign2’ read
the whole file content. The start time tt of ransomware action
is identified as the time when program ‘malign’ opens the
file. The program must use any read and write operation
previous to that instant and any posterior read operation that
is not accessing bytes overwritten after tr. The result is that
no data read in the last operations of ‘benign1’ and ‘benign2’
should be included in the recovered file, as they are reading
the encrypted version of the file.

tr

benign1 benign2

benign1 benign2

malign

malign

benign1benign2

time

Fig. 9. Test emulating user and ransomware behaviour

The tool successfully recovered the original content of the
file, independent of its size.

After this detailed test, a bulk evaluation was conducted.
More than 5000 files, filling more than 5 Gbytes of data were
copied to and from the shared volume. This generated large
traffic traces containing the set of files. All the files were
recovered and it was checked that they were binary identical
to their original version. This test evaluated the TCP stream
reconstruction functionality and the SMB analysis module.

B. Test of completeness

The ransomware samples shown in Table I encrypted
whole sets of thousands of files, as no detection algorithm
was run. Also, there were no user actions prior or simulta-
neous to ransomware activity. Therefore, the starting time of
ransomware action is the beginning of each traffic trace. The
tool was requested to recover all the files in the encrypted
volume (5034 files). For 48 of the 54 ransomware samples,
all files were recovered correctly.

In the 6 remaining samples the tool could not recover the
whole content of all the files for the following reasons:

• ‘CryptoFortress’, ‘Spora’ and ‘GlobeImposter’ do not
encrypt the whole files. They only encrypt the beginning
and the end of each file. The consequence is that the
ransomware does not read the whole file, therefore its
content is not in the traffic trace. However, as the rest
of the bytes are not encrypted they are still in the file
and it could be reconstructed using its ‘half encrypted’
version and the recovered content.

• ‘Mole’, ‘MRCR’ and ‘Dharma’ do not completely en-
crypt a file when it is large (approximately above 100
Mbytes). This results in the same consequences as in
the previous case.

It must be noted that the traces described in Table I are
captured in a worst case scenario, as there are no real users.
In a deployment scenario the users would have opened and
read many of the shared files before the ransomware started,
therefore their content would be in the trace and it could be
recovered.

In every scenario, if any content is not recovered, it is
because it was not read by the ransomware, therefore it
was not encrypted and so the data remain unencrypted in
the shared volume. Then, the file could be reconstructed by
combining the remaining data with the recovered ones.

IV. CONCLUSIONS

This paper has described the design and deployment
architecture of a software tool that recovers files lost due to
the actions of ransomware in a scenario with network shared
volumes.

The software takes all the user actions on the files from
the recorded traffic and it reconstructs the file content by
incorporating any modifications to the file from user actions.

Based on the information from a ransomware detection
tool, it can recover the file from operations previous and pos-
terior to the ransomware action without taking the encrypted
content as valid data.

The tool design was evaluated in a proof of concept
implementation and it successfully recovered files from test
traffic traces but also from the traffic created by the actions
of 18 different families of ransomware. It recovered all the
files in traces with thousands of encrypted files. It failed
to recover the whole content only in those cases where the
ransomware did not encrypt the whole file, therefore the
remaining content was not lost and it was really not necessary
to recover it.

ACKNOWLEDGMENT

This work was supported by Spanish MINECO through
project PIT (TEC2015-69417-C2-2-R).

REFERENCES

[1] Ransomware and businesses 2016. Technical report, Symantec
Corporation, 2016. http://www.symantec.com/content/
en/us/enterprise/media/security_response/
whitepapers/ISTR2016_Ransomware_and_Businesses.
pdf.

[2] Adrien Gendre. Ransomware statistics, 2017. https://www.
vadesecure.com/en/ransomware-statistics-2017/,
Last access May 9, 2018.

[3] EUROPOL. Internet organised crime thread assessment (IOCTA)
2016. Technical report, Europol - European Police Office, 2016.
https://doi.org/10.2813/275589.

[4] Samir Thakkar. Ransomware - exploring the electronic form of ex-
tortion. International Journal for Scientific Research & Development,
2(10):123–126, jan 2015.

[5] Masarah Paquet-Clouston, Bernhard Haslhofer, and Benot Dupont.
Ransomware payments in the bitcoin ecosystem. In Proceedings of
the 17th Annual Workshop on the Economics of Information Security
(WEIS), June 2018.



[6] A. K. Mauraya, N. Kumar, A. Agrawal, and R. A. Khan. Ransomware:
Evolution, target and safety measures. International Journal of
Computer Sciences and Engineering, 6(1):80–85, jan 2017.

[7] Understanding the depth of the global ransomware problem.
Technical report, Osterman Research, Inc., August 2016.
https://www.malwarebytes.com/pdf/white-papers/
UnderstandingTheDepthOfRansomwareIntheUS.pdf.

[8] onQ Ransomware Edition, 2017. https://quorum.com/
resources/onq-ransomware-edition, Last access May 9,
2018.

[9] Tianliang Lu, Lu Zhang, Shunye Wang, and Qi Gong. Ransomware
detection based on v-detector negative selection algorithm. In Pro-
ceedings of the 2017 International Conference on Security, Pattern
Analysis, and Cybernetics (SPAC), Dec 2017.

[10] Md Mahbub Hasan and Md. Mahbubur Rahman. Ranshunt: A support
vector machines based ransomware analysis framework with integrated
feature set. In Proceedings of the 2017 20th International Conference
of Computer and Information Technology (ICCIT), Dec 2017.

[11] R. Vinayakumar, K. P. Soman, K. K. Senthil Velan, and Shaunak
Ganorkar. Evaluating shallow and deep networks for ransomware
detection and classification. In Proceedings of the 2017 International
Conference on Advances in Computing, Communications and Infor-
matics (ICACCI), Sept 2017.

[12] N. Scaife, H. Carter, P. Traynor, and K. R. B. Butler. Cryptolock (and
drop it): Stopping ransomware attacks on user data. In 2016 IEEE 36th
International Conference on Distributed Computing Systems (ICDCS),
pages 303–312, June 2016.

[13] Manish Shukla, Sutapa Mondal, and Sachin Lodha. Poster: Locally
virtualized environment for mitigating ransomware threat. In Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security - CCS’16. ACM Press, 2016.

[14] Andrea Continella, Alessandro Guagnelli, Giovanni Zingaro,
Giulio De Pasquale, Alessandro Barenghi, Stefano Zanero, and
Federico Maggi. ShieldFS: a self-healing, ransomware-aware
filesystem. In Proceedings of the 32nd Annual Conference on
Computer Security Applications - ACSAC 16. ACM Press, 2016.

[15] Amin Kharraz, William Robertson, Davide Balzarotti, Leyla Bilge,
and Engin Kirda. Cutting the gordian knot: A look under the hood of
ransomware attacks. In Detection of Intrusions and Malware, and Vul-
nerability Assessment, pages 3–24. Springer International Publishing,
2015.

[16] Amin Kharraz and Engin Kirda. Redemption: Real-time protection
against ransomware at end-hosts. In Research in Attacks, Intrusions,
and Defenses, pages 98–119. Springer International Publishing, 2017.

[17] Victor Moreno, Pedro M. Santiago Del Rio, Javier Ramos, Jose
Luis Garcia Dorado, Ivan Gonzalez, Francisco J. Gomez Arribas, and
Javier Aracil. Packet storage at multi-gigabit rates using off-the-shelf

systems. In 2014 IEEE Intl Conf on High Performance Computing
and Communications, 2014 IEEE 6th Intl Symp on Cyberspace Safety
and Security, 2014 IEEE 11th Intl Conf on Embedded Software and
Syst (HPCC, CSS, ICESS). IEEE, aug 2014.

[18] Paul Emmerich, Maximilian Pudelko, Sebastian Gallenmuller, and
Georg Carle. FlowScope: Efficient packet capture and storage in
100 Gbit/s networks. In 2017 IFIP Networking Conference (IFIP
Networking) and Workshops. IEEE, jun 2017.

[19] Intel. Data plane development kit. http://dpdk.org, Last access
May 9, 2018.

[20] Endace. Introducing EndaceProbe. Technical report, Endace. https:
//www.endace.com/introducing-endaceprobe.pdf.

[21] http-sniffer, 2012. http://xiaming.me/http-sniffer/, Last
access May 9, 2018.

[22] Chaosreader. http://chaosreader.sourceforge.net/,
Last access May 9, 2018.

[23] Stephen Deck. Extracting files from network packet captures.
Technical report, SANS Institute, December 2015. https:
//www.sans.org/reading-room/whitepapers/tools/
extracting-files-network-packet-captures-36562.

[24] Microsoft Corporation, Common Internet File System (CIFS) pro-
tocol. https://msdn.microsoft.com/en-us/library/
ee442092.aspx, Last access January 2018.

[25] Microsoft Corporation, Server Message Block (SMB) Protocol ver-
sions 2 and 3. https://msdn.microsoft.com/en-us/
library/cc246482.aspx, Last access May 9, 2018.

[26] Nicolas Harbour. tcpxtract. http://tcpxtract.
sourceforge.net/.

[27] T. Haynes and D. Noveck. Network File System (NFS) Version 4
Protocol. RFC 7530, RFC Editor, March 2015. https://www.
rfc-editor.org/rfc/rfc7530.txt.

[28] Apple filing protocol concepts. Technical report. https:
//developer.apple.com/library/archive/
documentation/Networking/Conceptual/AFP/
Concepts/Concepts.html.

[29] ntopng high-speec web-based traffic analysis. https://www.
ntop.org/, Last access May 9, 2018.

[30] Manaar Alam, Sarani Bhattacharya, Debdeep Mukhopadhyay, and
Anupam Chattopadhyay. RAPPER: Ransomware prevention via
performance counters, 2018. https://arxiv.org/abs/1802.
03909, Last access May 9, 2018.

[31] tcpflow - a tcp ip session reassembler. https://github.com/
simsong/tcpflow/wiki/tcpflow, Last access May 9, 2018.

[32] Rafak Wojtczuk et al. Libnids. http://libnids.
sourceforge.net/, Last access May 9, 2018.

[33] Network tracing. https://www.virtualbox.org/wiki/
Network_tips, Last access May 9, 2018.


