
HAL Id: hal-02528877
https://hal.science/hal-02528877

Submitted on 2 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bluetooth Low Energy Makes ”Just Works” Not Work
Karim Lounis, Mohammad Zulkernine

To cite this version:
Karim Lounis, Mohammad Zulkernine. Bluetooth Low Energy Makes ”Just Works” Not Work. Cyber
Security in Networking Conference, Oct 2019, Quito, Ecuador. �hal-02528877�

https://hal.science/hal-02528877
https://hal.archives-ouvertes.fr

Bluetooth Low Energy Makes “Just Works” Not
Work

Karim Lounis and Mohammad Zulkernine
Queen’s Reliable Software Technology Lab, School of Computing, Queen’s University

Kingston, ON, Canada

{lounis,mzulker}@cs.queensu.ca

Abstract—BLE (Bluetooth Low Energy) is being heavily de-
ployed in many devices and IoT (Internet of Things) smart
applications of various fields, such as medical, home automation,
transportation and agriculture. It has transformed the classic
Bluetooth into a technology that can be embedded into resource
constrained devices running on a cell coin battery for months or
years. Most BLE devices that are sold in the market use the Just
Works pairing mode to establish a connection with peer devices.
This mode is so lightweight that it leaves the implementation
of security to application developers and device manufacturers.
Unfortunately, as the market does not want to pay for security,
a number of vulnerable smart devices are strolling around in
the market. In this paper, we discuss how Bluetooth devices that
use the Just Works pairing mode can be exploited to become
nonoperational. We conduct a case study on three different
Bluetooth smart devices. We show how these devices can be
attacked and abused to not work properly. We also present a
vulnerability that is due to the behavior of BLE smart devices
and the Just Works pairing mode. This vulnerability can be
exploited to generate an attack that affects BLE availability. We
propose a solution to mitigate the attack.

Index Terms—Bluetooth Low Energy, Internet of Things, Just
Works pairing, BLE security, Ubertooth, and Bluetooth attacks.

I. INTRODUCTION

For the past five years, BLE (Bluetooth Low Energy) has

become more and more popular and adopted in many IoT

(Internet of Things) devices in a variety of fields. Nowadays,

it can be found in high-end smartphones, sport devices, home

appliances, vehicles, and medical devices. It has transformed

the classic Bluetooth technology to embed into resource con-

strained devices that run on a cell coin battery for months

or years. These devices adopt lightweight authentication and

encryption protocols to establish secure connections. For ex-

ample, to connect a Bluetooth smart device, such as a blood

sugar monitor, to a smartphone in order to get a notification

when the blood sugar level is up so that insulin can be taken,

the smartphone and the blood sugar monitor must be paired,

i.e., connected and authenticated. Nevertheless, most, if not all,

Bluetooth smart devices that are available in the market, use

a pairing scheme called Just Works. This scheme allows any

device to connect to another device without any “secret-based”

authentication. This makes these smart Bluetooth devices

vulnerable to a variety of attacks, which threaten the security,

privacy, and safety of Bluetooth users.

While developing the BLE specification, the Bluetooth Spe-

cial Interest Group1, or Bluetooth SIG for short, has focused

more on power consumption than security. Although, the pro-

vided security is not that perfect, Bluetooth SIG has provided

security recommendations and guidelines in their standard

specification documents. These recommendations should be

followed by application developers and Bluetooth smart de-

vice manufacturers to implement security into their devices.

Notwithstanding, many device manufacturers and Bluetooth

application developers do not follow these recommendations.

This is mainly because vendors and application developers

choose cheaper and faster option over better quality when

it comes to “Quality, time, and cost, pick any two”. This

has resulted in millions of vulnerable smart devices strolling

around in the market. Such devices can be exploited to

generate various attacks that threaten the security, privacy, and

safety of Bluetooth users.

In this paper, we present a vulnerability in the BLE Just

Works pairing mode. Then through a practical case study,

we evaluate the security of three Bluetooth smart devices:

a bikelock, a lightbulb, and a deadbolt. These devices are

made from different manufacturers and implement security in

a different manner. We show how the Just Works pairing mode

makes those devices vulnerable to different types of attacks.

We propose a solution to mitigate the identified vulnerability

as well, which will improve BLE security.

The remainder of the paper is organized as follows: Section

II presents BLE technology. In Section III, we discuss the

related work. We describe how attacks are generated on BLE

devices in Section IV. In Section V, we present a vulnerability

in the BLE Just Works pairing mode and explain how it can be

exploited to abuse Bluetooth availability. Section VI evaluates

the security of three Bluetooth smart devices and provides a

solution to fix the identified vulnerability. Finally, Section VII

concludes the paper.

II. BLUETOOTH LOW ENERGY

In this section, we first give an overview about BLE

(Bluetooth Low Energy) and then we discuss BLE security.

1Bluetooth SIG is the Bluetooth standard organization. It has hundreds of
members, such as Ericsson, Nokia, Apple, IBM, and Microsoft.978-1-7281-3949-4/19/$31.00 ©2019 IEEE

A. BLE Overview

Bluetooth is a wireless communication technology based

on the IEEE 802.15.1 standard. It is used for exchanging data

between fixed and mobile wireless devices within a short range

and building WPANs (Wireless Personal Area Networks). It

uses the free unlicensed ISM (Industrial, Scientific, and Med-

ical) radio band at 2.4GHz and adopts the FHSS (Frequency

Hopping Spread Spectrum) transmission technique to send

packets while reducing interference. Bluetooth has evolved for

the last twenty years, from Bluetooth v1.0 (1999) to Bluetooth

5 (2017), coming out with better power consumption, stronger

security, higher data rate, and longer range.

In 2010, the Bluetooth SIG (Special Interest Group) released

Bluetooth v4.0+LE (Low Energy), or simply BLE [1]. This

new technology includes two sub-specifications: Bluetooth

smart, also known as BLE single mode; and the Bluetooth

smart ready, also known as BLE dual mode. These two sub-

specifications have a completely different physical and link

layers. Thus, there exist two different protocol stacks: the

BLE dual mode and the BLE single mode as illustrated in

Fig. 1. BLE dual mode implements both protocol stacks, the

classic Bluetooth stack, which is used in Bluetooth v1.1 to

Bluetooth v3.0+HS (High Speed); and the Bluetooth smart

stack. Bluetooth devices which implement only the Bluetooth

smart stack, i.e., single mode, are not retro-compatible with

classic Bluetooth devices [1].

SSP

RFCOMM

L2CAP

Link	Manager

BR/EDR	PHY

Classic	or	BR/EDR

RFCOMM

L2CAP

Link	Manager

BR/EDR	+	LE	PHY

Dual	mode	or	BR/EDR/LE

Link	Layer

SMP ATT

SPP GAP GATT

L2CAP

LE	PHY

Single	mode	BLE

Link	Layer

SMP ATT

GAP GATT

Bluetooth Bluetooth	Smart	Ready Bluetooth	Smart

Application Application Application

H
os
t

HCI HCI

C
on
tro
lle
r

Fig. 1. Classic Bluetooth stack (leftmost), Bluetooth smart ready stack
(center), and Bluetooth smart stack (rightmost).

Bluetooth low energy divides the spectrum into forty chan-

nels each of 2MHz bandwidth. Three channels out of the

forty (37, 38, and 39) are used for advertisement and con-

nection establishment. The remaining channels are used for

data exchange during a communication. BLE stack can be

divided into three layers: controller, host, and application.

The controller layer deals with transmission and reception of

radio signals. The host layer encompasses all the modules

needed to provide applications with diverse APIs (Applica-

tion Programming Interfaces) to communicate with remote

Bluetooth devices through the radio. Finally, the application

layer groups all Bluetooth smart applications. The host layer

is composed of multiple modules. The L2CAP (Logical Link

Control and Adaptation Protocol) is used for protocol mul-

tiplexing, packets segmentation and reassembly, quality of

service, and group abstractions. The SM (Security Manager)

defines all cryptographic functions needed to provide security

services. The GATT (Generic Attribute Profile) defines a set of

standard profiles that specify how messages are constructed,

formatted, and exchanged between two Bluetooth devices.

The GAP (Generic Access Profile) defines four BLE roles

in which a device can operate: observer (can only receive

traffic), broadcaster (can only advertise), peripheral (can accept

connections from other devices), and the central (can initiate

connections with peripherals) [1]. The peripheral and the

central are classically known by slave and master, respectively.

The set of profiles that are defined by the GATT module are

used to develop smart applications. Each profile defines a set

of services. Each service is identified by a unique identifier

UUID (Universal Unique Identifier). A service includes one

or more characteristics. Each characteristic is identified by

a value known as handle. A characteristic contains one or

more properties, one value, and one or more descriptions. For

example, a smart application running on a central device, such

as a smartphone, can use the Battery service to monitor the

level of the battery in a remote Bluetooth peripheral device.

B. BLE Security

In order to communicate, Bluetooth devices have to be

connected and authenticated to each other. This is performed

during an authentication procedure called pairing. The pair-

ing procedure allows two Bluetooth devices to authenticate

each other and negotiate on a set of security parameters to

derive a master key called link key, or LTK (Long Term

Key) in BLE. This key is stored and used to encrypt all

future communications between a pair of Bluetooth devices.

BLE defines two main pairing modes: legacy pairing and SC

(Secure Connections). The legacy pairing applies the SSP

(Secure Simple Pairing), which is used in classic Bluetooth

(from Bluetooth v2.1+EDR to v4.1+LE), but without ECDH

(Elliptic curve Diffie-Hellman) [2]. The Secure Connections

upgrades SSP since Bluetooth v4.2+LE (and Bluetooth 5). It

uses ECDH in BLE, longer keys, and provides data integrity.

In BLE legacy pairing, only three association modes are

possible: Just Works, Passkey Entry, and Out of Band. In

BLE Secure Connections, a fourth mode called Numeric

Comparison, is added. Besides Numeric Comparison, none

of the previous association modes provides protection against

passive eavesdroppers. BLE employs AES2 128-bit in CCM3

mode for data encryption. In this paper, we only consider

legacy pairing, i.e., Bluetooth v4.0+LE and v4.1+LE.

III. RELATED WORK

Since BLE (Bluetooth Low Energy) was released, many

research works have been conducted to study the security of

BLE in general, and Bluetooth smart devices in particular.

In [4], the authors have shown how BLE can be easily sniffed

using affordable hardware, such as Ubertooth One [5]. In [6],

2AES (Advanced Encryption Standard), also known as Rijndael, is a
symmetric cipher established by the U.S. National Institute of Standards and
Technology (NIST) in 2001 [3].

3CCM: Counter with Cipher block chaining - Message authentication code.

2

the authors have demonstrated fundamental weaknesses in the

key exchange protocol that is adopted in BLE. Ray et al. [7]

and Lonzetta et al. [17] have discussed general attacks on

BLE. With respect to Bluetooth smart devices, Ryan [6] have

demonstrated attacks on heart rate monitors. Rose et al. [8]

have discussed how they hacked twelve smart locks out of

sixteen. Cauquil [22] have developed a MITM (Man In The

Middle) framework, called Btlejuice, to conduct MITM attacks

on smart padlocks, a robot, and a blood GMS (Glucose Moni-

toring System). Jasek [20] have demonstrated through different

attacks, such as MITM attack, replay attacks, and reverse

engineering of Bluetooth mobile applications, how they have

managed to hack and unlock different types of smart padlocks.

Tan [21] have presented how they have managed to hack

bicycle locks used for bike sharing applications in Singapore.

Zhang et al. [9] have conducted attacks on wearable devices,

in particular, wristbands, and have shown how vulnerable these

devices are. Similar work in [10], [11], have conducted attacks

on the same types of devices, i.e., wristbands, by reverse-

engineering the mobile applications that are used to connect

and control the devices.

Attack

BLE

device

Capture

BLE

packets

Use

Ubertooth

hardware

Use

Ubertooth

sniffer

Connect

to BLE

device

Create

BLE

packets

Replay

captured

packets

Send

crafted

packets

Fig. 2. An attack-tree for attacking Bluetooth smart devices, where ©
represents an attack and ©–© indicates an attack refinement. A refinement
can be a conjunction (And), disjunction (Or), or a sequential conjunction
(Then).

Many vulnerabilities as well as privacy issues have been

discussed in [12], [13], where authors have shown that some

smart devices, such as keyboards, fitness trackers, and heart

rate monitors, do not employ encryption at all and all confi-

dential and private information are sent in plaintext over the

air. Gullberg [14] have presented denial of service attacks

on BLE. In this paper, we conduct a case study on three

different Bluetooth smart devices: a bikelock, a lightbulb, and

a smart deadbolt, and show how vulnerable those devices are

by generating attacks on different security services: confiden-

tiality, authenticity, integrity, and availability. We also discuss

a vulnerability that is due to the BLE Just Works pairing mode.

This vulnerability can be exploited to deprive legitimate users

from correctly using their smart devices.

IV. ATTACKING BLUETOOTH LOW ENERGY

BLE (Bluetooth Low Energy) has been a hot subject of

security attacks. Many vulnerabilities have been discovered

and various attacks have been conducted and reported in

the literature as well as in the hacking conferences. In the

following paragraph, we discuss the attack anatomy that most

attackers follow to generate attacks against BLE devices.

To conduct an attack on BLE devices, an attacker usually

follows the attack steps described by the attack-tree4 of Fig. 2,

where © can be a final goal, a sub-goal, or a basic attack,

depending at which level the attack node © is situated.

∀

refers to logical conjunction refinement (And) or sequential

conjunction refinement if there is an arrow (Then), and

∨

refers to logical disjunction refinement (Or). The steps are as

follows:

Step 1. The attacker starts by capturing BLE traffic, and

more interestingly, capturing packets related to a target com-

munication. Capturing a BLE communication requires the

attacker to capture the connect request packet that is sent

during a connection establishment. This packet contains all

synchronization parameters, such as the hop increment, the

hop interval, timeout, window size, and the access address,

needed to generate the hop sequence [1]. Knowing the hop

sequence, an attacker can follow up a complete ongoing BLE

communication. If the attacker misses this packet, it can apply

other techniques, such as the one discussed in [6].

Step 2. Once the attacker has captured enough packets, it

connects to the target device. As most Bluetooth smart devices

employ the Just Works pairing mode, the attacker will easily

succeed this step.

Step 3. Now that the attacker is connected, it can start re-

playing previously captured packets or generating new packets

based on the captured ones. The attacker just needs to know

which service (i.e., UUID) and characteristic (i.e., handle) it

targets. As part of the BLE protocol, the attacker can request

the smart device to reveal all services and characteristics that

the device hosts. Once the attacker identifies the targeted ser-

vice and characteristic, it generates read and write commands

to perform unauthorized readings and writings on the smart

Bluetooth device.

V. JUST WORKS VULNERABILITY IN BLE

In the following paragraphs, we discuss the features of the

Just Works pairing mode in BLE (Bluetooth Low Energy) and

how attackers can take advantage of these features to generate

attacks. We present a vulnerability that can be exploited to

abuse Bluetooth smart devices functionality. The Just Works

pairing mode is a pairing procedure that is used when at

least one of the Bluetooth devices to be paired with, does

not have any input and output capability. In BLE, it is the

most adopted pairing mode, as almost all Bluetooth smart

devices, do not have any input and output capability such as

lightbulbs, smart locks, fridges, keyfobs, heart rate monitors,

and other devices. The main feature of this pairing mode

is that it does not require any authentication to complete a

4Attack-trees [16] are graphical security models used to represent possible
attack scenarios on a given information system in a user-friendly way.

3

pairing procedure. Technically, there is a kind of meaningless

authentication, where both devices generate a shared STK

(Short Term Key) by proving to each other the possession

of a shared TK (Term Key), where this TK is by default

set to 0x00 in this pairing mode. The STK is then used

to exchange the LTK (Long Term Key) [1]. In few words,

anybody can connect to any BLE device that uses Just Works.

To provide security, Bluetooth application developers along

with Bluetooth smart device vendors, use the BLE security

specifications and follow the Bluetooth SIG recommendations

to design and implement a proprietary high-level security

protocol to secure their applications and Bluetooth smart

devices. Thus, the authentication procedure of any application

that is developed to connect and control a Bluetooth smart

device, usually goes through two phases: (1) The standard

Just Works phase. (2) The application-based authentication

phase. The latter phase is not always implemented. Some

vendors invest some money to implement the second phase

and make their applications and BLE devices secure, whereas

other vendors leave the pairing as is, i.e., not secure.

Attacker [BLE Smart Ready]

A

Device [BLE Smart]

D

User [BLE Smart Ready]

U

Disconnected DisconnectedDisconnected

Connect requestA→D

Connect responseD→A

Connected Connected

Connect request U→D

Connect rejectD→U

Connected Connected Disconnected

Fig. 3. Connection deprivation in BLE Just Works pairing. The notation
Mx→y indicates a message sent from x to y, where x, y ∈ {A,D,U}.

Another feature in BLE is that most, if not all, Bluetooth

smart devices, which operate as peripherals, are restricted to

establish one and only one connection at a time with a central

device. This can be interpreted as a security vulnerability that

can affect Bluetooth availability. As anybody can connect to

these devices, and as these devices accept only one connection

at a time, an attacker can establish a connection with these

devices and deprive legitimate users from connecting to them

and using their services as illustrated in the MSC5 of Fig. 3.

VI. CASE STUDY

To study the security of BLE devices and to demonstrate

the impact of the vulnerability that we have presented in the

previous section, we consider three use cases. The first use

case consists of a Bluetooth bikelock, where the owner of

a bike uses a mobile application installed on its smartphone

5MSC (Message Sequence Chart) is a graphical language for the description
of the interaction between different components of a system. This language
is standardized by the ITU (International Telecommunication Union).

to connect to the Bluetooth lock and unlock it. The second

use case consists of a smart Bluetooth lightbulb, where the

owner uses a mobile application to switch the lightbulb ON

and OFF, and adjust its brightness. Finally, the third use case

consists of a home Bluetooth deadbolt. The owner uses a

mobile application to connect to the deadbolt, unlock it to

open the door, and gets into the house.

Fig. 4. Attacker environment: laptop (HP Probook 6560b), 25dBi directional
Yagi antenna, Bluetooth dongle LM1010, Ubertooth One, Linux Ubuntu 16.04
LTS, Linux software utilities, smart deadbolt, bikelock, and a lightbulb.

Attacker environment. To generate attacks on BLE devices,

we use different types of tools (viz., Fig. 4). We use three

hardware components: an Ubertooth One [5], a Bluetooth

dongle, and a high-gain antenna. Ubertooth One is a hardware

component designed to perform Bluetooth experimentation, in

particular, on Bluetooth low energy. The Bluetooth dongle is a

dual band dongle (LM Technologies LM1010), which allows

us to establish connections with Bluetooth smart devices.

The antenna is a 2.4GHz Yagi antenna with a high gain of

25dBi. For software components, we use three software tools:

Ubertooth btle, hcitool, and gatttol. The Ubertooth btle is

a software utility that is used along with Ubertooth One to

capture BLE traffic and follow an ongoing BLE communica-

tion. Hcitool is part of the Linux BlueZ Bluetooth package.

It is used to communicate with the local Bluetooth controller

of the computer and perform a multitude of operations, such

as scanning for nearby Bluetooth devices. Finally, the gatttol

software utility, which is used to establish connections with

Bluetooth smart devices and send read and write commands

to the devices to read and write the characteristics (values) of

a given target service.

In the next subsection, we conduct attacks on the three

Bluetooth smart devices, following the attack tree of Fig. 2. We

perform attacks against data confidentiality, user authenticity,

data integrity, and device availability. We present these attacks

according to Stalling’s attack classification [23]: Interception

attacks cover attacks on data confidentiality, fabrication attacks

contain attacks on user authenticity, modification attacks cover

attacks on data integrity, and interruption attacks include

4

attacks on device availability. In this way, we cover all four

fundamental security services, also known as information

assurance pillars, defined in the DoD (U.S. Department of De-

fense) Information Assurance Certification and Accreditation

Process [17] for a better security evaluation.

A. Bicycle lock

In this first use case, we consider the Bluetooth NULOCK

bikelock from NuVending6. This lock is equipped with a

braided steel cable of 47 inches, a 110dB alarm protection, and

costs around $40. It runs Bluetooth v4.0+LE (Low Energy). It

is controlled through a mobile application called Nulock (has

1,000+ downloads in Play Store), which allows the owner of

the bike to lock and unlock the bikelock using BLE and by

just standing close to the lock.

Interception attack. To intercept specific BLE traffic, we

first start by detecting nearby Bluetooth smart devices, in

particular, the bikelock. To this end, we use a Bluetooth dongle

(LM Technologies LM1010) plugged in a laptop (HP Probook

6065b) that runs Linux (Ubuntu 16.04 LTS). Then, we use the

hcitool software utility to communicate with the dongle and

perform operations, such as scanning for nearby Bluetooth

devices. We detect the bikelock and obtain both its address

(f8:36:9b:48:09:d9) and user-friendly name (smart-

lock). The hcitool command sends scan requests to detect

Bluetooth smart devices, which reply back by a scan response.

Next, we use Ubertooth One along with Ubertooth-btle soft-

ware utility to eavesdrop any communication that involves

the bikelock. Last, to display the captured packets and read

their contents, we use Wireshark7 with BLE packet dissector.

We have activated the Bluetooth interface of the smartphone

and have stood next to the lock. The connection between

the smartphone and the bikelock has taken place and has

been successfully intercepted by Ubertooth One, which has

managed to intercept the connect request packet (viz., Fig. 5),

compute the hop sequence, and follow up the communication.

Fig. 5. Wireshark view of the connect request sent from the smartphone to
the bikelock and intercepted by Ubertooth One.

We have executed some commands, such as changing the

lock configuration using the mobile application. This has

generated write-command packets sent from the smartphone

to the bikelock. Ubertooth One has managed to follow up and

6NuVending of NUNET is an American company specialized in designing
and selling innovative IoT products.

7Wireshark is a network sniffer and protocol analyzer software utility.

intercept those packets. Interestingly, we have tried to interpret

the content of one of the packets (viz., Fig. 6) and found a

value (a171727374313301) being transmitted as a value

for a characteristic which handle is 0x0025. After decoding

that value, it turns out that part of that value (underlined)

corresponds to the ASCII code for the password qrst13

which the user has initially set up. Now that the attacker

knows the password, it can use it to bypass the authentication

mechanism that is used in the mobile application and unlock

the lock. The attacker just has to download the application

on its smartphone, set up the password qrst13, stand near

the bike, unlock the lock, and cycle the bike away. Also, the

attacker can adopt a more sophisticated approach to eavesdrop

the communication between the smartphone and the bikelock.

For example, it can use a drone to fly over the bike while the

owner is unlocking it. The drone intercepts the packets and

flies back to the attacker. Notwithstanding, as drones make

noises, another passive alternative consists of using a high

gain directional antenna, such as the Bluegun [19], to increase

the interception range. The attacker can stand far away from

its victim while the latter is unlocking its bike and capture the

packets without being noticed. We have actually performed

this attack using a 5dBi omnidirectional antenna by standing

100 meters away from the bikelock at Queen’s university

campus. Note that we have observed that this bikelock uses

encryption only at the beginning when the owner sets up

the initial password (probably to send the password to the

bikelock). After that, all communications are in plaintext,

including the password.

Fig. 6. Wireshark view of a write-command packet intercepted by Ubertooth
One during smartphone-bikelock communication.

Fabrication attack. Knowing the password and the Bluetooth

device address, we have tried to connect and interact with

the bikelock using the gatttool software utility that runs

on a Linux system (Ubuntu 16.04 LTS) of a laptop. We have

observed that the laptop gets paired with the bikelock using

Bluetooth Just Works mode and gets disconnected after few

seconds. This is mainly due to the application protocol that

runs on the bikelock. The bikelock, as a BLE peripheral,

expects the laptop, as a BLE central, to send some information

to ensure that it is talking to the mobile application that

was developed for communicating with the bikelock. This

brings us to analyze the packets that have been captured by

Ubertooth One and to find a pattern that would allow as to

convince the bikelock that it is talking to the NULOCK mobile

application. Interestingly, we have found that the mobile

application sends a write request that contains a 20-byte value

5

(a1373431363839099278026b1364b0770d6e237e).

We have observed that the first most significant eight bytes

(underlined) are fixed for each connection, whereas the

remaining bytes vary by changing the password. Thus, we

have tried to connect again to the bikelock and send a write

command to the handle 0x0025 with the same twenty-byte

value. We have observed that in this time the bikelock has not

dropped out the connection. This means that the twenty-byte

sequence is the right value to send in order to keep the

connection with the bikelock running. Next, we have sent

a write command to the handle 0x0025 with the learned

password and Poof! the bikelock got unlocked.

Fig. 7. Mobile application interfaces after BLE attacks (from left to right):
(a) Nulock for the bikelock and (b) Pulse for the lightbulb.

Modification attack. We have thought of the possibility of

illegally changing the configurations of the bikelock. One

important configuration is the password. We have set up

Ubertooth One to follow the connection between the bikelock

and the legitimate user while changing the password using

the mobile application. After we have changed the password,

we have analyzed the packets and found a write command

that contains both passwords, the old one and the new one,

separated by one byte (0x07). Thus, we have paired the laptop

again with the bikelock, sent the twenty-byte sequence to hold

the connection, and sent a slightly modified write command to

change the password. We have just swapped the old password

with the new one in such a way so that the new password

becomes qrst13. The bikelock has replied with a message

indicating that the command was successfully executed. This

means that the integrity of the stored data in the device has

been successfully corrupted.

Interruption attack. In order to check the impact of the write

command that we have sent during the modification attack, we

have used the mobile application and tried to legally connect

the bikelock and unlock it. The mobile application has popped

up a message informing that the password has been changed

and that the bikelock has to be removed from the list as

illustrated in Fig. 7.(a). In this way, the legitimate user has

been locked out from its bike. If the user forces the lock, the

lock will trigger its 110dB alarm. The alarm will not stop until

it runs out of battery, which will take hours. At this point, the

bike lock requests the user to input the new password which

is only known by the attacker. This approach can be used to

set up a ransomware that performs the same attack and locks

users out and forces them to pay a certain amount of money

to unlock their items.
Furthermore, to evaluate the impact of connection depriva-

tion discussed in Section V, we have established a connection

with the bikelock and used that 20-byte value to hold the

connection. Next, using the legitimate application, we have

tried to connect to the bikelock which failed as shown in

Fig. 8.(a). An attacker standing far away from the bike, can

perform this attack using a high-gain directional antenna and

deprive a legitimate user from unlocking its bike.

B. Smart lightbulb

In this second case, we consider the Bluetooth pulse solo

lightbulb from Sengled8. The lightbulb comes with an inte-

grated JBL speaker to allow users to broadcast audio data on

the lightbulb from their smartphones. It costs around $70. It

runs Bluetooth 4.0+LE (Low Energy). Users can download

and install a mobile application called Pulse (has 100,000+

downloads in Play Store) to connect their smartphones to the

lightbulb and control it remotely. They can use the application

to switch the lightbulb ON and OFF, and adjust its brightness.

Interception attack. Similar to the bikelock, we have started

by detecting the lightbulb and learning its Bluetooth device

address (08:7c:be:36:e0:49) as well as its user-friendly

name (C01-A66_Pulse Solo) using hcitool utility.

The lightbulb periodically broadcasts advertisement packets

on channel 37 to indicate its presence in the neighborhood.

The mobile application, i.e., Pulse, does not require any

password from the user. Thus, this time we do not have to

intercept any confidential information, such as a password.

Still, we are interested in intercepting write-commands that

the application sends to change the status and configurations

of the bulb such as the commands that modify the brightness

of the lightbulb and the ones that turn the light ON and

OFF. We have generated commands to switch the light

ON and OFF and to modify the lightbulb brightness.

At the same time, we have set up Ubertooth One along

with Ubertooth-btle software to intercept the traffic that

is generated by the commands that are executed from the

smartphone. We have captured the packets that were used to

modify the brightness of the lightbulb. Those packets carry

write-commands to the handle 0x0017 with a 168-bit value

(7efeffffff00000000010001000000ff64400007e).

The byte that contains the value 64 (underlined) represent

the brightness, which is equal to 100% in this case. This is

the same write-command that is used to switch the light ON.

Therefore, when switching the lightbulb OFF, there will be a

write-command to the handle 0x0017 with a value equal to

7efeffffff00000000010001000000ff00400007e.

Fabrication attack. The Pulse application does not implement

any authentication mechanism. Anybody can install the appli-

cation and connect to the lightbulb and remotely switch it ON

8Sengled is an international company specialized in smart lighting products.

6

and OFF. An attacker can take over the lightbulb by connecting

to it and illegally executing commands, such as switching the

light ON and OFF and changing the light brightness.

Modification attack. To breach the integrity of the lightbulb,

we have tried to illegally change the configurations of the

lightbulb. Knowing the value to be written on the handle

0x0017, we have connected the laptop to the lightbulb

and have executed write-commands on the bulb. By setting

the brightness byte to 0x00, we have managed to turn the

lightbulb OFF, and by setting it to 0x64 we have turned

the lightbulb ON with 100% brightness. Interestingly, since

the highest value to be represented on one byte is 255, we

have tried to execute a write-command with a value set to

0xff. The command was executed with success. Then, to

check the impact of the last command, we have used the

mobile application to connect to the lightbulb and found out

that the current displayed brightness is 255% as illustrated in

Fig. 7.(b). Hopefully, nothing dangerous has happened after

we have boosted the brightness beyond its maximum for few

seconds. Only God knows, what could have happened to the

bulb if we have left it with that brightness for a longer time.

Interruption attack. In this scenario, there are three ways

to cause a denial of service on the lightbulb: (1) Sending

a steady-stream of write-commands to the handle 0x0017

with a value set to 0x00 to switch OFF the light definitely.

(2) Sending a steady-stream of write-commands to the handle

0x0017 with a value set to 0xff and see what will happen

after sometime. (3) Establish an illegal connection with the

lightbulb and deprive legitimate users from connecting to it

and using it. We have performed this third attack option and

tried to connect using the application as legitimate users, but

the application popped up the message shown in Fig. 8.(b). We

have installed the lightbulb inside an office in the 6th floor of a

building at Queen’s university campus. By staying 85 meters

away outside the building inside a car while it was raining,

we have managed to take over the lightbulb. We note that in

the lightbulb’s manual, it is mentioned that the lightbulb has

an operational range of 10 meters.

C. Smart deadbolt

In this last case, we consider the Bluetooth Sense deadbolt

from Schlage9. The deadbolt is embedded with Wi-Fi as well

as Bluetooth smart technology. It costs around $250. It runs

Bluetooth 4.1+LE (Low Energy). Users can download and

install a mobile application called SchlageHome (has 50,000+

downloads in Play Store) to connect their smartphones to the

deadbolt and unlock it. The deadbolt can also be connected to

the Internet through its Wi-Fi interface and get unlocked from

anywhere through Internet.

Interception attack. We have captured the communication

between this home lock and the smartphone using Ubertooth

One. Then, using Wireshark we have displayed the packets

9Schlage is an American lock manufacturer founded in 1920. It produces
high-security key and cylinder lines, Primus, Everest, and Everest Primus XP.

that have been intercepted and tried to interpret them. It turns

out that this deadbolt uses AES-encryption with data freshness.

This means that the packets can neither be read (decrypted) nor

replayed. We could not apply simple attacking tools to disclose

any confidential information. We have also tried to capture

the pairing messages in an attempt to crack the LTK key, but

have observed that the pairing is actually not happening over

BLE. We have noticed that the application requires the Wi-

Fi interface to remain active while the pairing is performed.

We have concluded that this deadbolt uses the Out-of-Band

pairing mode to accomplish a secure pairing. We have also

reverse-engineered the mobile application to understand its

code, but the code was too complex and appeared to be well

designed and implemented. Hence, this deadbolt requires more

sophisticated approaches that we leave for future work.

Fabrication attack. We have tried to replay the packets that

we have captured and observed that the deadbolt cut off the

connection right after receiving our replayed packets. This

means that the deadbolt is implementing a kind of replay

protection to discard any replayed or unexpected packets.

Modification attack. We have observed that the deadbolt

discards most of the packets that we have replayed and

injected. However, we have managed to successfully change

the values of some characteristics, such as the one identified

by the handle 0x0023. The impact of changing the value of

the characteristic 0x0023 is discussed in the next paragraph.

Interruption attack. Although this deadbolt has proven to

have security implemented, it does not resist against the

connection deprivation attack discussed in Section V. As the

deadbolt accepts only one connection at a time, an attacker

can easily occupy the connection and take over the deadbolt.

Hence, any legitimate user who tries to connect and unlock the

deadbolt to get home, will be locked out. We have generated

this attack and tried to connect using the legitimate application.

The latter has displayed the screenshot shown in Figure 8.(c).

Nevertheless, we have observed that the connection is dropped

after 60 seconds. We have tried to understand the reason

behind that and have found that the deadbolt periodically

disconnects from the application after each 60 seconds and

then reconnects. We have considered that as a security measure

against eavesdroppers since re-establishing a new connection

results in a new hop sequence. Thus, to perform the connection

deprivation attack, the attacker needs to reconnect after each

60 seconds. However, by applying some fuzzing, we have

found that we can successfully change the value of the handle

0x0023, and that if we change that value to 0xff few

seconds before those 60 seconds elapse, we can keep the

connection for another minute. Hence, the attacker just has

to send a write command to the handle 0x0023 with a

value 0xff, say each 55 seconds, to not get disconnected

and indefinitely deprive legitimate users from unlocking the

deadbolt. We have used our high-gain antenna and managed to

successfully perform this attack from inside a car that we have

parked 425 meters away from the deadbolt. We emphasize

7

that it was raining when we performed this attack from that

distance.

Fig. 8. Mobile application interfaces after BLE connection deprivation (from
left to right): (a) Nulock for the bikelock, (b) Pulse for the lightbulb, and (c)
SchlageHome for the deadbolt.

Countermeasure. As a mitigation to the connection depriva-

tion attack, Bluetooth smart devices should be designed to

accept multiple connections at a time. This will for example

allow two or more users to control a device at the same

time. Notwithstanding, we boldly forewarn that connection

handling must be implemented correctly to avoid falling back

into the connection dumping vulnerability (Bluecutting attack)

introduced by Lounis et al. in [15], where an attacker A

spoofs a legitimate user U to connect to device D, while

the legitimate user U is already connected to D, causing the

disconnection (hijacking) of D from the legitimate user U .

VII. CONCLUSION

BLE (Bluetooth Low Energy) is being embedded in many

smart devices of different application fields, such as medical,

home automation, transportation, and security devices. How-

ever, BLE security has been left for application developers

and device vendors. As most vendors do not want to pay for

security, there is a large number of vulnerable and expensive

smart devices strolling around in the market. In this paper,

we have discussed BLE security, in particular, when the Just

Works is used. We have shown through a practical case study

of three different Bluetooth smart devices, how vulnerable

certain devices are. We have also discussed the connection de-

privation vulnerability that can be exploited to deny legitimate

users from using their own devices and proposed a mitigation

technique to this attack as well.

We cannot force Bluetooth smart device vendors to invest

for security. Still, we can warn users about the possible

risk of buying insecure devices and choosing convenience

over security, privacy, and safety. Bluetooth smart devices

are predicted to be nearly one-third of the forty-eight billion

IoT (Internet of Things) devices in 2021. If BLE security is

not considered seriously, by 2021 we will have billions of

vulnerable devices in the market. Those devices will be used

in IoT applications and make IoT vulnerable as well.

ACKNOWLEDGMENT

This work is partially supported by the Natural Sciences

and Engineering Research Council of Canada (NSERC) and

the Canada Research Chairs (CRC) program.

REFERENCES

[1] Bluetooth-SIG. “Bluetooth Core Specification Version 5.0,” Bluetooth
Spec document, 2018.

[2] W. Diffie and M. E. Hellman. “New Directions in Cryptography,” IEEE
Transaction Information Theory, vol. 22, no. 6, pp. 644-654, 1976.

[3] NIST. “Advanced Encryption Standard (AES),”
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf, 2001.

[4] D. Spill. “Bluetooth Packet Sniffing Using Project Ubertooth,”
http://2012.ruxcon.org.au/assets/rux/Spill-Ubertooth.pdf, 2012.
(Accessed: 06-14-2019).

[5] Great-Scott-Gadgets. “Ubertooth One: A Wireless Devel-
opment Platform Suitable for Bluetooth Experimentation,”
https://greatscottgadgets.com/ubertoothone/, 2009. (Accessed: 06-
14-2019).

[6] M. Ryan. “I am Jack’s Heart Monitor,”
http://lacklustre.net/bluetooth/hacking btle-i am jacks heart monitor-
mikeryan-toorcon 2012.pdf, 2012 (Accessed: 06-14-2019).

[7] A. Ray, and V. Raj, and M. Oriol, and A. Monot, and S. Obermeier.
“Bluetooth Packet Sniffing Using Project Ubertooth,” In the IEEE
11th International Conference on Software Testing, Verification and
Validation, pp. 384-393, 2018.

[8] A. Rose, and B. Ramsey. “Picking Bluetooth Low Energy Locks from
a Quarter Mile Away,” https://www.defcon.org/html/defcon-24/dc-24-
speakers.html, 2016. (Accessed: 06-14-2019).

[9] Q. Zhang, and Z. Liang. “Security Analysis of Bluetooth Low Energy
Based Smart Wristbands,” In the 2nd International Conference on
Frontiers of Sensors Technologies, 2017.

[10] B. Cyr, and W. Horn, and D. Miao, and M. Specter. “Security Analysis
of Wearable Fitness Devices (Fitbit),” MIT report, 2014.

[11] O. Arias, and J. Wurm, and K. Hoang, and Y. Jin. “Privacy and Security
in Internet of Things and Wearable Devices,” In the IEEE Transactions
on Multi-Scale Computing Systems, vol. 1, No. 2, pp. 99-109, 2015.

[12] H. C. Chen, and M. A. A. Faruque, and P. H. Chou. “Security and
Privacy Challenges in IoT-based Machine-to-Machine Collaborative Sce-
narios,” In the International Conference on Hardware/Software Codesign
and System Synthesis, pp. 1-2, 2016.

[13] A. Hilts, and C. Parsonsm, and J. Knockel. “Every Step You Fake:
a Comparative Analysis of Fitness Tracker Privacy and Security,”
https://openeffect.ca/fitness-trackers/, 2016. (Accessed: 06-14-2019).

[14] P. Gullberg. “Denial of Service Attack on Bluetooth Low En-
ergy,” https://mafiadoc.com/queue/denial-of-service-attack-on-bluetooth-
low-energy 59e9aa541723dd2ddf0d7842.html, 2016.

[15] K. Lounis, and M. Zulkernine. “Connection Dumping Vulnerability
Affecting Bluetooth Availability,” In the Proceedings of the 13th In-
ternational Conference on Risks and Security of Internet and Systems,
no. 11391, pp. 188-204, 2018.

[16] B. Schneier. “Attack Trees: Modeling Security Threads,”
https://www.schneier.com/academic/archives/1999/12/attack trees.html,
1999. (Accessed: 06-14-2019).

[17] DoD, “Information Assurance: Instruction-8500.1,” Assistant secretary
of Defense for Network and Information integration, Jones & Bartlett
Learning, 2002.

[18] A. M. Lonzetta, and P. Cope, and J. Campbell, B. J. Mohd, and T. Haya-
jneh, “Security Vulnerabilities in Bluetooth Technology as Used in IoT,”
In Journal of Sensor and Actuator Networks, doi:10.3390/jsan7030028,
2008.

[19] J. Hering. “Bluetooth Cracking Gun: BlueSniper,”
https://www.defcon.org/html/links/dc-archives/dc-12-archive.html,
2004. (Accessed: 06-14-2019).

[20] S. Jasek. “Blue Picking: Hacking Bluetooth Smart Locks,” HITBSec-
Conf, 2017.

[21] V. Tan. “Hacking BLE Bicycle Locks For Fun and a Small Profit,” DEF
CON 26, 2018.

[22] D. Cauquil. “BtleJuice: The Bluetooth Smart Man In The Middle
Framework,” Hack.lu, 2016.

[23] W. Stalling. “Cryptography and Network Security: Principles and Prac-
tice : Instructor’s Manual,” Prentice Hall, 1998.

8

