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Abstract—People have used cloud computing approach to store
their data remotely. As auspicious as this approach is, it brings
forth many challenges: from data security to time latency issues
with data computation as well as delivery to end users. Fog
computing has emerged as an extension for cloud computing to
bring data processing and storage close to end-users; however,
it minimizes the time latency issue but still suffers from data
security challenges. For instance, when a fog node providing
services to end users is compromised, the users’ data security can
be violated. Thus, this paper proposes a secure and fine-grained
data access control scheme by integrating the Ciphertext Policy
Attribute-Based Encryption (CP-ABE) algorithm and blockchain
concept to prevent fog nodes from violating end users’ data
security in a situation where a compromised fog node is being
ousted. We also classify the fog nodes into fog federations, based
on their attributes such as services and locations, to minimize the
time latency and communication overhead between fog nodes
and cloud server. Further, the exploitation and integration of
the blockchain concept and the CP-ABE algorithm enables fog
nodes in the same fog federation to perform the authorization
process in a distributed manner. In addition, to solve time latency
and communication overhead problems, we equip every fog node
with an off-chain database to store most frequently accessed
data files for specific time, and with an on-chain access control
policies table (On-chain Files Tracking Table) which must be
protected from being tampered by malicious (rogue) fog nodes.
Therefore, blockchain plays a vital role here as it is tamper-proof
by nature. We demonstrate our scheme’s efficiency and feasibility
by designing algorithms and conducting a security analysis. The
provided analysis shows that the proposed scheme is efficient and
feasible in ousting malicious (rogue) fog nodes.

Index Terms—Fog Computing, blockchain, , rogue node, fine-
grained access control

I. INTRODUCTION

Cloud computing is a thriving paradigm due to the enor-
mous on-demand services it provides to end users over the
internet. Cloud computing has provided customers with inno-
vative features such as availability, scalability, and economy
that help to satisfy the substantial demand for storage and
computation resources [10]. End users outsource their data,
to the core network on the cloud, for processing and storage.
However, there are many obstacles facing data owners. First,
the response time between users and the cloud is high because
the data is stored in far from the data owners. Second, end-
users’ data security and privacy are susceptible to violation
because of the semi-trusted third party controls the cloud. The

research community has studied the issues of data security
and privacy in cloud computing by adopting and applying
advanced cryptographic techniques. However, it is still de-
manding to invent a new technology to resolve the cloud
latency issue [9][16].

From here, fog computing was introduced in 2012 [6] to
reduce the time latency between the cloud and end users’
devices [9][16] and to provide new services and applications to
end users. Fog computing paradigm is as small clouds close
to end-user’s devices, which allows customers to utilize the
computing and storage services at the edge of the network
[6]. More specifically, fog computing comprises of multiple
fog nodes which provide services to end users [27]. The
fog computing paradigm has supported end devices with
distinguishing features such as mobility, location awareness,
and low time latency [23]. Because fog computing is deemed
as an extension of the cloud computing paradigm; therefore,
it inherits some of the security and privacy obstacles in cloud
computing[24]. In particular, a fog computing paradigm is
susceptible to different threats, such as malicious attacks and
technical issues. In this context, the end users’ data traveling
through fog computing nodes to the cloud is vulnerable to
different violations. Therefore, it is necessary to design a
scheme to protect end-users’ data confidentiality, availability,
and integrity by ousting the rogue (malicious) fog nodes. One
reason for these vulnerabilities is that end users outsource
sensitive data to the nearby fog node for processing and then
to the cloud for further processing and storage. Because this
fog node is seen as a connector between end users and the
cloud, it is challenging to protect other fog nodes and the
cloud from malicious attacks. End users’ data security would
be difficult to defend if the fog node providing services in
terms of storage and computation is compromised or goes
rogue. We have been motivated by those issues to protect
customers’ private data from being compromised. Also, a
method to secure communication among fog nodes is required
to exchange encrypted data for reducing the time latency to
retrieve it from the far cloud.

In general, threats in the context of fog computing takes
two forms. 1) data modification: if an adversary gets hands-on
end users’ private data, he/she might violate its confidentiality
and integrity. Therefore, introducing a security scheme is
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necessary to prevent data confidentiality and integrity violation
among fog nodes; and between fog nodes and the cloud. 2)
unauthorized access: when an adversary compromises a fog
node, he/she can get unauthorized access to the end users’
private data. Besides, data availability is in danger of malicious
violation in this way. Therefore, it is essential to introduce a
security scheme to protect against rogue (malicious) fog nodes
and to oust them off the network while maintaining low time
latency feature fog computing provides. Additionally, it is vital
to enabling the fog nodes to carry on a distributed authoriza-
tion process and to communicate in a trust-less environment.

Attribute-Based Encryption (ABE) is a cryptographic prim-
itive that enables one-to-many encryption. It comprises two
types: ciphertext policy attribute-based encryption (CP-ABE)
[3] and key policy attribute-based encryption (KP-ABE) [11].
CP-ABE was introduced by Bethencourt at el. [3] which is
deemed as one of the most significant algorithms to provide
fine-grained data access control.

Blockchain has attracted the attention of researchers since
it was introduced in late 2008 [19]. Blockchain is a shared
distributed ledger, which is secured, immutable, and transpar-
ent, that helps in processing and tracking resources without
depending on a centralized trusted third party [26]. With this
promising technology, peer-to-peer nodes can communicate,
and exchange resources where the decision is carried on in
a distributed manner by the majority of the network’s nodes
rather than a single centralized trusted third party.

This paper proposes a scheme to oust rogue (malicious) fog
nodes and to minimize the communication overhead between
the cloud service provider (CSP) and fog nodes (FNs) by
integrating the CP-ABE algorithm and blockchain technology.
Blockchain is adopted as a medium to store on-chain tracking
table to verify the identity of each fog node using the smart
contract before they could access the encrypted data on the
CSP. The blockchain immutability feature prevents fog nodes
from maliciously changing the on-chain tracking table, if such
a change detected, the FN which issues the request is reported
as a rogue fog node.

The rest of this paper is organized as: Section (II) presents
the related work. Section (III) focuses on the motivation of
this paper. Section (IV) explains the proposed scheme, and
the scheme description is broadly explained in section (V).
Finally, the security analysis and the conclusion consecutively
are in sections (VI) and (VII).

II. RELATED WORK

The main objectives of this paper are to propose a new
scheme to allow fog nodes (FNs) to communicate in trustless
environment, to maintain end users’ data security, and to
reduce the time latency and communication overhead between
the cloud service provider (CSP) and the FNs by adopting
and integrating the CP-ABE and blockchain. Therefore, we
summarize the overview of any related state-of-the-art works
in this section, a brief literature review about access control,
rogue fog nodes, and fog nodes communication.

A. Access Control

Sahai et al. [20] proposed an attributes-based encryption
(ABE) scheme that uses the identity-based encryption al-
gorithm [5]. Its two variants are the key-policy ABE (KP-
ABE) and the ciphertext-policy ABE (CP-ABE) [11][3]. ABE
encryption and decryption processes are based on users’
attributes, so the scheme was first adopted in cloud computing
to help data owners overcome obstacles such as data security
and data access control when outsourcing data to the cloud.

The concept of access control has been well researched in
cloud-computing, but more investigations are still needed into
fog computing. Recently, the research community has studied
access control issues in this area and started to adopt ABE in
the environment with the object of providing fine-grained data
access control and guaranteeing data security.

ABE has been applied to IoT devices to resolve data access
control issues. Yu et al. [27] presented the fine-grained data
access control issues arising in a wireless server network,
proposing an FDAC scheme in which each sensor node was
assigned a set of attributes and each user was assigned an
access structure to specify access rights.

Huang et al. [14] proposed a CP-ABE scheme to support
data security and fine-grained data access control, using fea-
tures such as ciphertext updating and computation outsourcing
for fog computing with IoT devices. As Zuo et al. [28] also
found, their scheme’s main problem is that it was only suit-
able with an AND-gate encryption predicate. Xiao et al.[25]
proposed a hybrid fine-grained search and access authorization
scheme for fog computing, based on a CP-ABE cryptographic
primitive. Their scheme was hybrid as it supported both index
encryption and data encryption. This too, however, supported
only AND-gate predicates. Mao et al. [17] proposed the
construction of a CPA-secure and RCCA-secure scheme; it
was based on an ABE model with the possibility of outsourced
encryption verification. Dsouza et al. [21]proposed a scheme
to support secure data sharing and communication in fog
computing. This scheme is no more than a policy management
framework as it lacks details on building the policy repository
and users’ identities, as well as on making decisions and
protecting users’ identities and data privacy. Stojmenovic et
al. [23]studied authorization and authentication issues among
fog devices and between fog and cloud. They based their study
on the ABE algorithm and argued that end users could still
be authenticated and authorized to fog devices even in the
presence of a vulnerable connection between the fog and the
cloud. Li et al.[15] proposed a model to collect smart devices’
attributes as dynamic attributes, incorporating them with the
ABE algorithm to verify the access authority in real time.
Mollah et al.[18] proposed a lightweight cryptographic model
to provide access control and data-sharing; in this model, all
security operations are offloaded to nearby fog servers.

B. Rogue Fog Nodes

A rogue fog node is a fog node that pretends to be legitimate
and deceiving end devices, other fog nodes, or the cloud into
communicating with it. Its malicious hidden intent is to violate



owners’ data security and privacy. Having compromised a fog
node, an attacker can violate the security and privacy of end
users’ data in transit to the cloud through the fog nodes. The
research community has not broadly addressed this problem.

Stojmenovic et al. [22] proposed a scheme to show the
feasibility of a man-in-the-middle attack in which the gateway
is either being compromised or substituted by a fake. Han et al.
[12][12] proposed a measurement-based scheme to help users
avoid connecting to fake access points. Their scheme discovers
the rogue AP by calculating the round-trip time between end
users and the DNS server. Mohammed et al.[2] proposed
an encryption-based approach to protect fog computing from
rogue fog nodes based on the CP-ABE algorithm. In this
scheme, fog nodes cannot exchange data unless they fully trust
each other. So, to let the fog nodes to carry on a distributed
authorization process is an outstanding idea.

C. Communication among Fog Nodes

Arwa et al. [1] proposed an attribute-based encryption
scheme to maintain fog communications security. Designed
to provide authentic, confidential communications among a
group of fog nodes, it made use of a key-exchange protocol
based on the CP-ABE algorithm. The researchers have not
widely addressed this issue.

Recently, researchers have started using blockchain to de-
velop secure applications, benefiting customers in various
fields. Christidis et al. [8] summarized the blockchain use
cases built into the IoT. They reviewed the integration of
a blockchain smart contract into the IoT. Kamanashis et
al.[4] proposed a multi-layered security scheme to create a
secure communication platform in smart cities by integrating
blockchain with smart devices. Researchers use blockchain as
a distributed database to store heterogeneous data related to
the smart city, such as traffic and location. These data need to
be shared among smart cities’ components. The main issues
dealt with by this scheme are scalability and reliability in smart
cities. In[13], authors proposed a blockchain-based scheme,
consisting of distributed data storage, to enable data sharing
in IoT environments. The aim of using blockchain was to
enable data access control and data storage. In their scheme,
the authors separated data store from data management, then
used blockchain to verify the separation and to decentralize
the access control.

The fog computing layer occupies the middle ground be-
tween cloud servers and end users’ devices and is, therefore,
more susceptible to attack than other layers. Data owners
can find their data damaged or leaked by a rogue fog node.
Since one of the primary fog computing features is to increase
network reliability, fog nodes need protection method against
malicious attacks. Protecting the nodes will defend the data
owners’ security and privacy.

D. Our Contributions

To the best of our knowledge, no previous work has adopted
and integrated the blockchain technology with the CP-ABE
algorithm to form a fog federation (FF) and address the

problem of rogue fog nodes in fog computing. Based on [26]
and [3], we propose a secure scheme in the context of fog
computing with the following features: 1) to detect and prevent
rogue fog nodes from violating end users’ data confidentiality
and besides to minimize the communication overhead between
the cloud server and the fog nodes. 2) to enable the fog nodes
to communicate in a trust-less environment. 3) to enable the
fog nodes to perform the authorization process in a distributed
manner. 4) it supports end users’ data availability. However,
we focus our work on the communication among fog nodes
and between fog nodes and the cloud. We assume that the
medium between the end users’ devices and the fog nodes is
secured for now.

III. MOTIVATION

Fog computing plays critical roles in providing multiple ser-
vices to end users such as music, adults’ entertainment, kids’
entertainment, emergency vehicle response, and health data
collection at low latency time [6]. Even the innovative features
fog computing paradigm provides, it introduces many security
issues. However, customers cannot benefit from those services
fog computing provides if the fog node, which provides the
intended services, is not functioning thoughtfully. Therefore,
costumers care about their data security and availability in
different geographic location. This scheme is motivated by
the idea of protecting customers’ data security from rogue
fog nodes. For example, in the health care sector, health care
provider outsources patients’ sensitive data to the close FN for
processing and then for uploading to the cloud for permeant
storage. In the future, suppose the FN responsible for these
data is compromised, this FN could breach end users’ data
to attackers. Moreover, end users would not be able to access
his/her original data as the FN in charge of providing this
service is comprised, so users need to be forwarded to another
trusted fog node for data retrieving from the CSP. This paper
focuses on preventing the security threats that rogue fog nodes
cause the system to breach end users’ encrypted data and
the time latency to delivering the data from the cloud to the
fog node. Moreover, we leverage the blockchain technology
to enable fog nodes to provide authorization in a distributed
manner. So, we argue that this would help in recognizing
rogue fog nodes. Specifically, an adversary can either take
over the fog node or intercept data flown from the fog nodes
to the cloud and vice versa. Based on the literature review,
no previous scheme has addressed the issue of protecting the
fog nodes from rogue nodes by combining a cryptographic
primitives, such as CP-ABE, with blockchain. Hence, there is
a need for an efficient and secure scheme that considers these
security challenges and time latency.

IV. PROPOSED SCHEME

As Fig. 1 illustrates, our model comprises of the following
entities: a cloud service provider (CSP), fog nodes (FNs),
and a Cryptographic Materials Issuer(CMI). Fog nodes (FNs)
with same attributes form a fog federation (FF) which is
considered as a private blockchain. FNs in the FF function



Fig. 1. The system model.

as miners to validate the requests generated by FN in same
FF. Through this paper, we use fog federation and private
blockchain interchangeably.

Data delivery from cloud storage to end users’ devices is
hindered by time latency and communication overhead. Fog
computing has emerged to address these issues. However, FNs
are exposed to malicious attacks; consequently, the end users’
data security may be violated. To maintain confidentiality,
integrity and availability for end users’ data travelling through
FNs to the CSP, we exploit and integrate blockchain with the
CP-ABE algorithm, an advanced cryptographic primitive that
enforces fine-grained data access control to secure communi-
cation between FNs and the CSP. Using blockchain, FNs can
perform the authorization process in a distributed manner.

To solve the problem of high time latency and communi-
cation overhead, we equip every FN with an access control
policies table (on-chain files tracking table),as shown in Table-
IV, which must be protected from tampering conducted by
malicious (rogue) FNs. Blockchain plays a vital role here, as it
is tamper-proof by nature. This scheme equips each FN with a
set of attributes, namely location and services. Each FN in the
same FF maintains an on-chain files tracking table to provide
fine-grained access control by using a smart contract. This
allows other FNs in the same FF to access the encrypted data
on the CSP when their attributes satisfy the stored predicates in
the on-chain files’ tracking table. When a FN sends a request
to other FNs in the same FF to access a certain file, they
check whether any FN in the FF has the required file stored
in its off-chain database (DB). If so, they refer the requestor
to get the file from the FN currently in possession of the
file instead of sending the request to the CSP. This feature
is a benefit of our scheme, as it minimizes the time latency
and communication overhead between the CSP and the FF.
In addition, the CSP maintains a verification list (VL) of FFs

along with their Fog Federation Public Key (FFPK) and Fog
Federarion Attributes (FFatt), as shown in Table-I.This table
allows the CSP to verify the received request from FNs. It
also stores each encrypted file (EF) along with a verification
file (VF), as shown in Table-II. The CSP uses this table to
match each EF to the corresponding VF in order to verify the
requests arriving from the FNs.

In fog computing, FNs collect data from end devices. They
process those data and upload the results to the cloud for
further processing and storage. We equip every FN with two
databases (DBs), an off-chain and an on-chain DB. The off-
chain DB stores the encrypted data most frequently accessed
by end users, which reduces time latency when retrieving the
encrypted data from the CSP. FN can retrieve data encrypted
by FNs in the same FF. This feature helps maintaining
data availability when ousting an FN from the FF near end
users’ devices. The on-chain database is considered as digital
ledger and stored on the blockchain. It stores an on-chain file
tracking table as shown in Table-IV to verify FF’s members
identifications. To protect cryptographic shares from breaching
by malicious FN, it is stored off-chain by every FN, Table-III.
For the sake of clarity, we will consider the following example:

Suppose FN1 encrypts file F1 using a random secret key
(SK). Then it generates a V F . Consequently, it uploads the
EF into the CSP along with the VF and generates a new row
in the on-chain file tracking table.

FN1 divides the SK and the V F into n shares where n is
the number of FNs in a given FF (private blockchain). It sends
[SKshare, VFshare, EFID] to each FN in the FF to be stored
as off-chain cryptographic shares, Table-III. All FNs in the
same FF maintain an on-chain file tracking table, as shown
in Table-IV. This table is used to verify the data requestor
(FNID) by verifying the FNsign−att. This table is protected
from being tampered by malicious FNs through the nature of
blockchain services. Suppose FN2 in the FF seeks to retrieve
an EF from the CSP. There are three scenarios, which are as
follows.

In the first scenario, FN2 needs to retrieve EF4 from the

TABLE I
VERIFICATION LIST

FFID FFPK FFatt
FF1 Rtufn@10 (Health OR Education) and Atlanta
... ... ...

FFn 1039gNF Education and Atlanta

TABLE II
ENCRYPTED FILES AND VERIFICATION FILES

EFID VFID
F1 VF1

... ...
Fn VFn



CSP, and no FN has the file in its off-chain DB. FN(requestor)
needs to send a request through the FF (private blockchain).
Then, the FNs in the same FF would verify the requestor’s
attributes signature. If it is verified by the majority of the
FNs in the FF, they would share the [SKshare, VFshare,
EFID] they have related with the EF4 with the requestor.
When the requestor collects at least 51% of the VF’s shares,
it sends a request to retrieve the EF4 from the CSP as
[VFshares, EF4,signed (FNatt)]. Accordingly, the CSP verifies
the VFshares; if they match the VF attached with the EF4, it
sends the file to the FN to decrypt. For more details, read the
scheme’s description.

In the second scenario, FN2 needs to retrieve EF2 from the
CSP, and FN1 has the file in its off-chain DB. It sends a request
through the private blockchain with the [EF2, signed (FNatt)].
Accordingly, FNs verify the FN2’s identity by verifying its
signed attributes using FFPK. If verified, they check which
of the off-chain DBs has the file and then send the FNsID that
have the EF2 to the requestor. In this case, the file requestor,
FN2, does not have to contact the far CSP to retrieve the file. It
could contact FN1 to get EF2. This feature gives our scheme
a credit in minimizing the time latency and communication
overhead between the CSP and the FFs. This is possible with
the fog federation idea. For more details, read the scheme’s
description.

In the third scenario, if FN (the requestor) is not verified,
FNs in the FF will report the FN as a rogue FN and delete
it from the on-chain tracking table. It then cannot access any
encrypted data.

An FN leaves the system for whatsoever reason, or it could
go rogue after being compromised by a malicious attack.
To ensure users’ data security, namely data confidentiality,
and availability, there has been a demand to take precautions
against rogue FNs. Our scheme efficiently acts as a protection
layer against rogue FNs to prevent them from accessing the
encrypted data stored on the CSP.

All FNs in one FF maintain the same on-chain file tracking
table. Malicious modification of the table by a malicious FN
would be detected, as any update must be verified by the
majority of the FNs, which is why we utilize the blockchain
as FFs. If an FN issues an update and it is not passed by most
of the FNs, the issuer would be considered as a rogue FN and
then excluded from the FF. When a rogue FN is detected in the
FF, it is reported to the CSP. Then, the CSP will not respond to
any requests from this FN. Accordingly, this feature enhances
the scheme’s ability to protect against rogue FNs.

TABLE III
CRYPTOGRAPHIC SHARES

EFID VFshare SKshare

EF1 MNGONMDF SK1

... ... ...
EFn MNGONMDF SKn

TABLE IV
ON-CHAIN TRACKING TABLE

FNID EFID FNsign−att attributes set off-chain DB
FN1 EF1 fNJk3u@ Movies and CL EF2

FN2 EF3 KLJk3J@ Edu and AT 0
... ... ... ... ...

FNn EF7 @3EFJJL@ Health and AR 0

Algorithm 1 Setup(λ)
1: Choose bilinear cyclic group G1 of prime order p with

generator g1;
2: Randomly generates exponents α, β ∈ G∗

p ;
3: Random Oracle H: USAT → {0,1}∗ // to map each att

in USAT into random element ∈ G1;
4: compute SMK and SPK as:
5: SMK = {β, gα1 }
6: SPK = {G1, g1, g

β
1 , e(g1, g1)

α} ;
7: The SPK is public to all FNs, but SMK is private for

CMI

V. SCHEME DESCRIPTION

In this section, we present the description of our scheme
based on the integration of the CP-ABE algorithm and
blockchain. We exploit the access tree model presented in
[3] as an access structure A, as shown in Fig-2. To satisfy
the access tree conditions, we follow the same methods in
[3][5]. For more information about the access tree model, read
through [3][5]. Next we provide algorithms needed for our
model.

Algorithm 1, which is based on [3], is executed by CMI.
It receives a security parameter as an input, then it outputs a
system master key (SMK) and a system public key (SPK).
It builds a universal set of attributes (USAT), which FF clas-
sification is based on in our scheme; USAT = FN’s location,
FN’s services.

Algorithm-2 is executed by an FN that intends to join the
system to provide a service for end users. It contacts the CMI,
then the CMI checks the FFL. Then, it assigns the FN to the
corresponding FF if its attributes are verified. If the FN is
verified but no FFatt matches its attributes, the CMI creates a

Fig. 2. Example of an access structure.



Algorithm 2 Join (FNatt)
1: New FN contacts CMI to join the system
2: CMI verifies the FN (requestor)
3: if not verified then
4: Declined
5: else
6: Check the FFL
7: if FFatt == new-FNatt then
8: Assign new-FNatt to the corresponding FFID
9: end if

10: Assign new FNID as: FFID.FNID
11: Send new FNID to all FN in the same FF
12: end if
13: for every FN ∈ FF do
14: share on-chain ledgers (on-chain tracking table) with

the new FN
15: end for
16: if New FN receives at most 49% of un-identical on-chain

identical ledgers then
17: report a problem to CMI
18: else
19: Return (on-chain ledgers are authenticated)
20: end if

Algorithm 3 Generating FNSK (SPK,SMK,S, FNID)
1: CMI gets request from new FN to join the system
2: Choose bilinear cyclic group G1 of prime order p with

generator g1;
3: Randomly generates exponents α1, β1 ∈ G∗

p ;
4: Random Oracle H: USAT → {0,1}∗ // to map each att

in USAT into random element ∈ G1;
5: compute FFPK and FFMK as:
6: FFPK = {β1, gα1

1 }
7: FFMK = {G1, g1, g

β1

1 , e(g1, g1)
α1}

8: generate random r ∈ Z∗
p

9: for every atti ∈ S do
10: generate random ri ∈ Z∗

P

11: end for
12: for each new FNi ∈ FF do
13: compute FNSK
14: send FNSK to FNi
15: end for

new FF and adds the new FN to it. If the FN is not verified, the
connection will be refused. However, as each FF is considered
a private blockchain, the FNs already part of the FF have to
share their on-chain ledger with the new FN. If the new FN
receives 51% of identical ledgers, it saves them in the on-chain
DB. Otherwise, it reports an issue to the CMI. The details of
how to verify and authenticate the FN’s attributes are out of
our scope for now.

Algorithm 3 is executed by the CMI. It generates a Fog
Federation Public Key (FFPK) and a Fog Federation Master
Key (FFMK). The FFPK is public to all FNs in the FF,
whereas the FFMK is private to the CMI. It also generates

Algorithm 4 Data Encryption (M , T, SPK, FFPK)
1: SK = gen.DEC-Key
2: verification-file = generate.VF
3: VFshare = VF/n // n is the number of FNs in FF
4: divide SK key to shares as: SK/n
5: Encrypted-File (EF) = Encrypt (M, SK) //M is the message

to encrypt
6: A is set of atts represented by monotone access structure

tree T
7: for each node x in T do
8: set a polynomial
9: if node x is root node in T then

10: set q(0)R = s // s is random value ∈ Z∗
P

11: else
12: q(0)x = qparent(x)(index(x))
13: then choose dx = kx - 1 as polynomial degree to

interpolate with qx
14: end if
15: end for
16: for each y ∈ Y do //Y is the set of leaf nodes in T
17: Cy = gqy(0)

18: C
′

y = H(att(y))qy(0)

19: end for
20: Compute: C = gβs

21: for each SKi ∈ SK do
22: Compute Cveri = SKi.e(g, g)

αs

23: end for
24: Upload [EF, EFID, VF, FNattsig] to CSP
25: for each FN ∈ FF do
26: send [EFID, VFi, Cveri ]
27: end for

a distinct Fog Node Secret Key (FNSK) for each FN in the
FF. Then, the CMI securely shares the FFPK and FNSK
with the new FN.

Algorithm 4 is executed by authorized FNs in a given FF.
The FN intending to encrypt a file generates a secret key (SK)
and uses it to encrypt the file. It also generates a verification
file (V F ) which is used for further requestors verification by
the CSP. Then, it divides the SK and the VF into n shares as

Algorithm 5 on-chain tracking table smart contract
1: sig = sign(FNatt, FNSK) // for future authentication
2: propagate the transaction through FF [EFID, Current-

Hash, Prev.Hash, Timestamp, FNatt−sig]
3: if transaction is verified and FNatt.sig.verify is true then
4: Fileowner (FN) generates a new row in on-chain file

tracking table as:[FNID, EFID, attributes-set, off-chain
DB]

5: FNs ∈ FF update the on-chain tracking table
6: else
7: decline and Report FN as rogue FN to all FNs in FF

by its ID
8: end if



Algorithm 6 File Retrieving Smart Contract
1: Part 1: FN (requestor) ID verification
2: FN send a request through FF as [FNID, EFID,

FNatt−sig]
3: for every FNi ∈ FF do
4: if FNatt−sig == true then
5: send [SKshare, VFshare, EFID]
6: else
7: decline
8: end if
9: end for

10: if FN (requestor) recieves 51% of (SK,VF) shares then
11: send (SK,VF) shares to CSP
12: end if
13: Part 2: CSP checks the VFshares
14: if VFshares match at least 51% of VF then
15: send EF to the FN (requestor)
16: else
17: decline the request and report FN to CMI as rogue node
18: end if

n is the number of FNs in the FF. After that, it encrypts the
SKi,shares using the CP-ABE algorithm to enable every FN
in the same FF to decrypt the encryptedSK . Finally, the data
owner (FN) uploads the EF along with the VF to the CSP. We
assume that the number of FNs in an FF is fixed for now.

Algorithm 5 is an on-chain smart contract which is triggered
among authorized FNs in the FF. The basic function of this
smart contract is to keep tracking which FNs have which files
in the off-chain DB. This means less time latency to retrieve
EFs from the CSP and less communication overhead between
the CSP and the FFs. No FN can retrieve the EF or perform
any operation unless it is authorized by the majority of the
FNs in the FF. This is attributed to the blockchain tamper-
proof feature. When a FN submits a rquest to retrieve an
EF from the cloud it has to sign its attributes using its own
FNSK, then the others FF’s members will authenticate it
by checking its signature using the FFPK. This feature is
a credit to our scheme, as it prevents FNs in the FF from
falsifying information about files’ tracking table or accessing
the EF in the CSP.

Algorithm 6 is a smart contract which two parts. First part
is executed between the FN that intends to retrieve an EF
from the CSP and FF’s members. Second part is between the
FN (requestor) and the CSP. FN first propagates a request to
retrieve an EF from the CSP through the private blockchain.
All FNs in the FF verify the requestor attributes by verifying
the requestor attribute signature. When majority FNs verify the
requestor (see algorithm 7), they send [SKshare, V Fshare]to
the EF requestor. When the EF’s requestor (FN) receives 51%
of the shares, it send [SKshare, VFshare, EFID] to the CSP.
The CSP checks the shares against the pre-stored VF. If the
shares match at least 51% of the VF, the CSP sends the EF
to the FN. If the shares do not match the VF, the CSP will
report the requestor as a rogue FN to the CMI. This feature

Algorithm 7 Consensus approach
1: assume 3f + 1 of FNs in FF // f is max number of FNs

which may fail
2: if 2f +1 of FNs confirm the transaction then
3: FNs come to consensus
4: else
5: discard the transaction
6: end if

strengthens our scheme in ousting rogue FNs to protect end
users’ data confidentiality, availability and to authenticate the
FF’s members identity.

Algorithm 7 is based on Practical Byzantine fault tolerance
approach (PBFT) [7]. We assume that the FF has 3f + 1 of
FNs, where f is the maximum number of FNs that could fail.
To confirm a specific transaction in our scheme, at least 2f +
1 of FNs must agree on it. In this method, the authorized FNs
in the FF come to a consensus state.

VI. SECURITY ANALYSIS

A. Confidentiality

The EFs in the CSP is protected against rogue FNs. To
retrieve an EF, the FN must sign its attributes using its
FNSK, then send it with the request as a transaction through
the private blockchain. The EF’s requestor must accumulate
at least 51% of [SKshares, VFshares] to be able to retrieve
the EF from the CSP. This will not happen unless the EF’s re-
questor passed the authorization process (algorithm 6) through
the private blockchain. If the EF’s requestor is not authorized
by the majority of FF’s members, it is reported as a rogue FN
and consequently cannot access the EFs in the CSP or in an
off-chain DB of other FNs. This feature makes our scheme
efficient in protecting end users’ data confidentiality.

B. Availability

The proposed scheme guarantees the data availability: even
the FN providing services to end-users is down. The idea of the
FF enables data owner to retrieve their encrypted data through
any FN ∈ same FF. The most frequently accessed EFs are
stored in the off-chain DB of the FN that recently accessed it.
This means the end users’ data would be available near them
for a period of time. The off-chain DB is flushed regularly as
precaution against malicious FN.

C. Ousting Rogue FN

This scheme aims to oust rogue FNs from the system to keep
end users’ data secured from being breached or compromised.
This feature is obvious through algorithms (5,6). In particular,
if the FN (requestor) does not sign its attributes with the
correct FNSK, FN authorization process will be denied by
the private blockchain. Therefore, it would be ousted and
protected from accessing the EFs in the CSP and in an off-
chain DB of other FNs in same FF.



VII. CONCLUSION

If the FNs providing services to end users are malfunc-
tioning, end-users’ data security can be violated. Also, it is
possible that the FNs to go rogue which maliciously would
violate end-users’ data security. Besides, the time latency
and communication overhead between the CSP and FNs are
high when every time FN retrieves encrypted data from the
CSP for processing. This paper proposed a novel scheme
to protect end-users’ data security from being breached by
rogue FNs and to reduce the time latency and communication
overhead between the FNs and the CSP. It also enables FNs
to communicate in a trust-less environment, and to perform
authorization processes in distributed manner to detect the
rogue fog node. The proposed scheme exploited and inte-
grated the CP-ABE algorithm and the blockchain concept. We
classified the FNs into FFs (private blockchain) according to
their attributes and equipped each FN with on-chain and off-
chain databases. The data requestor (FN) must sing its attribute
using its own FNSK before propagating a request through the
private blockchain to access EF stored in the CSP. In case the
requestor FNatt−sig is not verified by the majority of the FNs
∈ FF, the FN would be reported as a rogue FN. We provided
a security analysis to show the proposed scheme is secured
against rogue FNs and is efficient in reducing time latency
and communication overhead between the CSP and the FNs.
Our future work will conduct a simulation stage to test our
scheme performance.
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