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Abstract—Fully Connected Neural Networks (FCNNs) have
been the core of most state-of-the-art Machine Learning (ML)
applications in recent years and also have been widely used for
Intrusion Detection Systems (IDSs). Experimental results from
the last years show that generally deeper neural networks with
more layers perform better than shallow models. Nonetheless,
with the growing number of layers, obtaining fast predictions
with less resources has become a difficult task despite the use of
special hardware such as GPUs. We propose a new architecture to
detect network attacks with minimal resources. The architecture
is able to deal with either binary or multiclass classification
problems and trades prediction speed for the accuracy of the
network. We evaluate our proposal with two different network
intrusion detection datasets. Results suggest that it is possible
to obtain comparable accuracies to simple FCNNs without
evaluating all layers for the majority of samples, thus obtaining
early predictions and saving energy and computational efforts.

Index Terms—Fully Connected Neural Networks, Intrusion
Detection, Early Predictions.

I. INTRODUCTION

FCNNs have gained remarkable attention in various do-
mains in recent years due to the availability of data and
computational resources for research. Many state-of-the-art
architectures currently used in different applications are ef-
fectively based on simple FCNN architectures. Since the
size of a neural network cannot be mathematically defined,
experts use rule-of-thumb to define the best architecture that
fits their needs. Yet, experiments show that the more layers
(and neurons) the network includes, the better its learning
performance becomes [1].

Traditional FCNN are based on simple logistic regression
units that combine multiple inputs multiplied by a set of
weights and passed through an activation function (e.g. sig-
moid [2]) to obtain a scalar which for the sake of consistency
we call a prediction. The weights are adjusted to give the
closest possible output to a ground-truth. As far as neural
networks are concerned, logistic regression units are stacked
together to create layers and then layers are stacked together
again to create the network itself. Figure 1 demonstrates a
basic FCNN that takes an input vector xT = {x1, x2...xm} and
generates a prediction. Adjusting weights in such situations is
a non-trivial problem since the weights of each layer may
have an impact on the following layers. Fortunately, several
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Fig. 1: Conventional FCNN architecture.

algorithms have been proposed to reduce the complexity of the
task (e.g. gradient descent learning) while achieving the same
goal: reduce the ”gap” (loss) between predictions and actual
desired output. In practice, larger networks consist of more
neurons and thus more weights, allowing more data patterns
to be learned.

In terms of efficiency, two problems arise when using an
extremely deep neural networks: (1) the loss during training
needs more time to converge and (2) the time necessary to
make a prediction is proportional to the number of layers. Even
though most modern hardware is able to compute predictions
without significant delay, prediction speed is still relevant for
learning problems, in which many predictions are required
per unit of time and delay is important. This is, for example,
relevant in the context of object detection in computer vision
or also network intrusion detection.

To obtain early predictions, we propose a new architecture
that, on the one hand, uses the entire network capacity for
learning network intrusions and, on the other hand, stops the
forward-pass and makes predictions as soon as confidence
reaches a certain threshold. In other words, it makes it possible
to avoid evaluating the entire network with all layers for
some samples and to stop the neural network evaluation at
a particular layer if the achieved confidence at that point
is high enough. We call different FCNNs architectures that
uses the same proposed approach EagerNets (Eager Stopping
Networks). EagerNets therefore allow, where possible, the
reduction of computing resources and energy usage while
achieving detection performance comparable to that of a full978-0-7381-4292-0/20/$31.00 ©2020 IEEE
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forward-pass.
In the following sections, we present the existing related

work, introduce the concept behind EagerNet and finally show
and analyze the evaluation results based on two network
intrusion detection datasets.

II. RELATED WORK

The concept of cascading classifiers encompasses several
classifiers that are used in a cascade (like a chain) [3], [4],
[5]. If accuracy of a classifier in the beginning is good enough,
then there is no need to evaluate the other classifiers in the
chain (cascade), which saves computational resources. This
approach was predominantly explored for classical machine
learning methods. Two possibilities are to either place all
classifiers in a row or in the shape of a tree. If a tree is used,
different classifiers can be used at each step, depending on
which features are probably relevant for the sample currently
under investigation. The difference to our approach is that
we exclusively consider neural networks as the classifier and
that our approach is significantly more straightforward to
implement.

[6] aim to reduce the computational complexity during
evaluation for large Convolutional Neural Networks (CNNs)
using an additional classifier after each layer. These additional
classifiers learn to look at the output of the previous layer and
decide whether it’s necessary to continue evaluating the next
layers. Unlike our approach, this approach is primarily geared
towards making the evaluation of a given neural network
more efficient, while our approach aims to train a neural
network from scratch. Furthermore, their approach requires
advanced math, making it difficult to implement and deploy
for practitioners.

The approach that is most similar to ours is presented by [7],
[8]. They introduce an additional output layer after each layer
and then decide whether the next layers should be evaluated
based on whether the confidence of the current output layer is
high enough. They also argue that if many layers are required,
the computation can be offloaded to a more powerful machine
in the cloud, which saves further computational effort. The
main difference of this approach compared to ours is that
we can show that no additional output layers are needed
but instead our approach only needs one extra neuron per
layer, which further reduces the computational overhead of
our approach.

Another line of work [9], [10], [11], [12] focuses on teach-
ing Recurrent Neural Networks (RNNs) – neural networks for
sequences – to skip irrelevant parts of the input sequence.

The major difference between all existing works and ours
is simplicity in terms of implementation complexity and in-
terpretability. While many of the previously proposed works
report good results, they usually require advanced math knowl-
edge to be implemented, which hinders their deployment in
real-world scenarios. These also often contain components
such as additional output layers, which add computational
overheads that are shown not to be necessary.

To the best of our knowledge, our work considers for the
first time such an approach for network stream data to obtain
early flow classification yet with remarkable performance.

III. SUPERVISED LEARNING FOR NETWORK INTRUSION
DETECTION

ML has been widely used in the last decade for network
traffic analysis and specifically anomaly detection systems.
Many of the works proposed IDS architectures based on well-
known supervised techniques [13], [14]. The concept of having
a classifier trained on pre-stored attack patterns and using
it to predict similar behaviours is commonly used whereby
remarkable success has so far been achieved [15], [16], [17].
In particular, FCNNs are commonly utilized whenever large
amounts of network traffic are available. In order to present
network data to such architectures, a number of traffic repre-
sentations have been proposed depending on the application.
The statistical representation of flow characteristics is so far
the most widely used. In this work, we define a network flow to
be the exchange of packets between two end-hosts. Packets can
be identified and aggregated using the five-tuple key: sourceIP,
destinationIP, sourceTransportPort, destinationTransportPort
and protocolIdentifier. Thereafter, packet header features are
extracted and statistical combinations are computed. Table I
shows the CAIA [18] network traffic representation. It consists
of 12 features, 7 of which are measured in both directions and
2 of which are expanded using four statistical combinations
(i.e. A becomes mean(A), min(A), max(A) and stdev(A)). We
use CAIA for all experiments in this paper and set an ob-
servation timeout of 1,800 seconds (slightly longer than the
longest attack activity in the dataset), after which we terminate
flows. Each flow is considered to be one data sample and has
two sets of labels: a binary (attack/benign) label and also the
attack family (one binary label for each attack family using
one-hot-encoding). The ultimate goal is that after a training
process, the trained IDS can correctly classify new flows and
also determine what kind of attack family they belong to.

TABLE I: CAIA flow representation.

Direction Features Statistical Operations

No direction

flowDurationMilliseconds

None
sourceTransportPort

destinationTransportPort
protocolIdentifier
octetTotalCount

Forward and
Backward

ipTotalLength Mean, Min, Max, StdevinterPacketTimeSeconds
packetTotalCount

None
tcpSynTotalCount
tcpAckTotalCount
tcpFinTotalCount
tcpCwrTotalCount

IV. EAGERNET

Because some network attack families are simpler to detect
compared to others we modify the standard FCNN architecture
so that for easily classifiable samples the network doesn’t have
to evaluate all layers. Our novel architecture is based on the
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Fig. 2: The difference between conventional neural networks and our proposed architecture.

assumption that deep neural networks with more layers can
learn increasingly complex functions which in turn are only
required for the classification of some particular notoriously
hard-to-classify samples. As a result, we build a network such
that an additional set of neurons are connected to each layer
(a copy of the output neurons instead of an entire meta-
network), allowing for direct predictions at each layer. The
EagerNet architecture is shown in 2a. Initial neurons are
shown in gray and output neurons (per layer) are shown in
green. Once a network flow is observed and features are
extracted, a data sample x is fed to the network via the input
layer. The neural network proceeds evaluating the layers one
by one and yields a prediction confidence value at each layer.
We define the confidence as the value that represents how sure
the network is about a certain decision or sample belonging
to a certain class. It is a number between 0.5 and 1 that is
obtained by applying the sigmoid function [2] on the output
neuron and computing how far the result is from the farthest
label (e.g. if the prediction scalar of a sample is 0.2, the
farthest label is 1 and therefore a confidence of 0.8 that the
sample belongs to class 0). By looking at the confidence the
neural network determines whether additional layers should
be processed or if the currently obtained confidence is high
enough. This methodology ensures that simpler samples are
classified early in the forward-pass and that more complicated
samples are passed into deeper layers. In the section V-B3, we
show that EagerNet reduces resource consumption on average,
while achieving comparable performance compared to normal
FCNN.

1) Network Architecture: For our experiments, we use a
neural network that consists of as many layers as needed
with Leaky ReLU activations [19] (α = 0.1) after each layer.
Moreover and to reduce over-fitting, we use neurons dropout
(r = 0.2).

2) Binary vs. Multiclass Classification: We experiment
with two different architectures. The first architecture, consists
of a binary attack detector, i.e. a 1 is an attack flow and a 0
is a benign flow. The predictions in this case are given by a

single output neuron followed by a sigmoid activation function
to force values between 0 and 1. During back-propagation, we
use a binary cross-entropy loss and average the loss over the
batch. Equation 1. shows how the loss is determined for a
batch of size N , with the nth input being xn and the sigmoid
activation function σ(·).

l = − 1

N

N∑
n

[yn · log σ(xn) + (1− yn) · log(1− σ(xn))] (1)

For the multiclass approach, on the other side, there is one
output neuron per attack family, and each neuron’s output
indicates how likely it is, that the currently processed sample
belongs to the given attack family. During back-propagation,
we use the categorical cross-entropy loss to penalize all
outputs together, so there can be no overlap between classes.
Equation 2. shows how the loss is determined for a batch
of size N , with the nth input xn and the softmax activation
function [20] φ(.), C being the number of classes or output
neurons and i is the current class/output.

l = − 1

N

N∑
n

C∑
i

yn,i · log(φ(xn)i) (2)

After computing the losses, we use Adam optimizer [21]
for computing gradients with a learning rate of 0.001.

3) Combined Back-propagation Loss: Conventional Feed-
forward Neural Network (FNN) uses the loss of the last layer
to adjust the gradients. In this research, and since we have
multiple outputs; one at each layer, we aggregate the losses and
back propagate them. 2b demonstrates how losses propagate
back from the respective layer only. As a consequence, the
weights of the last layer are affected only by the loss of the
last output. Similarly, the weights of the first layer are affected
by the losses of the entire network. In addition, we introduce
a weighting policy for losses. We allocate a weight to each
loss that is predefined prior to training. The aim is to help the
network determine on which layer to optimize more. Three
types of weight sets are defined:



• Uniform weights. all losses have the same weight:

WU = {W0, ...,Wn} = {
1∑n
i=0 1

, ...,
1∑n
i=0 1

} (3)

• Increasing weights. losses are increasingly important
from first to last layer.

WI = {W0, ...,Wn} = {
1∑n

i=0 i+ 1
, ...,

n+ 1∑n
i=0 i+ 1

}
(4)

• Decreasing weights. losses are decreasingly important
from first to last layer.

WD = {W0, ...,Wn} = {
n+ 1∑n
i=0 i+ 1

, ...,
1∑n

i=0 i+ 1
}

(5)
We show the effect of the weight distributions in Table III

and discuss results in section V.

V. EVALUATION AND DISCUSSION

In this section we discuss the different experimental results
and observations. Overall, EagerNet shows promising perfor-
mance that are comparable to FCNNs that always use all layers
yet with the ability to save resources. The interested reader
can reproduce experiments with the provided sources in our
repository1.

A. Datasets
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(b) UNSW-NB15

Fig. 3: Traffic distribution represented by number of flows.

1github.com/CN-TU/ids-backdoor/tree/eager

For our experiments, we use two intrusion detection
datasets. CICIDS2017 [22] which consists of 14 network
attack classes in addition to realistic user profiles. UNSW-
NB15 [23] which, in addition to synthetically generated nor-
mal traffic again contains 9 attack families. As aforementioned,
we represent network data utilizing the CAIA feature vec-
tor and extract 2,317,922 and 2,065,224 flows, respectively,
from CICIDS2017 and UNSW-NB15 (see Figure 3). For pre-
processing, we eliminate duplicate instances and z-normalize
the data. We use a split of 2

3 for training and 1
3 for evaluation

and testing.

B. Performance

In what follows, we show the performance of the EagerNet
architecture taking into account various aspects. We stop
training all models after 800 epochs to ensure fair comparison
and we monitor both training and validation losses to prevent
over-fitting.

1) Comparability to FCNNs: In Table II, we show the F1
score obtained at the last layer of two architectures: Simple
FCNN and EagerNet with the same number of layers and
neurons. We use the F1 score to reduce the class imbalance
bias. Results suggest that on average, EagerNet achieves
similar scores to a conventional FCNN at the last layer across
all variants and datasets. It is worth mentioning, however,
that EagerNet is used in this case as a conventional neural
network and predictions are taken only from the last layer
hence, comparing the influence of our training procedure on
the typical workflow of the neural network. Using predictions
from various layers by setting a confidence threshold might
lead to higher accuracy if middle layers are optimized to
predict certain classes.

Dataset Variant* FCNN EagerNet

CICIDS2017 Binary 0.989 0.993
Multiclass 0.979 0.920

UNSW-NB15 Binary 0.919 0.908
Multiclass 0.882 0.880

* All architectures consist of 10 layers × 64 neurons in addition to input
and output layers.

TABLE II: F1 scores at the last layer of each architecture.

2) Weighted loss: In Table III we gather results from
different EagerNet networks trained using different numbers of
hidden layers and weight distributions each with 128 neurons
per layer. In addition, we compare the results using four
metrics (Accuracy, Precision, Recall and Youden’s J) and show
the performance of the last layer (by setting the confidence
level to the maximum). The CICIDS2017 indices show that
the weight distribution and the architecture itself (number of
layers) have little effect on performance. In fact, since the
last layer is always trained with one loss regardless of the
weight distribution, only the first few layers are affected by
the combined-loss learning procedure. Nonetheless, since the
accuracy did not improve when increasing the number of
layers, that implies that most network patterns are already

github.com/CN-TU/ids-backdoor/tree/eager


separable after the few first layers which makes the classifica-
tion task for CICIDS2017 manageable even for shallow neural
networks. Results of UNSW-NB15 show a slightly different
behavior. The uniform weighting of losses gives best scores
on average and, in addition, deeper architectures outperform
the shallow ones. This implies that the network patterns in
this specific dataset are complex than in the previous one
therefore, requiring more non-linearities (layers) to find the
optimal input:prediction mapping function.

Variant Weights Layers Acc. Prec. Rec. J.

C
IC

ID
S2

01
7 Uniform 5 0.996 0.996 0.990 0.989

3 0.997 0.997 0.990 0.990

Increasing 5 0.997 0.998 0.990 0.989
3 0.997 0.997 0.990 0.989

Decreasing 5 0.997 0.998 0.989 0.989
3 0.997 0.997 0.990 0.990

U
N

SW
-N

B
15 Uniform 5 0.988 0.828 0.867 0.860

3 0.988 0.856 0.800 0.795

Increasing 5 0.988 0.853 0.821 0.816
3 0.988 0.844 0.817 0.811

Decreasing 5 0.988 0.843 0.824 0.819
3 0.988 0.851 0.819 0.813

* All architectures consist of 128 neurons per layer.

TABLE III: Effect of weights on the performance of different
networks

3) Accuracy-Speed tradeoff: Figure 4 shows the accuracy-
speed balance in terms of confidence threshold. Four different
networks for both datasets are shown. We experiments with
two networks: 128 neurons by 3 layers and 64 neurons by 12
layers. The confidence threshold is shown on the horizontal
axis, the average number of layers used over all samples and
the average accuracy achieved are both shown on the vertical
axis. Curves show promising and consistent results, whereby
the network always uses few layers for the majority of samples
and only continues to evaluate further layers if the confidence
level required is too high or the sample is noisy thus it is
difficult to make correct decisions in early layers. We observe
moreover two phenomena:
• The accuracy of CICIDS2017 increases almost linearly

in sections with respect to confidence and reaches its
maximum when all layers are evaluated.

• The accuracy of UNSW-NB15 is stable when the con-
fidence level is increased from ≈ 0.62 to until ≈ 0.98
where it leaps noticeably once a further layer is evaluated.
This suggests that some patterns were “learned” only on
that specific layer and hence, respective samples suddenly
were correctly classified.

Overall, EagerNet confirms that it is possible to trade a tiny
percentage of accuracy in order to save a significant amount
of resources. In section V-B1, we see that, it is feasible to
achieve comparable accuracies to traditional FCNN allowing
the reduction of costs.

a) Optimal Confidence Threshold: During deployment,
the optimum confidence threshold is set by the user and plays a
role in the overall achieved accuracy. Setting the threshold too

low can cause the network to make decisions at an early stage,
thereby using fewer resources but achieving low accuracy.
Similarly, setting the threshold too high can cause the network
to always use all layers, which means a waste of resources.
The desired confidence level can therefore be obtained after
the training phase by determining on the basis of the desired
accuracy as shown in Figure 4.

4) What did the network learn?: In order to understand how
EagerNet determines at which layer the best to stop evaluation,
we use the multiclass architecture and conduct an explanatory
analysis. In Figure 5, we show the accuracy of the prediction
obtained by different networks per layer and attack family. We
obtain two conclusions:
• On average, the accuracy of predictions increases the

deeper we get into the network. This was somehow
expected, as more layers allow for more abstraction of the
input space and thus better separation of instances. How-
ever, only few layers are needed to obtain the maximum
accuracy per attack family. This implies that the EagerNet
architecture significantly decreases resources when used
for intrusion detection applications keeping the accuracy
at its best.

• On the other hand, some attack families (Analysis,
Worms, Web XSS, DDoS Heart-bleed etc.) show ex-
tremely poor accuracy. This is due to two reasons: (1)
too few samples of a category are mostly ignored by the
network to reduce over-fitting and (2) The loss optimized
to learn such patterns at a specific layer is over-written
by the loss that is optimized to learn the majority classes
hence erasing this “fragile” knowledge.

5) Advantage of backpropagating the losses of all outputs
until the beginning: Instead of backpropagating each loss
through all layers, it is also possible to only backpropagate
each loss of the intermediate layers only to the previous layer
but not until the beginning. Only the last layer’s output’s loss
would then be backpropagated until the beginning but the other
intermediate output’s losses only one step. One benefit of this
would be to save computational resources during training. Our
results showed that this method results in worse accuracy for
the intermediate layers’ outputs. Backpropagating all losses at
once is thus important and helps to update the weights of the
network at the same time as adjusting the weights of the output
neurons, thereby allowing the neural network to distribute the
knowledge across all weights and make accurate predictions
at each layer.

VI. CONCLUSION

This paper explores if it is viable to terminate the evalu-
ation of FCNNs before the final layer to save computational
resources. We propose EagerNet, an architecture that allows
predictions to be made as soon as the neural network is
sufficiently confident, saving energy and resources and making
it possible to implement similar architectures in real-time
applications where prediction speed is relevant. We evaluate
our approach using two intrusion detection datasets and ob-
tain satisfactory results indicating the possibility of achieving
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Fig. 4: Confidence threshold effect on accuracy and number of needed layers. The maximum achieved accuracy does not
represent the score obtained at the last layer but with a combination of best layers depending on the selection. Therefore, the
last layer’s accuracy alone might be less.
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(c) UNSW-NB15 (12 layers × 64 neurons).
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Fig. 5: Accuracy achieved on a test set per layer and attack family (sorted vertically). Some attacks have poor accuracy because
only few samples are observed (refer to Figure 3). Forcing the network to learn those samples might lead to over-fitting.
Additionally, the effect of over-sizing the neural network immediately appears and allows to apply the EagerNet strategy.



comparable evaluation scores to traditional FCNNs yet using
only a segment of the neural network, as most network traffic
flows are simpler to classify and only a minority need deeper
propagation through the neural network. Furthermore, we
show that by setting a confidence threshold during deployment,
it becomes possible to trade accuracy for resources usage
and energy consumption. The EagerNet architecture is thus
characterized by its simplicity and effectiveness, making it
an ideal solution for potential FCNN-based IDSs whenever
resources are of primary concern.
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