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Abstract—The continuous increase in sophistication of threat
actors over the years has made the use of actionable threat
intelligence a critical part of the defence against them. Such
Cyber Threat intelligence (CTI) is published daily on several
online sources, including vulnerability databases, CERT feeds,
and social media, as well as on forums and web pages from
the Surface and the Dark Web. Named Entity Recognition
(NER) techniques can be used to extract the aforementioned
information in an actionable form from such sources. In this
paper we investigate how the latest advances in the NER domain,
and in particular transformer-based models, can facilitate this
process. To this end, the data set for NER in Threat Intelligence
(DNRTI) containing more than 300 pieces of threat intelligence
reports from the open source threat intelligence websites is
used. Our experimental results demonstrate that such techniques
are very effective in extracting cybersecurity- related named
entities, by considerably outperforming the previous state-of-the-
art approaches tested with DNRTI.

Index Terms—Cyber Threat Intelligence, Named Entity Recog-
nition, CTI, NER, DNRTI, BERT, XLNet, RoBERTa, ELECTRA

I. INTRODUCTION

Threat actors are becoming more advanced, introducing
new, more sophisticated techniques over the years. Defending
against such attacks can be challenging, but this process can be
facilitated through the use of public information about known
and new threat actors, as well as their Tactics, Techniques,
and Procedures (TTPs). This information can be aggregated,
further analysed, and enriched to generate intelligence about
these threats, referred to as Cyber Threat Intelligence (CTI).

There are several public sources that can be leveraged to
extract CTI, including CERT feeds, vulnerability databases,
security reports, websites and forum posts from the Surface
and Dark Web, social media posts, and more. Such sources
contain a huge amount of information and intelligence about
threats which is provided either in a semi- structured or in an
unstructured manner. Extracting cybersecurity- related entities
(e.g., malware names, hashes, tool names, purpose of attacks,
the way the attacks were performed, etc.) from such sources
can significantly assist towards extracting actionable CTI.

Named Entity Recognition (NER) is an information extrac-
tion task where named entities are first identified in a text and

then classified into predefined categories. NER systems have
shown very high performance in several domains including
identifying named entities in legal documents [1], [2], social
media posts [3], [4], documents related to chemistry [5],
and biographical texts [6]. In recent years, deep network
architectures have achieved significant improvements in the
performance of various Natural Languages Processing (NLP)
tasks including NER, while currently transformer-based mod-
els constitute the state of the art in NLP and NER tasks.
However, such novel techniques have not been thoroughly
tested in the CTI domain, where the focus in on named entities
that are closely related to the content of threat intelligence.

In this work, we investigate how the latest advances in
NER, and in particular transformer-based models, can facilitate
the CTI extraction process. To this end, an experimental
study is performed on DNRTI [7], the only data set with
an extensive list of cybersecurity- related classes. DNRTI
contains more than 300 pieces of threat intelligence obtained
from open source threat intelligence websites; these reports
contain 175, 220 annotated words in 13 classes. The number
of available DNRTI classes, as well as their nature, play a
critical role in the extraction of more “actionable” CTI. We
show that the utilized architectures outperform the approaches
previously tested on this data set.

II. RELATED WORK

Named Entity Recognition is a sub-task of Information
Extraction which aims to locate and classify named entities in
unstructured text. NER is considered critical for several NLP
tasks, including question answering procedures, information
retrieval, co-reference resolution, and topic modelling [8].

Traditional machine learning models, while performing well
in tasks regarding interpretation of sequential information in
a text, have not managed to achieve human-like performance.
They have been outperformed by deep network architectures,
in particular Recurrent Neural Networks (RNNs) and Long
Short-Term Memory (LSTM) networks (with several varia-
tions). One such variation that has shown promising results
is the BiLSTM- CRF model which combines a bidirectional
LSTM network with a Conditional Random Fields layer [9].



BiLSTM- CRFs can encode dependencies on elements at both
directions, via a sequential CRF layer, to jointly model tagging
decisions and denote the correctly assigned labels.

Such approaches constituted until recently the most promis-
ing solutions to NLP problems. They have though also been
outperformed by transformer-based models that contributed to
a rise in the size of sets utilized for the pre-training, and
also designated the proper environment for the development
of the next generation of models, designed primarily for NLP.
Transformer-based models are composed of layers of encoders
and decoders which activate an attention mechanism, that adds
weights to the linearly transformed inputs and accumulates
some informative elements to generate the output. Their sig-
nificant advantage that makes them effective is that they do
not require vast amounts of labeled data; their initial training
is performed in an unsupervised manner and, then, in the fine-
tuning phase, a small data set is used for supervised learning.

BERT [10] a 12 layer deep network (12 transformer blocks
and 12 attention heads), adopts a multi-layer bidirectional
transformer logic, instead of the legacy left-to-right, pre-
dicting randomly masked tokens and successive sentences.
As a first step BERT randomly masks out 10% to 15%
of the words in the training data attempting to predict the
masked words [10]. Except for the masked language modeling,
BERT optimizes next classification objective [11]. The lower
layers encode local syntax which is useful for part-of-speech
tagging and higher layers can extract complex semantics like
aspects of word meaning useful for word sense disambiguation
tasks [12]. BERT, released from Google AI Language, is pre-
trained on the Wikipedia corpus (2500 million words) and the
Book corpus (800 million words). A NER model is trained by
feeding the output vector of each token into a classification
layer which predicts the label.

RoBERTa, released from Facebook [13], is a replication
research on Google’s BERT that executed multiple compar-
isons and presented some performance assets, highlighting the
importance of some key hyper-parameters and the size of the
training data that can have a great impact on the final result.

XLNet, released from Google/CMU, [14] was developed
to address some of BERT’s negative aspects and revives the
Recurrent Network logic (segment recurrence mechanism)
and integrates a policy which is notated as ”relative posi-
tional encoding”, borrowed from the predecessor model named
Transformer-XL. This is associated with the model’s ability to
learn how to estimate some weights for the previous and the
following words to the temporary central one.

Electra [15] aims to reduce high training computational cost
of models like BERT. Instead of masking the input it replaces
some tokens with alternatives sampled from a small generator
network. Then, instead of training a model that predicts the
original identities of the corrupted tokens a discriminative
model is used to predict whether each token in the altered
input was replaced by a generator sample or not [15].

In the cybersecurity and, more specifically, in the CTI field,
Ma et al. [16] proposed a XBiLSTM- CRF model which
combines a BiLSTM network with a CRF layer in a way

that the input is also concatenated with the BiLSTM output.
For the experiments, a public dataset was used with nearly
5000 entities. Joshi et al. [17] used a Stanford NER model
based on CRF and a hand annotated dataset containing 3800
entities. Gasmi et al. [18] used a corpus with entities from the
National Vulnerability Database (NVD)1, MS Bulletins2, and
Metasploit3 to compare an LSTM-CRF and a CRF model, con-
cluding that the first approach is significantly better. Bridges
et al. [19] created their own dataset which was initially auto-
labeled (using database matching, heuristics, and dictionary
stored terms), and then fed to a history-based Maximum
Entropy Model trained with an averaged perceptron classifier.

In terms of annotated datasets for NER in the CTi domain,
MalwareTextDB is a corpus of annotated malware texts that
was constructed in 2017 and consists of 4 entities [20]. There
are limitations regarding the confined size and the small
number of entities that can lead to vague results if applied to
unseen sentences coming from CTI reports and other sources.

III. METHODOLOGY

The Huggingface Transformers [21] framework is a library
that provides variations of state-of-the-art NLP pre-trained,
transformer-based models that can be fine-tuned on particular
data sets and tasks. Token and Sequence classification can
be used for NER and Sentiment Analysis respectively, while
models with a span classification heads on top can be used
for Question Answering. It was selected as the framework to
accomplish the goal of this work by using the BERT base, XL-
Net base, RoBERTa base and ELECTRA base discriminators
which are considered the most sophisticated models available.

A. Data Set

Data preparation and pre-processing are critical parts of
a thorough analysis. To accomplish this goal, a solid gold
set containing annotation for the particular sort of technical
entities is crucial. Hand-annotated corpora are hard to create
because they require domain expertise and a lot of time.

For the purposes of this work, the DNRTI data set [7]
was selected as it is the most comprehensive, detailed, and
coherent cybersecurity- related data set currently available, and
thus, can lead to solid, strong and consistent insights regarding
Cyber Threat Intelligence mentions on unseen text. In partic-
ular, DNRTI is a large data set released in 2020 that contains
175, 220 words, annotated in 13 different entity categories
using the IOB/BIO annotation scheme [22]. According to this
scheme, every token of a sentence is labeled as (i) B-label
(e.g. ‘B-HackOrg’) if the token constitutes the beginning of
a named entity, (ii) I-label (e.g. ‘I-HackOrg’) if it is inside a
named entity, but not positioned first, or (iii) O-label (‘O’) if
it is not part of a named entity, i.e. it is outside of it.

The released version of the data set includes pre-fixed
training/validation and test sets. Following some minor cor-

1https://nvd.nist.gov/
2https://us-cert.cisa.gov/ncas/bulletins
3https://www.metasploit.com/



rections4, the final format of the provided training/validation
sets consists of 157, 945 tokens overall (9, 180 unique), with
140, 526 tokens in the training set and 17, 602 tokens in the
validation set. The ‘O’ class tokens are the majority and
number 124, 739 tokens, while the ’B’ class and the ’I’ class
number 20, 143 and 11, 254 tokens respectively.

Consider for instance the ‘Hacking Organisations’ entity
category. The pre-fixed training and validation parts of the
data set contain 4, 963 appearances of tokens referring to
‘Hacking Organisations’, such as ‘Cobalt’, ‘LuckyMouse’, and
‘OceanLotus’; in particular, 3, 845 ‘B-HackOrg’ and 1, 118 ‘I-
HackOrg’ entities appear. Out of these 3, 845 ‘B-HackOrg’
tokens, 477 are unique. According to the context, 140 unique
‘HackOrg’ single tokens of the validation set have 283 dif-
ferent uses (labels) in the training set. This indicates that
the annotation tags of the words are modified according to
the context. Moreover, there are also 4308 tokens referring
to malware names (‘B-Tool’ and ‘I-Tool’) like PlugX or
NetTraveler among other categories.

B. Pre-processing

Every model is accompanied by its own tokenizer and
its own vocabulary, which is essential so that every token
can be mapped with a unique code. In this work, the limit
of the length of sequences is set to 120 sub-words. The
largest lengths of sequences of tokens in our data were in
the interval 99 to 125 depending on the different tokenizers,
while sequence length up to 512 is supported by BERT,
while it is unlimited for XLNet. For example, for BERT base
the maximum length of sentences was 115 tokens, the mean
length was 46.68 tokens with a standard deviation 27.65. For
XLNet the values were 49.39 and 28.72 respectively. Longer
sequences were truncated and shorter sequences were padded
(post-tokens) to reach the fixed defined size.

The tokenizers and the models are usually offered in cased
and uncased variations. Despite the fact that the uncased
variants of the models are widely considered to perform better,
our strategy was oriented towards focusing on case- sensitive
versions which was deemed more suitable for cybersecurity-
related Named Entity Recognition. For instance, capitalization
can be indicative of phrases referring to a ransomware name
and is usually present into the involved words, especially those
coming from logs. Hence, it was decided these domain-specific
to be taken into consideration. Tokenizers also split complex
words into pieces so as to be identified by the vocabulary. To
handle this issue, corresponding labels had to be multiplied
accordingly during this splitting process.

Finally, Neural Network inputs do not constitute text but nu-
merical values. The tokenizers have core features that convert
input tokens to ids (indices numbers), encoding representations
according to their vocabulary. IBO/BIO labels are also modi-
fied to integer numbers. At this stage special tokens are added.

4It was observed that the released version of the data set contained some
bad lines and typos; to address this,any missing values were removed and the
typos were corrected, while some defective entity names were also replaced
with the correct ones.

Attention masks are also created as an additional input array
to the input ids and labels. They follow their corresponding
variables at the training/validation set separation. They are
float numbers as signals that inform the model if the respective
token is an actual one (1.0) or a padding product to ignore
(0.0). Then data loaders need to be set. During training, data
were shuffled by a random sampler, while during validation,
data were loaded sequentially using a sequential sampler.

C. Fine-tuning

The fine-tuning process of BERT, XLNet, and similar
transformer-based models includes the insertion of a single
extra output layer on top depending on the particular task.
For the named entity recognition, a linear classification layer
is added. In order to tackle the requirements of the task at
hand, the most efficient approach is the token-level classifi-
cation. The weights of the last hidden state of the networks,
derived from the pre-training pipeline, are passed as inputs
to the token-level classifier. “Bert For Token Classification”
and “XLNet For Token Classification” are two examples of
appropriate modifications of the models, in order to make
configurations that suit our purpose.

On the other hand, modeling for Sequence Classification
classifies entire sentences, in which the desired entities coexist
with the adjacent words and it would not be indicative. Thus,
sentences containing a desired entity had to be annotated by
hand with a ‘1’, otherwise with a ‘0’. Sequence Classification
when applied for NER (e.g., BERT For Sequence Classifica-
tion) recognises whole sentences instead of words (tokens and
entities). The pooler performs specific functions to reduce the
dimensionality of the network and the dropout ignores units
(neurons) during the training stage to prevent overfitting. A
classifier is a linear upper layer.

IV. EXPERIMENTAL SETUP

In this work, the BERT base, XLNet base, RoBERTa base
and ELECTRA base discriminators, optimised with appro-
priate hyper-parameters, were selected to be configured and
evaluated for NER on CTI. These methods were implemented
using PyTorch and evaluationexperiments were set up as
follows.

A. Dataset: Fixed & Custom splits

As discussed, the DNRTI dataset is released with pre-fixed
sets for training and validation, as well as a holdout test set.
The initial train/validation split is roughly 89%-11%, while
the train/test ratio is also roughly 89%-11%. Table I provides
information on the number of sentences and tokens in the pre-
fixed sets; the listed percentage reflects the train/test ratio.

Our analysis indicated that 46 complex entities (i.e., entities
comprising two or more tokens) that exist in the training set,
are repeated with the same annotation in 43 out of the 664
sentences of the test set. In order to avoid over- estimation
at the evaluation stage and misleadingly high accuracy, these
43 sentences had to be moved to the training set, resulting in
a zero-shot conversion of the test set. As a result, both the



TABLE I
NUMBER OF SENTENCES AND TOKENS IN THE TRAINING, VALIDATION ,

AND TEST SETS OF THE THREE CONSIDERED DATASET SPLITS

Fixed split Custom split I Custom split II
(89%-11%) (89.7%-10.3%) (82%-18%)

# sent. #tok. # sent. #tok. # sent. #tok.
Training 5261 140345 5304 141777 4876 129660
Validation 662 17600 662 17600 662 17600
Test 664 17715 621 16283 1039 28400

training and test sets were slightly revised in comparison to
the original data set resulting in the Custom split I listed in
Table I; in this case, the train/test ratio is 89.7%-10.3%.

Moreover, after concatenating the fixed training and test
sets, alternate train/test splits were also tested, because they
were considered to be more stable, accurate, and consistent. In
particular, after an 80%-20% split was performed, we moved
the sentences of the test set that contained repeated entities to
the training set (similarly to above), resulting in the Custom
split II (Table I) where the train/test ratio is 82%-18%. In this
case, a 5-fold cross validation was applied at the evaluation.

Last, it was observed that some types of entities were similar
to each other and therefore could be merged without loss of
specificity. The ‘Tool’ category that contains mostly malware
names entities (e.g., NetTraveler, Triton) was merged with
the ‘SamFile’ category that contained malware files entities
(e.g., avemaria, balkandoor). The ‘Idus’ and ‘Org’ categories
were also merged, as they contain similar entities related to
organisations like government, universities, or corporations in
various sectors. This merging was performed on the fixed split
and resulted in 11 (compared to 13) entity categories.

B. Annotation schemes

Every token of a sentence is associated with a label in a
particular format in order to be recognised by the transformer-
based models. Apart from the IOB/BIO format (discussed
above), we also employed the BILOU format. BILOU is
similar to IOB/BIO, but every individual unit-length relevant
token is notated as U-label (Unique, e.g. ‘U HackOrg’), while
the last I-label of a chunk is tagged as L-label (Last, e.g.
‘L HackOrg’). We converted our data set to the specific format
and also conducted experiments with the increased number of
labels. For example, now the 4963 ‘Hacking Organisations’ to-
kens were allocated as 1033 ‘B-HackOrg’, 115 ‘B-HackOrg’,
1003 ‘L-HackOrg’, and 2812 ‘U-HackOrg’.

C. Hyper-parameters

Deep learning models comprise many hyper-parameters that
need to be tuned in the validation set so as to achieve the
optimal outcome. Table II summarizes the hyper-parameters
used during testing. The AdamW optimiser was selected and
weight decay was chosen as a regularization technique to
penalize weight matrices of the nodes; regularization adds a
term to the loss function that penalizes overfitting. A batch size
of either 16 or 32 is recommended in the BERT paper [10],
where also a number of epochs between 2 and 4 during

TABLE II
PARAMETERS OF THE FINE-TUNING FOR BERT BASE, XLNET, ROBERTA

AND ELECTRA.

Number of Epochs 4
Lower Case False
Learning Rate 1e-4
Batch Size 16
Sentence Length 120
Epsilon 1e-12
Max Gradient Norm 1.0

the fine-tuning stage is considered sufficient since additional
epochs add nothing beyond a slight gain.

D. Evaluation

The main evaluation metrics taken into account to compare
models and measure their performance were Precision, Recall,
and F1 score of predicted tokens and entities. These metrics
are reported for each of the different ‘B’ and ‘I’ classes (BIO
classification), as well as their average values (i.e., unweighted
mean). The ‘O’ class is of no importance to the task, since
it designates simple entities, thus it was not considered in the
results. Accuracy is not that considerable because the majority
‘O’ class is included and most models predict it quite well.

Except for the token level, the recognition at entity level was
examined too. For example, “The United States of America” is
correctly identified if every token it is composed of is predicted
correctly. A rational and fair policy is to allow only the perfect
exact matches of a full entity to be taken into consideration.
Two entities with two or more words, where B-label or I-label
tags have been assigned to each of them, are considered equal
only when all their internal equivalent tags match one another
exactly (thus deemed as an exact match) [23]. This policy
was adopted and applied at the evaluation stage between the
predicted entities and their true validation mapping labels.

V. RESULTS AND DISCUSSION

This section presents the experimental results derived
through a series of steps where the employed models were
fine-tuned, trained, and evaluated in the downstream NER task.

A. Experiments on the Fixed DNRTI Split

Table III shows the results of the analysis for the various
models on the fixed test set, compared to the models applied
in the DNRTI paper; these results were acquired directly from
the paper [7]. It is apparent that modern models considerably
outperform previous approaches. Their attention-based archi-
tecture permits them to better exploit the available information
found in the context of the whole sentence, learning simulta-
neously from both directions. Moreover, concerning the best
model for single token level (XLNet), Table V provides the
Precision, Recall and F1-score for every class except for the
‘O’ class and their macro average. With regards to entity level
results, Table VI presents the exact and partial match metrics
for the complex entities (groups of tokens) of all used models.

Table IV shows the results for the two best performing
models using the BILOU annotation format, instead of the



TABLE III
EVALUATION RESULTS (AVERAGE: ‘MACRO’) FOR DIFFERENT SOTA

MODELS USING DNRTI CORPUS AND IOB SCHEME COMPARED TO THE
PROPOSED MODELS FROM DNRTI [7] AS A BASELINE.

Models F1- Score Precision Recall
BERT base 0.875 0.852 0.902
ELECTRA base 0.831 0.809 0.858
RoBERTa base 0.842 0.806 0.886
XLNet base 0.883 0.863 0.906
LSTM [7] 0.671 - -
BiLSTM [7] 0.713 - -

TABLE IV
EVALUATION RESULTS FOR DIFFERENT SOTA MODELS USING DNRTI

CORPUS AND BILOU SCHEME.

Models F1- Score Precision Recall
BERT base 0.838 0.818 0.871
XLNet base 0.846 0.833 0.870

original IOB/BIO one. Contrary to findings reported in similar
works [24], this annotation schema failed to ameliorate results
in the current task, actually performing worse than the IOB.

Overall, the BERT base and XLNet base models had com-
parable performance in all metrics and achieved the best F1,
Precision, and Recall scores at token and entity level on the
DNRTI corpus. The results are balanced, comparable and very
close and outscored the best baseline model (BiLSTM) F1
score by 17%. Moreover, XLNet outperformed, even if it was
just marginally higher, every other model at almost any level.
It has achieved F1 just over 88% for B and I classes’ average,
although it seemed to be slightly lower than the BERT base
for the exact entity match predictions of complex entities on
the DNRTI test set. XLNet has also achieved great individual
B and I tags’ F1 scores, as well the best mean Precision score
and Recall score. As an indicative example, the best baseline
model achieves B-HackOrg and B-Tool F1 score 74% and
60%, respectively, while the XLNet 88% and 92%. BERT base
is consistently ranked second, scoring equivalent, but slightly
inferior results. The RoBERTa base follows above ELECTRA
base that also performed well. All the models broadly predict
the ‘B’ class of most categories better, even to a small extent,
than the ‘I’ equivalent class.

B. Experiments on Custom Splits

Next, the models were tested on the zero-shot unseen
sentences of the Custom splits. The sentences were fed to
the fine-tuned models and the CTI-related candidate entities
were identified. The sentences were prepared and encoded
(tokenized and special tokens appended to them) to be fed as
new inputs. Examples are given in Figures 1 and 2. he results
presented in Table VII, indeed show a slight over-estimation
of the result values in comparison to the initial fixed one.

C. Experiments on Reduced Number of Labels

Finally, in Table VIII, the experiments conducted with
reduced classes of entities, as an abstraction in order to
decrease the complexity caused by overlapped tags, seem to

TABLE V
DETAILED RESULTS FOR THE MOST EFFECTIVE MODEL USING DNRTI

CORPUS AND IOB SCHEME.

XLNet
Models F1- Score Precision Recall
B-HackOrg 0.88 0.85 0.90
I-HackOrg 0.81 0.78 0.85
B-OffAct 0.86 0.90 0.83
I-OffAct 0.88 0.90 0.86
B-Features 0.95 0.91 0.99
I-Features 0.94 0.89 1.00
B-Purp 0.88 0.84 0.92
I-Purp 0.86 0.78 0.96
B-Way 0.97 0.95 0.99
I-Way 0.96 0.93 0.99
B-SecTeam 0.96 0.97 0.94
I-SecTeam 0.81 0.72 0.93
B-SamFile 0.91 0.92 0.90
I-SamFile 0.90 0.91 0.89
B-Idus 0.91 0.91 0.91
I-Idus 0.84 0.83 0.85
B-Tool 0.92 0.91 0.94
I-Tool 0.83 0.81 0.84
B-Area 0.90 0.88 0.92
I-Area 0.81 0.78 0.83
B-Time 0.831 0.809 0.858
I-Time 0.89 0.84 0.94
B-Org 0.75 0.75 0.76
I-Org 0.78 0.72 0.85
B-Exp 0.99 0.99 1.00
I-Exp 0.98 0.97 1.00

TABLE VI
ENTITY- BASED EVALUATION RESULTS WHERE ONLY THE 948 TEST SET’S

COMPLEX ENTITIES WERE EXAMINED AS GROUPS OF TOKENS FOR
DIFFERENT SOTA MODELS USING DNRTI CORPUS AND IOB SCHEME.

Models Exact Match Partial Match
BERT base 0.93 0.07
ELECTRA base 0.91 0.09
RoBERTa base 0.90 0.10
XLNet base 0.92 0.08

fulfill their purpose and achieve F1 scores just under 90%.
The information presented in this table concerns the two best
performing models; further testing was not expanded to all
considered models due to time constraints.

Fig. 1. Entities identification example by XLNet tested on zero-shot sentences.

Fig. 2. Entities identification example by XLNet tested on zero-shot sentences.



TABLE VII
EVALUATION RESULTS FOR THE BEST PERFORMING MODELS USING THE
CUSTOM SPLITS, WITHOUT THE OVER-ESTIMATION FACTOR OF REPEATED
COMPLEX ENTITIES ON BOTH TRAIN AND TEST SETS, ON DNRTI CORPUS

WITH IOB SCHEME.

Models F1- Score Precision Recall
Custom split I (89.7%- 10.3%)

BERT base 0.868 0.842 0.899
XLNet base 0.872 0.842 0.907

Custom split II (82%- 18%)
BERT base 0.868 0.845 0.897
XLNet base 0.872 0.851 0.898

TABLE VIII
EVALUATION RESULTS FOR BEST PERFORMING MODELS USING THE

FIXED SPLIT BUT WITH 11 LABELS (RATHER THAN 13) PLUS THE ‘O’ ON
DNRTI CORPUS WITH IOB SCHEME.

Models F1-Score Precision Recall
BERT base 0.899 0.874 0.928
XLNet base 0.898 0.870 0.929

VI. CONCLUSIONS

This work investigated the effectiveness of transformers-
based models for the extraction of Named Entities on CTI con-
text and showed the improvements achieved in performance
compared to deep neural network methods previously applied
on the DNRTI dataset. Further investigation is required in
order to clarify the influence that a more extensive annotated
corpus or an enhancement of DNRTI could have and how
steeply the evaluation results could be affected and both the
training and validation errors/ losses could drop. Moreover,
Relation Extraction will be applied as the next step in order
to gain inferences about possible relations between the entities.
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