
Tablet PCs and Robots: Technology as Platform and Motivator for Explorations in
Collaboration

Michael Wainer, Henry Hexmoor, and Marshall Riley

Computer Science Department, Southern Illinois University, Carbondale, IL, 62901, USA
{wainer, hexmoor, mriley}@cs.siu.edu

ABSTRACT

It is widely recognized that successful software developers
and researchers need to be technically competent as well
as effective team collaborators. This paper describes how
technology (tablet PCs, and mobile robots) was used to
focus and enhance opportunities to build collaboration
and team skills. Tablet PCs were used to foster social
skills within a software development course. The product
produced, at the request of a robotics researcher, was an
application to simulate robot navigation. The robot
navigation application enables explorations in human
robotic interaction. The introduction of these technologies
has served as a focus to help teach and motivate
collaboration skills.

KEYWORDS: Multiagent Systems, Collaboration,
CSCW, Pedagogy

1. INTRODUCTION

Computer science students have typically gone through
almost all of their computer science curriculum warned to
do their own individual work. As they enter upper-level

courses they may be assigned team projects but are often
left to themselves to divide work within a team. Often the
projects they are assigned are fairly small and well defined
to test a student’s understanding in a specific area. The
student may see little connection between the projects they
work on and “real” software. Similarly, there may seem
to be little connection between the class assignments and
what occurs in research or in the industry.

Our goal is to break down these barriers by engaging our
students more actively in courses and research and by
promoting more hands on collaborative experiences. More
than two decades ago Peter Naur advocated that we
rethink how we educate software developers to stress an
approach, which would have students follow his statement
“work on concrete problems under guidance in an active
and constructive environment.” [7, P. 48] Students should
share a common theory of how the system works by
effectively communicating and collaborating as they
construct their projects.

We agree whole-heartedly with this approach and seek to
use technology towards this goal. Technology can provide
an enabling platform as well as excitement to promote
collaboration. Mobile robots, in addition to having the
potential to motivate students [2] have been used in roles
which directly facilitate collaboration [8]. We see
collaboration as not only an opportunity for students (as
developers) to work together but also to illustrate how
developers and clients work together as well as how
teaching and research work together.

This paper is itself a collaborative effort. Two authors are
faculty members. One faculty member was recently
awarded an HP technology for teaching grant to enhance
an upper-level software development course with tablet
PC technology. Another faculty member was interested in
obtaining custom software to help with his robotics

1150-9785699-1-1/07/$25.00 ©2007 IEEE.

research and courses. He acted as a customer for the
software development class. Finally, a student from the
software development course became an undergraduate
robotics research assistant and has continued with the
project.

Section 2 describes the software development course and
how tablet PC technology was used as a platform to
enhance collaboration. The software created in that course
(and still evolving) was built over a number of iterations.
Working with mobile robots and producing a product of
interest for a customer motivated the students. The
resulting software as it was used in another class is
discussed in section 3. The software was put to use in a
robotics course in a way to help build cooperation among
student teams as well as an introduction to issues of robot
navigation and Human Robot Interaction as explained in
section 4. Finally, we summarize our observations and
discuss future work in sections 5.

2. TABLET PCS AS PLATFORMS AND
MOTIVATOR

For several years we have endeavored to give our software
design and development students a “learn by doing”
experience based upon agile practices. We have
emphasized agile development techniques which have
shown much recent success in industry. These methods
allow projects to be designed and implemented in an
incremental and an iterative fashion [3]. While largely
successful for teaching software development, adapting
agile methods to an academic environment is not without
its problems [9].

Agile software development methodologies compensate
for a reduction in rigid bureaucracy by relying heavily on
human to human communication skills. Several issues
related to the typical class structure and student lives
negatively affect student to student communications.
Broadly speaking, these issues concern time, space,
training, and team skills.

Time: A typical class usually meets 2 or 3 times a week
for a total of 3 hours thus the total number of contact
hours is minimal. Students are left on their own to
schedule meetings with their groups to get most of their
work done. It is unfair to expect students to put an
inordinate amount of time into a course that is only
awarded 3 credit hours.

Space: Students do not have a dedicated work
environment. Classrooms are typically designed for
passive lectures. Laboratories are designed for students to

work rigidly in front of their individual workstation.
Rooms which might be suitable for group work do not
have computer facilities. Some students (graduates for
instance) have special access to labs which others do not.

Training: Students may be lectured on concepts but have
difficulty applying those concepts appropriately. Tools
may exist to help but without proper guidance the tools
may not be used or used incorrectly. Students often resort
to familiar techniques or employ a new technique out of
individual interest rather than suitability. This problem
extends to non-technical aspects as well, such as how to
work in a team (listening to other’s ideas, etc.)

Team Skills: Students often have little experience in
working on a team. Most students make a good attempt to
contribute to their team but lack experience and
instruction on being a good team contributor. Classes
usually contain a diverse group of students (as does the
contemporary workplace) and students can benefit from
learning and reflecting upon basic social skills and
responsibilities to their peers and others. Figure 1 shows a
typical student work session.

Figure 1. Software Development Students Collaborating
and Examples of Group Work Developed Using Tablet

PCs

The importance of team skills is repeatedly emphasized by
those hiring computer science graduates. In an attempt to
improve these skills for students enrolling in software
development, a proposal was created to use tablet PC

116

technology to enhance this course. A recent HP
Technology for Teaching grant made it possible for each
student in the course to utilize a tablet PC as their
development platform. This injection of technology
allowed the course to change in several ways to better
promote collaboration and team skills.

Space: Each student always had their tablet PC available
(they are small and easy to transport). The classroom was
changed to a room with furniture and physical layout that
supported group work. Wireless capability within the class
allowed the computers to be used to their full potential.

Time: The class met 4 times a week, always in the same
room. The room was suitable for both lecture and group
work activity. More emphasis was provided on allowing
students to work together on projects during class time.
Because students could easily carry their computers
anywhere they could work together more often (utilizing
small blocks of time or after labs were closed).

Training: With more time in class for project work, there
was more time to answer questions and observe and assist
students in using software tools, applying concepts and
working together. More experience with group sharing
applications such as source code control and wiki software
helped to enhance team skills.

Team Skills: Students were instructed from the beginning
on the importance of team skills. Almost continuous team
projects, practice, and feedback helped to stress the
importance of being a responsible team member.

More specifics about how the course was structured is
given below. As mentioned earlier, this course produced a
simulated robot navigation application. This package, now
referred to as Shyster, began to iteratively evolve during
the customer project phase of the course. Shyster and user
experiences with the software are described in more detail
in sections 3 and 4.

Teamwork skills were motivated by group projects, and
the use of tablet PCs within a studio-like environment. To
get to know each other, and the tablet PCs, an early
exercise required students to work together to install
software on the tablet PCs. Afterwards, students were
assigned a tablet PC for the semester.

Another assignment introduced the XP planning game
illustrating the idea of cooperating to iteratively produce
and refine a product based upon customer priorities [1]
Further group work refined the initial designs from the
"planning" game exercise into more detailed low-fidelity
prototypes. While students were getting familiar with

group work in the low fidelity world, we were also
beginning to explore the development tools (installed on
their tablet PCs).

Students paired up to understand and later mark-up code
samples given to them. The tablet PCs by virtue of their
size made it simple for two students to easily share a
computer. The digital ink feature of the tablet PCs was
intuitive to use for marking-up code samples. Digital ink
was also used to refine the designs for the prototype
project. (Designs expressed on paper were moved into the
computer.)

Student pairs began to modify the sample code (a puzzle
game which acted as a practice project) to produce a better
product. Communication through code was emphasized.
The mark-up exercises helped to show that just getting
code to run isn't the ultimate goal. Communication and
collaboration of the code itself was emphasized. Students
were introduced to and expected to use collaboration
software such as the subversion source code control
system as well as a wiki to share and post ideas.
Refactoring [4] out "smelly" code as well as unit tests (to
drive design, check for errors and clarify how the code
should be called) and following coding conventions was
expected.

The second half of the semester involved working with an
external customer to produce the custom software which
has now become known as Shyster. Students were
expected to explore requirements with the customer and to
frequently update the customer on progress by showing
working software. The application being created was to be
used to model the navigation of a robot through an
environment. In collaboration with the customer, the class
developed a subset of features to implement. The
immediate goal of the application was to provide students
(and potential students) with an introduction to the
problem of robot navigation.

As an example of customer contact with the class, a series
of possible screen sketches were made (using tabletPC
digital ink) and posted to the project wiki for customer and
class review. The customer gave feedback on which
features over the short term had the most value so the
developers would know where to focus their efforts. Early
essential features were to show sensor readings and to
allow the user to direct the robot to move forward and turn
incrementally.

Originally, there were some thoughts about the class
directly utilizing the physical robots. (P3-DX mobile robot
which receives continual sonar readings) The agile
software development technique allowed our plans to

117

adapt. As it turned out, the physical robots became
available too late to be incorporated into the class’s
software release. A more rigid upfront planning process
would have wasted a great deal of time designing software
which could not have been properly tested or run.

As the project progressed, the tablet PCs facilitated
spontaneous small group meetings to collaborate on recent
advancement in the design and structure of the program.
For instance, when the sonar reading history log was
conceived, the tablet PCs aided in communicating
possibilities for content and structure prior to adding it to
the code base.

The class ended with a product that had contributions
from the entire class. Everyone in the class had gained
experience working on a team using face to face, written
and shared code (through a software repository). While
some students made stronger contributions than others,
everyone gained a new understanding for the importance
of teamwork and collaboration in the production of
software. The software, not yet a polished product,
demonstrated strong enough potential that, it was decided
to continue to improve upon it. The details of the
application produced are described next.

3. THE PRODUCT: SHYSTER A ROBOT
SIMULATOR

The application produced is a Java program that mimics a
P3-DX mobile robot (refer to www.mobilerobots.com).
The robot receives continual sonar readings as a user
issues incremental, step-wise forward and turn commands.
Figure 2 is a screen-shot that shows the sonar view on the
left and an overhead view on the right. The overhead view
shown in Figure 2 (the right panel) shows the robot in a
box canyon, i.e., surrounded by three walls.

A user may introduce environments constructed from line
segments acting as obstacles in the simulated environment
using a pull down menu. The bottom left circle in the
sonar view is a compass depicting the current robot
heading direction (the needle faces upwards when the
robot is facing up, etc.). Three bottom arrows in the sonar
view are available for user mouse clicks. Relative sizes of
rectangular boxes in the image depict relative sonar
reading amounts. I.e., larger boxes mimic looming
obstacles that indicate stronger sonar readings
corresponding to closer objects. Each forward click
propels the robot forward a unit while turn clicks rotate
the robot heading at 30 degrees per command.
Locomotion (displacement) is produced only through
forward commands. Turn and forward commands are also
available through accelerator keys. Each time the robot

turns or moves the older sonar readings are redisplayed on
the next row providing history of previous readings. The
solid yellow-orange lines, below the sonar display area,
indicate relative positions of the eight sonar sensors
affixed to the body of the robots in a front facing semi-
circular pattern. In the overhead view Shyster leaves a trail
of robot paths, which aids in navigation and debugging.
Backward locomotion is not supported so the robot must
be turned about to escape corners.

Figure 2. A Snapshot of Our Implemented HRI Interface

4. ROBOTIC CLASSROOM
EXPERIENCES

Beyond the class that developed it, Shyster was used in a
senior mobile robotics class to present a simulation of a
P3DX robot. Everyone in the class was given an
individual copy of the software and was observed learning
and using the simulation. Shyster displayed a P3DX robot
in an open environment on start. Preset environments
could be loaded or a unique environment of the user’s
choice could be created. Students attempted to establish
their robot’s position within its environment relying solely
upon sonar. This proved difficult to do. An additional
visualization showing the robot from overhead along with
its “foot prints” from previous locations helped students to
correlate position within the environment with the sonar
readings observed. Custom environments were created
with the software allowing the users to see how sonar was
influenced in various situations.

After having a chance to experience robot navigation with
Shyster, students discussed their thoughts and
observations. Many comments focused upon suggesting
improvements for the Shyster interface. This itself raises
additional opportunities for collaboration with other
courses such as Interaction Design and Software

118

Development. A more structured comparison of Shyster
interface alternatives will likely yield a better interface
design. The experience and discussions helped to give
students insights into the challenges of Human Robot
Interaction. Among the comments raised were
modifications to the sonar readings such as: shading the
feedback squares, showing an outline making clear the
maximum reading, or even read-outs as numbers. Other
users may have preferred a different mapping of control
keys or perhaps a command line interface to specify semi
automation control over the robot. Overlaying a grid in the
visual map was also proposed to ease plotting walls within
the customized environment.

A visual feedback option is our latest feature added to
Shyster. It allows the human user to observe the
environment in a popup window that receives a feed from
a live robot-mounted camera input stream, See Figures 3
and 4. This option adds a degree of realism lacking from
sonar-only feedback.

The robotics class continued experimentation with group
collaborations beyond Shyster with a role playing
scenario. Teams consisting of two people took the roles of
either a robot or a human. Human roles were told to give
orders to the robot players in both high autonomy and low
autonomy modes. In low autonomy, many orders were
given more feedback was required before future requests
were issued. This produced a blow by blow style of robot
control. An example series of commands is “move
forward 5 feet, then turn 90 degrees”. The main task of the
pair was to measure the length and width of the classroom.
Students adapted this method and used sonar and bumper
sensors to obtain the size of the room. One individual
playing the role of the robot was told to “move forward
until you hit an object, then stop” and then give feedback
of the distance traveled. Low autonomy required waiting
for additional feedback and required excessive amounts of
management. High autonomy was then attempted. Orders
were given such as “Move forward until you hit
something, then turn 90 degrees and keep going”. This
was an attempt to see if the robot actor found length and
width of the room without human intervention. Using this
method, the individual playing the role of the robot began
to get stuck in circles around objects. High autonomy
mode was largely efficient, albeit at the expense of more
problems of movement and interaction in the world. Low
autonomy mode required an excessive amount of
management to reach the desired goal. Relatively more
factors must be considered in high autonomy. The
definitions of high autonomy and low autonomy were well
established before the skit, but this skit did provide insight
on the advantages and disadvantages of each one.
Alternative directions were given to the individuals
playing the role of the robot in high autonomy to work

around conflicts, such as starting from a better position,
watching for areas that may result in the robot getting
stuck, and more informed feedback to adjust the situation
when necessary.

Figure 3. A Bird’s Eye View of the Robot-Mounted
Camera Corresponding to the Robot View Shown in
Figure 4.

Figure 4. An image Typical of that Provided by Shyster’s

Robot Camera Feed

5. OBSERVATIONS AND CONCLUSIONS

119

There were doubts among faculty about whether or not
students would responsibly protect and maintain their
tablet PCs throughout the semester. This turned out to be a
non-issue. It would have helped the students if our
department had a convenient place to store the tablet PCs
and many students would have found a backpack carrying
case more suited to their lifestyles rather than the standard
business case carrier. Tablet PCs enable more frequent
hands on and collaborative experiences. The value of
teamwork and collaboration was appreciated by all. The
technology enabled strong support for Naur's notion of
having students “work on concrete problems under
guidance in an active and constructive environment.”

Digital ink was a natural fit for code mark-ups and design
sketches. Many students were very comfortable using
these machines for note taking as well. When it came to
writing code, the keyboard was favored and tablet PCs
were often thought of as very portable (with long battery
life) notebook computers. To that end, we hope future
machines will offer more speed and more screen
resolution.

Interestingly the greatest impact of technology may have
been the indirect consequences that it enabled. For
instance, the class layout could be dynamically
reconfigured for lecture, group or individual work. The
highly portable nature of the tablet PCs was very valuable
in allowing students to physically position themselves to
work together (especially for pair programming a
technique used in the well known agile methodology,
extreme programming [1]. Students could easily pick up
or slide their machines around to better work with team-
mates (and customers). The flexibility in where we could
meet (no computer lab required) meant an easier
proximity to the class customer. With more contact time
and a more convenient location, it was easier to arrange
customer meetings.

Robots, and in recent years, human-robot interaction [5, 6]
are active areas of research which most computer science
students find intensely interesting. In fact, we have found
mobile robot technology so interesting, that students are
motivated even in projects which do not involve contact
with actual robot hardware. Software simulations and
role-playing sessions, are valuable exercises for
acquainting students with robotics principles while
spurring conversations and teamwork. Thus a small
amount of robotics hardware, can serve a larger body of
students as motivation for a variety of projects. We hope
to use this observation to foster more collaborative
experiences between robotics research and exercises
undertaken in other courses.

This work has illustrated our experiences in using
technology as an effective platform and motivator for
collaboration within computer science courses. Tablet
PCs, being extremely portable and supporting an intuitive
pen based interface, have removed barriers in space and
time to enhance team and project skills. Robots, served as
a strong motivator for students even in exercises in which
hardware was not physically present.

Increasing hands-on and collaboration experiences in the
classroom emphasizes active learning but also offers an
exciting challenge to instructors: How to pace class
material to balance providing students details and
specifics against letting them explore and resolve
problems with gentle guidance? We plan on exploring this
issue further as we expand our use of technology to
promote collaboration and teamwork in and among other
courses.

ACKNOWLEDGEMENTS

We wish to thank Hewlett-Packard Company for
supporting this work through an HP Technology for
Teaching award.

REFERENCES

[1] Beck, K. 1999. Embracing change with extreme
programming, Computer, Volume 32, Issue 10 (1999),
Pages 70-77.

[2] Blank, D. 2006. Viewpoint: Robots make computer
science personal by Douglas Blank Communications of
the ACM Volume 49, Number 12 (2006), Pages 25-27.

[3] Cockburn, A. 2002. Agile Software Development,
Addison-Wesley.

[4] Fowler, M. 1999. Refactoring: Improving the Design
of Existing Code, Addison-Wesley.

[5] Hinds, P., Kiesler, S. (Eds), 2002. Distributed Work,
The MIT Press.

[6] Kiesler, S., Hinds, P. 2004. Human-robot interaction,
Special issue of HUMAN-COMPUTER INTERACTION,
2004, Volume 19, pp. 1–8, Lawrence Erlbaum Associates,
Inc.

[7] Naur, P. 1992. Programming as Theory Building,
Computing: A Human Activity., pages 37-48 (reprinted
from Microprocessing and Microprogramming 15: 253-
261, 1985), ACM Press.

120

[8] Severinson-Eklundh, K. Green, A., and Hüttenrauch,
H. 2003. Social and collaborative aspects of interaction
with a service robot, In Robotics and Autonomous
Systems, Volume 42, Issues 3-4, Pages 223-234, Elsevier.

[9] Wainer, M., Hays, D. 2003. Evolving Software
Development Instruction to Support Agile Practices, In
Proceedings of Software Engineering Research and
Practice, pp.773-9.

121

