
Relational Access Control with Bivalent Permissions in a
Social Web/Collaboration Architecture

Todd Davies and Mike D. Mintz
Symbolic Systems Program, Stanford University, Stanford, CA 94305-2150 USA

davies@csli.stanford.edu, mikemintz@cs.stanford.edu

ABSTRACT

We describe an access control model that has been
implemented in the web content management
framework “Deme” (which rhymes with “team”).
Access control in Deme is an example of what we call
“bivalent relation object access control” (BROAC).
This model builds on recent work by Giunchiglia et al.
on relation-based access control (RelBAC), as well as
other work on relational, flexible, fine-grained, and
XML access control models. We describe Deme's
architecture and review access control models,
motivating our approach. BROAC allows for both
positive and negative permissions, which may conflict
with each other. We argue for the usefulness of
defining access control rules as objects in the target
database, and for the necessity of resolving permission
conflicts in a social Web/collaboration architecture.
After describing how Deme access control works,
including the precedence relations between different
permission types in Deme, we provide several
examples of realistic scenarios in which permission
conflicts arise, and show how Deme resolves them.
Initial performance tests indicate that permission
checking scales linearly in time on a practical Deme
website.

KEYWORDS: access control, social factors,
collaborative work, permissions, social web
applications, content management

1. INTRODUCTION

Cloud computing and social web applications are
increasingly being used by formal organizations (with
paid staff and/or hierarchical reporting relationships) as
well as informal social networks and virtual
communities. In between are groups such as
neighborhood associations, ad-hoc citizen groups that

organize around particular causes, and committees of
members in larger organizations such as schools,
universities, and places of worship. In this paper, we
argue that groups across this full spectrum, when they
use shared computing environments, face issues related
to what information each person should be permitted to
access. In addition, we argue that previously developed
models of access control are inadequate for addressing
some of the issues that commonly arise in
contemporary social web applications, in which many
users have the ability to form overlapping groups and
to publish and label data aimed at different groups of
users.

Our work on access control is instantiated in a content
management framework for building social websites:
Deme (which rhymes with “team”). Deme is free/open
source software designed to facilitate collaborative
production, document-centered discussion, and group
decision making, flexibly across many different types
of organizations of the types mentioned above. The
access control scheme introduced in this paper, which
we call bivariate relation object access control or
BROAC, grew out of practical problems we faced in
creating Deme as a framework that could support
closed as well as open groups, with a high degree of
user control over permissions to access and perform
operations on data in a social web environment.

2. THE DEME SCHEME

In this section, we describe the architecture of Deme,1
a web content management system and framework
written in Django/Python, with a PostgreSQL database,
licensed under the Affero GPLv3 license.2 Recently,
the term content management framework has been
used, somewhat controversially, to denote “an
application programming interface for creating a

1 See [6].
2 See [14].

©2010 IEEE
Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works
must be obtained from the IEEE.

To appear in the Proceedings of the 2010 International Symposium on Collaborative Technologies and Systems (CTS 2010), Lombard, Illinois,
May 17-21, 2010.

customized content management system”.3 We use the
term framework to indicate that the system is designed
to facilitate custom code development. Deme attempts
to make available the concepts of object-oriented
programming (OOP) to end users and nonprogrammer
website administrators, using terminology that we
believe will be more understandable to
nonprogrammers. We define the basic vocabulary of
Deme below with respect to concepts familiar to a
technical audience.

Items and item types. Units of content in Deme are
stored in “items”. An Item is an instance of a particular
“item type”. Deme item types are defined in an
inheritance hierarchy. If the Person item type inherits
from the Agent item type, then any Item that is a
Person is also an Agent. Every item type ultimately
inherits from the Item item type (which corresponds to
the Object class in many programming languages). We
allow multiple inheritance, and use it occasionally
(e.g., TextComment inherits from both Comment
and TextDocument). Deme items are stored in a
database using object relational mapping (ORM)4 with
multi-table inheritance. For example, if our item type
hierarchy is Item -> Agent -> Person, and our items
are Mike[Person] and Robot[Agent], then there will
be one row in the Person table (for Mike), two rows in
the Agent table (for Mike and the robot), and two rows
in the Item table (for Mike and the robot). An abridged
basic view of the Deme item type hierarchy is shown
in Figure 1.

Pieces. Every item type defines the “pieces” (mapped
to fields/columns in the database) relevant for that
type’s Items, and item types inherit pieces from their
supertypes. If Item defines the description piece,
Agent defines no new pieces, and Person defines the
first_name piece, then every person has a description
and a first_name.

Piece types. Every piece of an Item has a type (e.g.
String, Integer, or Boolean). Pieces can point to other
Items (foreign keys in the database). Pointing pieces
are useful for defining relationships between items. For
example, the Item item type has a creator piece
pointing to the Agent that created it. Multiple Items
can point to a common Item. Pieces cannot store data
structures such as lists [8]. So rather than storing
different contact methods as pieces of each Agent, we
make ContactMethod an item type, and give it an
agent_pointer piece. The contact methods for agent

3 See for example [25].
4 See Scott W. Ambler’s explanation of ORM [2].

123 are represented by all of the ContactMethods
that have agent_pointer equal to 123.

There are a few types of data object in Deme that are
not full Items, but are rather what might be called
quasi-items. These include Versions (one for each
version of an item, archived similar to a wiki),
ActionNotices (which record information about
actions on an item resulting in a revision), and
Permissions (see section 5). These Objects are not
Items because to make them so would put us in an
infinite regress (since all Items have associated
Versions, ActionNotices, and Permissions.

Figure. 1. The Deme Item Type Hierarchy

Deme is an architecture for collaboration and the social
Web. Every Item is commentable, and Comments can
be transcluded, along with their resulting threads, at
any location in a document, facilitating document-
centered discussion [5]. This is a generalization of the
idea behind wikis, in that every Item can be set for
open editing, but it is also possible to define elaborate
(fluid, granular) access control for Items and their
associated pieces/fields, in cases such as static websites
and social communities where not everything is

publicly editable. The framework is very extensible, so
that a programmer can define new item types within
the Deme hierarchy and take advantage of viewers that
have been developed for a new type's supertype [4].

3. ACCESS CONTROL MODELS

Access control in a software system is the process by
which an authenticated user (the subject) gets
authorized to perform actions on a data object.
Subjects' abilities to perform actions on objects are
represented in different ways in different models. The
access control models summarized below represent
different paradigms that can be instantiated with
substantial variation in different systems. The models
are not mutually exclusive: a given system may
embody aspects of more than one model (e.g. the main
system described in [18]). Nonetheless, they show how
thinking about access control has progressed as
software has evolved from traditional file systems to
contemporary social platforms.5

3.1 Discretionary Access Control (DAC)

Traditional time-sharing systems, such as the early
multiuser operating system Multics [30] and its
successor Unix [29], store data in files, each of which
has an owner. These systems give individual subjects
the power to create data objects (files in this case) and
to grant access to them by other subjects. This model is
termed discretionary access control or DAC because it
gives discretion to individual users over who else can
access the data they create or “own”.6

The permissions or rights that subjects have with
respect to objects can be represented as an access
control matrix (ACM). In an ACM, subjects s are the
rows of the matrix, objects o are the columns, and each
cell defines the protection state of access rights A[s,o]
for a subject-object pair [20, 38]. An access control
matrix is useful abstractly, but in practice access rights
are defined too sparsely and the matrix is too large to
be represented explicitly as a table [7]. DAC systems
are therefore typically implemented in one of two
ways:

5 The access control models described in this section are not
exhaustive. A few of the other models proposed include attribute-
based access control [40], context-based access control [3, 11],
group-based access control [15, 34, 35], task-based access control [1,
37], team-based access control [37], and user-centric access control
[28]. In general, these are variants or extensions of the models
presented here. See [18] and [38] for a discussion of models related
to collaborative systems. For further discussion of the model
proposed in [35], see section 4 of this paper.
6 See [39] for a widely used definition.

• Capability-based security, in which a subject

obtains access to an object by being given a key or
reference which gives that subject the capability to
access the data object [23]. This is often
represented as a capability list (C-list) of subjects
who have an access right to for a given object [7,
22].

• Access control lists (ACLs), which represent the

set of users/subjects who can access a data object,
e.g. those listed as Owner, Group, or Others for
a file in the Unix system, together with what types
of actions they can perform (e.g. (R)ead, (W)rite,
or e(X)ecute) [7, 29].

3.2 Mandatory Access Control (MAC)

Mandatory access control [39] is a nondiscretionary
model in which access cannot be passed from one user
to another, but is instead defined by predetermined
subject attributes (e.g. security clearances) and object
security levels that are enforced by the system. MAC
systems came about as a response to the security
requirements of the military and other
hierarchical/governmental organizations.

3.3 Role-Based Access Control (RBAC)

In role-based security systems, subjects are given
permission to perform actions based on their roles in an
organization [9, 31]. RBAC is compatible with either
discretionary or mandatory authorization, but in its
pure form it represents permissions as features of a
role, rather than of an object as an access control list
does. A second innovation in RBAC is the ability to
represent permissions in a more granular manner, so
that a role can define what types of operations can be
performed within an object, not just on the object as a
whole (e.g. updating one field in a database record
versus having write permission on a whole file). This
supports a separation of duties in organizations [19,
24]. The RBAC model has been standardized by the
National Institute of Standards and Technology (NIST)
[10, 32].

The term role is often used interchangeably with
group, as in a “group of users/subjects”. Roles or
groups can be represented as subjects in an ACM-
based implementation. For example, in the Suite
framework for collaboration [7, 34], permissions are
represented in ACLs which can include groups/roles as
subjects and groups of objects as objects. Suite was
augmented with features for metalevel access control,

yielding a powerful tool that can support multiple
ownership of objects, rules governing transfer of
access rights, negative permissions, and more [7].

3.4 Relational Access Control (RAC)

Theoretical work on access control has led to several
frameworks for representing access control policies in
flexible, fine-grained ways, e.g. [12, 17, 27]. Rather
than assuming a particular policy model, such as DAC,
MAC, or RBAC, these frameworks typically provide a
way to represent access control rules (ACRs) [22] that
may apply to individual users, roles, and groups, as
well as to objects, fields, and collections of objects.

ACRs are relations, each between a subject (which
may be a group of subjects), an object (which may be a
collection of objects), an action, and sometimes a sign,
where the sign (positive or negative) defines whether
the subject(s) is (are) permitted or prohibited to
perform the action on the object(s). This obviously has
expressive efficiency advantages over having to define
permissions over singletons, as in a traditional ACL.
Granularity may be represented through multiple
action types, granular objects, or both.

Different frameworks allow different types of
expressions, which may include the ability to infer
permissions hierarchically and/or to define metalevel
rules. Access control rules may be represented as a set
of propositions in a framework or language for
specifying ACRs outside of the target database [17,
26]. Alternatively, they may be represented as relation
objects in the database itself, wherein each row of the
permissions table is a rule or relation, rather than a
subject as it would be in an ACM-based approach. This
overcomes the problem of representing many null
values in the usually sparse ACM, and allows more
than one ACR to be defined for a given subject-object
pair. It also avoids having to store complex structures
like lists or arrays within a table cell, in keeping with
standard relational database practice [8]. We call this
model relation object access control (ROAC).

ROAC’s main advantage over outside-the-database
methods of relational access control is that it integrates
permissions within the database, so that code designed
to interact with objects can access permissions/ACRs
as well. In a social Web/collaboration context, this is
useful because ACRs may need to be displayed in the
context of the subjects and objects to which they refer,
as well as searched and discussed. Using the database
to represent permission relations can also be efficient,
because pointers in the database can be used to refer to

data objects in the ACR. And perhaps most
importantly, it allows users themselves to modify
permissions dynamically within the normal user
interface.

An example of ROAC was recently proposed by
Giunchiglia et al., motivated specifically by new
contexts such as grid computing, social web
applications, and semantic desktops [12, 13]. In their
system, permissions are represented separately from
both the subject and the object, in a relation which
points to both and which has the status of a first class
object. Giunchiglia et al. call their model relation-
based access control or RelBAC.

The core of the RelBAC approach is the representation
of a permission as a relation object pointing to a
subject and a data object. This is motivated by a need
to manipulate and reason about permissions
independently from users and the other stored data in a
system, which in software with multiple instances will
differ from one installation to another. But the RelBAC
model itself is more specific than the ROAC model as
we have described it. In addition to SUBJECT (or
USER), OBJECT, and PERMISSION (an operation
the user can perform on the OBJECT), the entity
relationship model for RelBAC defines hierarchical
sets of USERS (GROUPS) and of data OBJECTS
(CLASSES) through an IS-A relation, as well as
ACCESS CONTROL RULES and POLICIES,
which instantiate permissions to specific groups and
classes.

The features of RelBAC are all theoretically useful, as
they allow for inference of permissions from other
permissions, and of subgroup permissions from
supergroup permissions, among other capabilities.
However, the more complex features of the model rely
for their usefulness on assumptions that may not hold
empirically in a given context, for example about the
existence of hierarchical relationships among groups
and among classes, which may in reality be
overlapping rather than hierarchical. RelBAC also does
not incorporate negative permissions/prohibitions (see
section 4). The additional complexity of run-time
reasoning required to make use of RelBAC's features is
formidable and has so far apparently resisted a
tractable solution [41]. Because Giunchiglia and
colleagues have defined RelBAC in a rather specific
way, we believe it is useful to classify it within this
larger theoretical class of models we call ROAC.

Relational access control (RAC) has been the subject
of considerable study in contexts where fine-grained

permissions must routinely be assigned, e.g. for XML
documents [21, 22, 26, 27]. But to our knowledge the
RAC paradigm has not yet been recognized as a
significant alternative for collaboration systems.7 In
what follows, we try to demonstrate how the ROAC
variant of RAC can be implemented practically, as well
as some of its advantages in a collaborative context.

4. BIVALENT PERMISSIONS

Traditional access control systems define access only
in positive terms. If a subject is on an access control
list or has a capability/key for an object, then the
subject can access the object. Otherwise, and by
default, the subject cannot access the object. But this
does not allow for possible conflicts that can arise in
social or collaborative contexts, in which an
organization might want to explicitly prohibit some
individuals from having access to a given data object
when their membership in a group would otherwise
give them access. An organization might want, for
example, to exclude a member of its board of directors
from accessing reference letters that were consulted by
the board when it invited that member to join the
board. Examples like this abound (see section 6).

The need to define negative permissions (prohibitions)
in some form, either explicitly with the need to resolve
conflicts (e.g. [34]) or via constraints in a role-based
model (e.g. [16]) has been recognized by researchers
studying collaborative systems going back at least to
the 1970s [30]. As Sikkel [35] notes: “A
straightforward model of negative rights is used in the
Andrew system [33]. Rights exist both in positive and
negative form. When both apply, the negative right
overrides the positive right. In this way, negative rights
can be used to immediately revoke a permission in a
distributed system where propagation of changes may
take a while.” Although some systems such as Suite [7,
34] have utilized more complicated conflict resolution
rules, negative permissions typically override positive
ones [22].

We call models that allow both permissions and
prohibitions bivalent. In the access control system
defined below, we too resolve conflicts between
negative and positive permissions by giving
precedence to the negative. Some motivating examples
and how they are resolved in our system are given in
section 6.

7 See the 2005 overview of access control models for collaborative
systems by Tolone et al. [38] and section 2 of the 2006 paper by Kim
et al. [18], neither of which mentions relational approaches.

5. THE DEME PERMISSIONS SYSTEM

Deme implements an access control model in which
permissions are defined as relation objects pointing to
a subject and an object. It is therefore an instance of
what we have called relation object access control
(ROAC). Permissions can also be either positive or
negative. To our knowledge, Deme is the first instance
of such a bivalent ROAC (BROAC) model, and the first
implementation of ROAC in a real-world context.

In what follows, we describe the particular access
control procedures in Deme. We intend BROAC to
refer to a larger class – any model in which access
control is both bivalent and represented as relation
objects in the target database.

Permissions in Deme define what actions Agents can
and cannot do. Similar to ActionNotices, permissions
are not Items themselves, but they are quasi-items that
exist in the database and point to Items.

There are 9 types of permissions in Deme, divided
along 2 axes: the subject (data seeker) axis and the
object (data sought) axis. Along the subject axis,
permissions can be given at 3 levels: to a single Agent,
to the members of a Collection of Agents, or to all
Agents. Along the object axis, permissions can be
applied to 3 levels: to a single Item, to the Items in a
Collection, or to all Items. For both axes, we refer to
these three levels as “one”, “some”, and “all”. The 9
permission types are shown in Table 1.

Table 1. The Deme Precedence System - Numbers
in Parentheses Refer to Precedence Order

 Object

 Item Collection All Items

 Agent One To
One (1)

One To
Some (2)

One To
All (3)

Subject Group Some To
One (4)

Some To
Some (5)

Some To
All (6)

 All
Agents

All To
One (7)

All To
Some (8)

All To
All (9)

Although we could accomplish anything using only
OneToOnePermissions, the other permission types
allow us to more concisely express permissions. For
example, if our site was a wiki and we wanted any user
to be able to edit any document, we would create a
single AllToAllPermission, rather than a new
OneToOnePermission for every Agent/Item pair.

Each permission, in addition to specifying the subject
and the object axes, specifies an ability string and an
is_allowed boolean. When there are multiple
permissions with the same ability, the permissions at a
level with a lower number (shown in parentheses after
each permission type in Table 1) take precedence.
When there are multiple permissions at the same level,
the negative (is_allowed=False) permissions take
precedence over the positive permissions. Two
permissions referencing the same subject, object, and
ability cannot differ only in the value of is_allowed.
Access control in Deme embodies a closed world
assumption: Access is not allowed unless it is
positively permitted by at least one permission object.

The general principles that (a) prohibitions override
(positive) permissions and that (b) more explicit access
rules override less explicit ones are fairly standard
[22], but the exact ordering of the precedence system
might be controversial. For now, we regard the
precedence system as plausible but in need of
empirical validation by users.

On both axes, when we refer to all Agents or Items in
a collection (i.e., [X]ToSome or SomeTo[X]), we
refer to both direct and indirect members. Thus, Deme
checks the RecursiveMembership table to determine
whether an Agent or an Item is affected by the
permission.

There are two types of abilities: item abilities and
global abilities. Item abilities can apply to a particular
Item (or Collection of Items), such as “can edit the
name of the Item”; but global abilities apply to Items
generally, e.g. “can create new Documents”. Each
item type defines the item abilities that are relevant to
it, and the global abilities it introduces. An Agent has
an ability if (a) there exists a relevant permission with
is_allowed=True at some level and (b) there are no
relevant permissions with is_allowed=False at any
levels with the same or lower precedence number.

The global abilities defined in Deme are given in Table
2.8

8 Agents with the do_anything ability automatically have every
single global ability and every item ability with respect to every
Item. If an agent has this global ability in the final calculation, this
overrides any item abilities at any level. As a specific unusual
example, if an agent has the global do_anything ability from an
EveryonePermission, then giving him/her any item ability with
is_allowed=False will have no effect.

Table 2. Current Global Abilities in Deme

create AIMContactMethod
create AddressContactMethod
create Agent
create Collection
create CustomUrl
create DemeAccount
create DjangoTemplateDocument
create EmailContactMethod
create Event
create FaxContactMethod
create FileDocument
create Group
create HtmlAdvertisement
create HtmlDocument
create ImageDocument
create Membership
create Person
create PhoneContactMethod
create Subscription
create TextAdvertisement
create TextComment
create TextDocument
create TextDocumentExcerpt
create Transclusion
do_anything

Some sample item types in Deme and the abilities they
introduce are shown in Table 3.

Deme implements discretionary access control: When
an Item is created, by default no permissions are
created except a OneToOne, do_anything permission
between the creator and the Item. With this ability, the
Item creator can create whatever other permissions
s/he wants, either during the creation process, or later.

When a database query is processed, Deme takes the
currently authenticated Agent and decides whether the
Agent has the required ability to complete the
requested action (or to display some part of the view).
Abilities are not just checked before doing actions, but
they can also be used to filter out Items on database
lookups. For example, if a viewer is supposed to
display a list of Items the user is allowed to see
(because they have the view Item.name ability), it
will need to use permissions to filter out inappropriate
results.

To modify an [X]ToOne permission, one must have
the do_anything ability with respect to the target
Item. Similarly, to modify an [X]ToSome permission,
one must have the do_anything ability with respect to
the target Collection. Finally, to modify an [X]ToAll
permission, one must have the global do_anything
ability.

Table 3. Some Item Abilities in Deme

Item type Item abilities defined by the item type

Item do_anything
comment_on
delete
view Item.name
view Item.description
view Item.creator
view Item.created_at
edit Item.name
edit Item.description

Agent add_contact_method
add_authentication_method
login_as
view Agent.last_online_at

Person view Person.first_name
view Person.middle_names
view Person.last_name
view Person.suffix
edit Person.first_name
edit Person.middle_names
edit Person.last_name
edit Person.suffix

Collection modify_membership
add_self
remove_self

Text
Document

view TextDocument.body
edit TextDocument.body
add_transclusion

Site view Site.hostname
edit Site.hostname
view Site.default_layout
edit Site.default_layout

There is a potential loophole in the setup described
above. A user could create a Collection, add a private
Item to it (because they have do_anything with
respect to the Collection), create an [X]ToSome
permission for that Collection (because they have
do_anything with respect to it), and thus gain full
access to the private Item. In order to resolve this, we
use the permission_enabled field in Membership.
[X]ToSome permissions only propagate to members
of the Collection through Memberships with
permission_enabled=True, and Agents can only
modify the permission_enabled field of a
Membership if they can do_anything to the member
Item.

By enforcing this, we guarantee that when a user
modifies an [X]ToSome permission, it only affects
Items in the Collection that were added to it with

permission_enabled=True, by a user with power
over that Item. Since [X]ToSome permissions
recursively traverse Memberships, we have a
permission_enabled field in
RecursiveMembership that is set to True if and only
if there exists a path of Memberships from the parent
Collection to the child Item, all with
permission_enabled=True.

Deme allows (optionally) for anyone to view content
through the agent Anonymous. This creates another
potential loophole for users who have negative
permissions with respect to an Item, i.e. the user
Anonymous may have a positive permission with
respect to the Item, so that the user could simply log
out and do what they are not supposed to be able to do.
The interface must convey this to users who create
negative permissions, so that anonymous access is
disallowed in a similar fashion.

6. EXAMPLES OF PERMISSION
CONFLICT RESOLUTION

To appreciate the variety of conflicts that can arise in a
system like Deme, and the way in which the version of
BROAC implemented in Deme resolves them, we offer
the following example scenarios.

Example 1. The executive director of a
nongovernmental organization, who is hired and
supervised by the NGO's board of directors, has access
to most board documents as a member of the board's
Group, but does not have access to those documents
related to the board's deliberations over the executive
director himself. The board's Group permission for
reading its Folio is positive for the Collection of
executive director hiring and review documents. The
executive director's Agent permission for reading this
Collection is negative. The latter (negative) permission
has precedence. 2(-) defeats 5(+).

Example 2. Each student has access to their own
transcript, but not to those of other students. The
Group of students has a negative permission for
reading a student's transcript. But a student's Agent
permission is positive for reading their own transcript.
The latter (positive) permission has precedence. 1(+)
defeats 4(-).

Example 3. A student is a programmer for an
academic program, and also a member of the staff
Group as well as the Group of students. The staff
Group has a positive permission for reading student

intern applications. The students Group has a negative
permission for reading intern applications. The latter
(negative) permission has precedence, reflecting a
policy that students cannot view transcripts of other
students, regardless of their staff status. 5(-) defeats
5(+).

Example 4. The personnel manager at a firm is a
member of the staff Group. The staff has a negative
Group permission for accessing staff salary
documents. But the personnel manager has a positive
Agent permission for accessing salary documents. The
latter (positive) permission has precedence. Note,
however, that this example shows a limitation in
Deme: that we cannot have group-based precedence
relations. 2(+) defeats 5(-).

Example 5. A member of a grassroots advocacy group
edits the organization's homepage, publishing a
statement not approved by the group. The member has
been given permission to edit the homepage, but the
group asks the webmaster to place a hold on the
offending member's editing ability until the group can
discuss the situation. The member has a prior positive
Agent permission to edit the homepage. A new,
negative Agent permission will replace, rather than
coexist with, the old permission. No conflict is possible
in this case.

Example 6. The webmaster for an organization has the
do_anything ability, and can therefore read any
document, but is also a member of the staff. The
Group for the staff has a negative permission on a
security codes document. But the webmaster's Agent
permission is positive for all Items, and therefore for
this document. The latter (positive) permission has
precedence. 3(+) defeats 4(-).

Example 7. The user of a social networking site hosted
on Deme makes a photograph prohibited to all users by
default, but grants permission to see her photos to her
Group of friends. All users have a negative permission
on the forbidden photograph. But the Group of friends
has a positive permission for the user's photographs,
including the forbidden one. The latter (positive)
permission has precedence. This illustrates how users
both should be aware of and can take advantage of the
precedence relations. 5(+) defeats 7(-).

Example 8. A user of a Deme social networking site
sees several photographs of herself in another user's
Collection, the Items in which are visible to all users.
She decides that she does not want those photos to be
seen by anyone except herself. So she adds all the

photos she does not want seen to her own Collection,
labeled “private”, and sets a negative permission on the
Collection for all users (except herself). The photos
are permission_enabled. The latter (new, negative)
permission has precedence. 8(-) defeats 8(+).

7. PERFORMANCE

The system described here (Deme) is still in pre-
release, but is already powering four websites,
including the beta version of our academic program’s
website [36].

In order to empirically evaluate the performance of
Deme's permissions system, we analyzed our
program’s beta-version social content
management/networking website [36], which contains
approximately 1,000 users, 12,000 items, and 24,000
permission objects. We made copies of the site with
subsets of the content (one with 10 users and their
items, one with 20 users, and so forth). For each copy
of the site, we performed a query that retrieved all
items whose name is visible to the anonymous user.
We ran the query 10 times and calculated the average
time for the query, and we also ran an alternative
version of the query that just retrieved all items without
any permission checking. The results of this analysis
can be seen in Figure 2.

Figure 2. Performance of Deme Item Access

Doing a linear regression, we see that in both queries
the relationships between website size and query time
are linear with R-squared greater than 99%. In the
query without permission checking, there is a marginal
time of 51 microseconds per item; while in the query
with permission checking, the marginal time is 67
microseconds. Of course, this does not necessarily
apply in all cases. It depends on the structure of the

particular website. In our particular examples, there
were about 12 items and 24 permissions for every user.

8. CONCLUSION

Deme and its associated permissions system provide a
practical example for social/collaboration systems of
the application of an emerging paradigm: relational
access control. The need for flexible, fine-grained
control that is visible to users as a seamless part of the
system seems important for this type of platform, as it
more easily allows users to interact with and modify
permissions within the application itself. We have
argued for and implemented a variant of this model –
biavalent relation object access control (BROAC),
describing how it functions, motivating it through
examples, and reporting initial performance tests.

The BROAC approach used in Deme represents a
number of compromises. It does not allow specifying
that one group or one collection has priority over
another for resolving permission conflicts, and it does
not allow for specifying hierarchical inference
relationships between groups of users or collections of
objects. But it does address the broad flexibility of
ways that users can define groups and collections
which overlap each other, and it accommodates
negative permissions, in a relational access control
model that we believe to be the first of its kind to be
used in a practical system.

REFERENCES

[1] S. Aljareh and N. Rossiter, “A Task-Based Security

Model to Facilitate Collaboration in Trusted Multi-
Agency Networks,” Proceedings of the 2002 ACM
Symposium on Applied Computing, Madrid, pp. 744 –
749, 2002.

[2] S. W. Ambler, “Mapping Objects to Relational

Databases: O/R Mapping in Detail,” Agile Data
[website], Accessed March 1, 2010, Available:
http://www.agiledata.org/essays/mappingObjects.html.

[3] M. Covington, W. Long, S. Srinivasan, A. Dey, M.

Ahmad, and G. D. Abowd, “Securing Context-Aware
Applications Using Environment Roles,” ACM
Symposium on Access Control Models and
Technologies (SACMAT), Chantilly, VA, 2001..

[4] T. R. Davies and M. D. Mintz, “Design Features for

the Social Web: The Architecture of Deme,”
Proceedings of the 8th International Workshop on
Web-Oriented Software Technologies (IWWOST
2009), Donostia-San Sebastián, pp. 40-51, 2009.

[5] T. Davies, B. Newman, B. O'Connor, A. Tam, and L.
Perry, “Displaying Asynchronous Reactions to a
Document: Two Goals and a Design,” ACM
Conference on Computer Supported Cooperative Work
(CSCW2006), 20th Anniversary - Conference
Supplement, Banff, pp. 169-170, 2006.

[6] Deme [website], Accessed March 1, 2010, Available:

http://deme.stanford.edu .

[7] P. Dewan and H. H. Shen, “Flexible Meta Access-

Control for Collaborative Applications,” ACM
Conference on Computer Supported Cooperative Work
(CSCW1998), Seattle, pp. 247-256, 1998.

[8] R. Elmasri and S. B. Navathe, FUNDAMENTALS OF

DATABASE SYSTEMS, 4th Edition, Addison-Wesley,
Menlo Park, CA, 2003.

[9] D. F. Ferraiolo and D. R. Kuhn, “Role-Based Access

Control,” 15th National Computer Security Conference,
pp. 554-563, 1992.

[10] D. F. Ferraiolo, D. R. Kuhn, and R. Sandhu, “RBAC

Standard Rationale: Comments on a Critique of the
ANSI Standard on Role-Based Access Control,” IEEE
Security and Privacy, Vol. 5, pp. 51-53, 2007.

[11] C. K. Georgiadis, I. Mavridis, G. Pangalos, and R.

Thomas, “Flexibe Team-Based Access Control Using
Contexts,” ACM Symposium on Access Control
Models and Technologies (SACMAT), Chantilly, VA,
1998.

[12] F. Giunchiglia, R. Zhang, and B. Crispo, “RelBAC:

Relation Based Access Control,” International
Conference on Semantics, Knowledge, and Grid
(SKG2008), Beijing, 2008.

[13] F. Giunchiglia, R. Zhang, and B. Crispo, “Ontology

Driven Community Access Control,” Workshop on
Trust and Privacy on the Social and Semantic Web
(SPOT2009), Crete, 2009.

[14] “GNU Affero Generall Public License, Version 3,”

Free Software Foundation [website],, November 19,
2007, Available: http://www.gnu.org/licenses/agpl-
3.0.html

[15] I. Greif and S. Sarin, “Data Sharing in Group Work,”

ACM Conference on Computer-Supported Cooperative
Work (CSCW1986), Austin, Texas, 1986.

[16] C. Ilioudis, G. Pangalos, and A. Vakali, “Security

Model for XML Data,” Proceedings of the
International Conference on Internet Computing,
(IC2001), Las Vegas, 2001.

[17] S. Jajodia, P. Samarati, M. L. Sapino, and V. S.

Subrahmanian, “Flexible Support for Multiple Access

Control Policies,” ACM Transactions on Database
Systems, Vol. 26, No. 2, pp. 214-260, 2001.

[18] S. Kim, J. Zhu, W. M. Smari, and W. K. McQuay,

“Security and Access Control for a Human-Centric
Collaborative Commerce System,” IEEE International
Symposium on Collaborative Technologies and
Systems (CTS2006), pp. 429-439, 2006.

[19] D. R. Kuhn, “Mutual Exclusion of Roles as a Means of

Implementing Separation of Duty in Role-Based
Access Control Systems”, 2nd ACM Workshop on
Role-Based Access Control, pp. 23-30, 1997.

[20] B. Lampson, “Protection,” Proceedings of the 5th

Princeton Symposium on Information Sciences and
Systems, pp. 437-443, 1971.

[21] D. Lee, W.-C. Lee, and P. Liu, “Supporting XML

Security Models Using Relational Databases: A
Vision,” XML Database Symposium (XSym), pp. 267-
281, 2003.

[22] D. Lee and T. Yu, “XML Access Control,” In L. Liu

and M. T. Özsu (Editors), ENCYCLOPEDIA OF
DATABASE SYSTEMS, Springer, 2009.

[23] H. M. Levy, “Capability-Based Computer Systems,”

Digital Equipment Corporation, 1984.

[24] N. Li, Z. Bizri, and M. V. Tripunitara, “On Mutually
Exclusive Roles and Separation of Duty,” 11th ACM
Conference on Computer Communications Security,
pp. 42-51, 2004.

[25] “List of Content Management Frameworks,”

Wikipedia [website], Version: April 9, 2009,
Available:
http://en.wikipedia.org/w/index.php?title=List_of_cont
ent_management_frameworks&oldid=282731961.

[26] B. Luo, D. Lee, W.-C. Lee, and P. Liu, “A Flexible

Framework for Architecting XML Access Control
Enforcement Mechanisms,” VLDB Workshop on
Secure Data Management in a Connected World
(SDM), pp. 133-147, 2004.

[27] B. Luo, D. Lee, and P. Liu, “Pragmatic Access Control

Using Off-the-Shelf RDBMS,” 12th European
Symposium on Research in Computer Security
(ESORICS 2007), Dresden, Germany, 2007.

[28] M. Machulak and A. V. Moorsel, “Use Cases for User-

Centric Access Control for the Web,” Newcastle
University Technical Report No. CS-TR-1165, 2009.

[29] D. M. Ritchie and K. Thompson. “The Unix Time-

Sharing System,”Communications of the ACM, Vol.
17, No. 7, pp. 365-375, 1974.

[30] J. H. Saltzer, “Protection and Control of Information

Sharing in Multics,” Communications of the ACM,
Vol. 17, pp. 388-402, 1974.

[31] R. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.

Youman, “Role-Based Access Control Models,” IEEE
Computer, Vol. 29, pp. 38-47, 1996.

[32] R. Sandhu, D. F. Ferraiolo, and D. R. Kuhn, “The

NIST Model for Role-Based Access Control: Toward a
Unified Standard,” 5th ACM Workshop on Role-Based
Access Control, pp. 47-63, 2000.

[33] M. Satyanarayanan, “Integrating Security in a Large

Distributed System,” ACM Transactions on Computer
Systems, Vol. 7, pp. 247-280, 1989.

[34] H. Shen and P. Dewan, “Access Control for

Collaborative Environments”, ACM Conference on
Computer-Supported Cooperative Work (CSCW'92),
Toronto, pp. 51-58, 1992.

[35] K. Sikkel, “A Group-Based Authorization Model for

Cooperative Systems,” Proceedings of the European
Conference on Computer-Supported Cooperative Work
(ECSCW'97), Lancaster, 1997.

[36] Symbolic Systems – Beta Test Version [website],

Accessed March 1, 2010, Available:
http://symsys02.stanford.edu.

[37] R. K. Thomas, and R. S. Sandhu, “Task-based

Authorization Controls (TBAC): A Family of Models
for Active and Enterprise-oriented Authorization
Management,” Proceedings of the IFIP WG11.3
Workshop on Database Security, Lake Tahoe,
California, pp. 166 – 181, 1997.

[38] W. Tolone, G.-J. Ahn, T. Pai, and S.-P. Hong, “Access

Control in Collaborative Systems,” ACM Computing
Surveys, Vol. 37, No. 1, pp. 29-41, 2005.

[39] United States Department of Defense - Trusted

Computer System Evaluation Criteria, DoD Standard
5200.28-STD, 1985.

[40] L. Wang, D. Wijesekera, and S. Jajodia, “A Logic-

Based Framework for Atribute-Based Access
Controll,” Proceedings of the 2004 ACM Workshop on
Formal Methods in Security Engineering, Washington,
D.C., pp. 45-55, 2004.

[41] R. Zhang, B. Crispo, and F. Giunchiglia, “Design and

Run Time Reasoning with RelBAC,” Tech. Rep. DISI-
08-062, Dipartamento di Ingegneria e Scienza dell
Informazione, University of Trento, 2008.

