
ar
X

iv
:1

01
1.

27
53

v1
  [

cs
.M

M
]  

11
 N

ov
 2

01
0

Compensating Interpolation Distortion by New
Optimized Modular Method
Ali Ayremlou∗†, Mohammad Tofighi∗‡, Farokh Marvasti∗§

∗Advanced Communications Research Institute, Sharif University of Technology Tehran, Iran
†Email: a ayremlou@ee.sharif.edu,‡Email: mo.tofighi@gmail.com,§Email: marvasti@sharif.edu

Abstract—A modular method was suggested before to recover
a band limited signal from the sample and hold and linearly
interpolated (or, in general, an nth-order-hold) version of the
regular samples. In this paper a novel approach for compensating
the distortion of any interpolation based on modular methodhas
been proposed. In this method the performance of the modular
method is optimized by adding only some simply calculated
coefficients. This approach causes drastic improvement in terms
of SNRs with fewer modules compared to the classical modular
method. Simulation results clearly confirm the improvementof
the proposed method and also its superior robustness against
additive noise.

I. Introduction

Digital to analog converters are common in digital signal
processing and communication systems to reconstruct an ana-
log signal from its discrete time samples. Several methods with
different names were introduced in the literature in 1970’s and
1980’s [3]. S&H and LI were the dominant methods before
that time; today, Polynomial interpolation and B-Spline are the
usual interpolation functions [4]–[6].

These interpolators create some distortion at the Nyquist
rate after low pass filtering, especially when S&H or LI are
utilized. The advantage of these types of interpolators is their
simplicity which makes them proper for practical use. To
alleviate this problem, several methods such as inverse Sinc
filtering, over-sampling, nonlinear and adaptive algorithms
[7]–[9], a modular method of the recovery of a signal from
its sampled-and-held version are described in [1] for the
uniform samples, [2] for the nonuniform samples, and succes-
sive approximation using an iterative method [10]–[12] were
introduced. The modular method is compared to the inverse
Sinc filtering in [1] which shows that by using a few numbers
of modules, the performance of the modular method excels the
inverse filtering as far as noise is concerned. Over-sampling
is not a practical solution due to its bandwidth requirements.
The iterative method [10] outperforms the modular method at
the cost of more computation.

We propose an Optimized modular method which enhances
the performance of the classical modular method [1]. Our
method is based on some optimum coefficients which are
computed very simply by solving a least square problem.
Indeed, these coefficients are calculated just one time for a
specific interpolation system and are independent of signal
to which the modular method is going to be applied. The
coefficients themselves do not increase the complexity of the

modular method and is very simple for practical usages. The
simulation results show that the coefficients are well optimized
and perform better then classical method.

The rest of this paper is organized as follows: Section II,
describes our general framework and introduces the terms and
concepts used throughout the paper. Section III introducesour
proposed method and is a straight forward manner to find
the optimum coefficients for the modular method. Simulation
results and comparison with the classical modular method for
various interpolation systems will be presented in sectionIV
and finally, section V will conclude this paper.

II. Preliminaries

In this section we give a brief overview of the modular
method [1] that compensates the distortion of any interpolator
such as Sample and Hold (S&H) and linear order hold by
mixing the sum of cosine waves and then passing them through
a lowpass filter.

Supposex(t) is sampled at the Nyquist rate (1
T ) and assume

s(t) is any interpolating function that fits the samples of
x(t). According to these assumptions it can be formulated as
follows:

s(t) = h(t) ∗
+∞
∑

n=−∞

x(nT )δ(t − nT ) (1)

whereh(t) is the impulse response of the interpolation func-
tion. The above equation can be written as shown below in
frequency domain:

S ( f ) = H( f ) ×
+∞
∑

i=−∞

X( f − i/T ) (2)

According to the modular method, an improved reconstruc-
tion of x(t) can be drived froms(t) by following process:

x̂(t) = s(t)

(

1+ 2cos(
2πt
T

) + · · · + 2cos(
2Nπt

T
)

)

∗ Π(t) (3)

where Π(t) is a lowpass filter with a bandwidth equal to
the bandwidth ofx(t) (W). Eq. (3) can be rewritten in the
frequency domain as follows:
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Figure 2.  a) The reconstruction block diagram using standard iterative method b) The Modular Method
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Fig. 1. The reconstruction block diagram using Modular Method

X̂( f ) = Π( f )
+N
∑

j=−N

S ( f − j/T )

= Π( f )
+N
∑

j=−N

H( f − j/T )
+∞
∑

i=−∞

X( f − i/T − j/T ) (4)

SinceX( f ) is band-limited (4) can be simplified as follows:

X̂( f ) = X( f ) × Π( f )
+N
∑

j=−N

H( f − j/T ) (5)

Therefore, it is obvious that asN increases ˆx will per-
fectly converge tox if Π( f )

∑+N
j=−N H( f − j/T ) becomes unity

which always occurs for all interpolation functions since
F −1{

∑+∞
j=−∞ H( f − j/T )} = δ(t), for instance this summation

becomes summation of sinc functions which is unity for
Sample and Hold (S&H) interpolation function. However,
practically it is not possible to apply infinite numbers of
modules and only limited numbers of them are implemented
by means of oscillators shown in Fig. 1. So the method will
have distortion and to measure the distortion, let us define the
mean-square error as:

e =
∫ +W

−W

















+N
∑

j=−N

H( f − j/T ) − 1

















2

d f (6)

and it is obvious that lim
N→∞

e = 0.

Another issue with this approach is that the signals are
considered to be analog. In practice, most of the signals that
we are dealing with are discrete especially in a computer for
interpolation of images and audio files.

In the next section, we will drive all these relations again
in the discrete domain and also minimize the mean square
error using the optimization coefficients. The second part is
the main part of this paper.

III. Proposed Optimized Modular Method

A. Modular method in Diecrete Domain

Considerx[n] is band-limited discrete signal which is down
sampled and interpolated at the Nyquist rate (1/T ) by h[n]

and the result iss[n]. Therefore:

s[n] = h[n] ∗
+∞
∑

k=−∞

x[kT ]δ[n − kT ] (7)

and equivalently:

S (k) = H(k) ∗
+∞
∑

i=−∞

X((k − iN/T ))N (8)

whereS (k), H(k) and X(k) respectively are N-point DFTs of
s[n], h[n] and x[n]. Supposing thatN is divisible by T , the
modular method can be formlated as follows:

x̂[n] = LPF
{

s[n] (1+ 2cos(2πn/T ) + · · · + 2cos(2Mπn/T ))
}

(9)
where LPF is a FFT lowpass filter. Also it can be shown that
applying more than [T/2] modules not only does not enhance
the performance but also may distort it. ConsiderT is even
integer number and we have appliedk modules more thanT/2,
then we have:

1+
∑

T
2+k
j=1 2cos( 2 jπn

T )

= 1+
∑

T
2
i=1 2cos( 2iπn

T ) +
∑

T
2+k

j= T
2+1

2cos( 2 jπn
T )

= 1+
∑

T
2

i=1 2cos( 2iπn
T ) +

∑k
j=1 2cos(

2( j+ T
2 )πn

T )

= 1+
∑

T
2
i=1 2cos( 2iπn

T ) +
∑k

i=1 (−1)n2cos( 2iπn
T ) (10)

It is abvious that the third term in the above final result will
distort previous modules; this effect can be shown for oddTs
in the same way too. Hence, the maximum number of modules
that is able to be applied is [T/2].

Furthermore, in the case that the maximum number of
modules are applied, if we put the multiplicand of last cosine
1 instead of 2, we will reach the impulse train. By means of
Fourier series it would be proved as follows:

δ̃[n] =

∞
∑

i=−∞

δ(n − iT ) =
∑

T

1
T

e j2πkn/T

=
1
T

















1+ (−1)n +
T/2−1
∑

i=1

2cos(2πin/T )

















=
1
T

















1+
T/2−1
∑

i=1

2cos(2πin/T )+ cos(2π
T
2

n/T )

















(11)

So, in this situation it will gather the original samples andif
the filter is ideal, the output would be perfectly interpolated.1

The equation (9) will be rewritten in the frequency domain
like below:

X̂(k) = X(k) × Π(k)
+M
∑

j=−M

H((k − jN/T ))N (12)

1Also true for analog D/A where 2, 2, . . . , 2,1 is not optimum but better
than before.



Simultaneously, the error of the interpolation process would
be formulated in the same manner performed in the pervious
section:

e =
+N/T
∑

−N/T

















+M
∑

j=−M

H((k − jN/T ))N − 1
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(13)

Again minimizing this error is our main goal and is related
directly to the performance of our system. In next subsection,
our proposed Technique will be introduced to achieve this
purpose.

B. Optimization Coefficients

Our goal is to minimize (13) and as a result reduce
distortion in the modular method in order to reach more
precise interpolation forx. Our idea is that modules could be
applied with some coefficients shown in Fig. 2. By choosing
these coefficients appropriately, the performance of the method
increases efficiently and we can achieve the same result with
fewer modules.

Now consider modules are multiplied byc j:

x̂[n] = LPF

{

s[n]

(

1+ 2c1cos(
2πn
T

) + · · · + 2cMcos(
2Mπn

T
)

) }

(14)
and therefore, (13) becomes:

e =
+N/T
∑

−N/T

















+M
∑

j=−M

c| j|H((k − jN/T ))N − 1
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(15)

For convenience the following parameters are defined:

H j(k) , H((k − iN/T ))N + H((k + iN/T ))N

= FFTN {h[n] × 2cos(
2 jπn

T
)} (16)

H =
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Figure 2.  a) The reconstruction block diagram using standard iterative method b) The Modular Method
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Fig. 2. The reconstruction block diagram using Discrete Modular Method
and Optimazation coefficients
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Now from these new definitions the error function can be
simply rewritten as follows:

e = (norm(HC −B))2 (19)

Hence, to minimize this error, we should solve:

HC = B (20)

Since the number of equations (N/T ) are much more than
the unknowns (M), we could find the optimum answer by
considering the mean square error method and the pseudo-
inverse:

C = (HTH)−1HTB (21)

Therefore, the problem can be solved and we have found
some coefficients which minimize the error for the finite
number of modules without any exception on interpolation
function. Furthermore, we will show in next section that
these coefficients cuase dramatic results in comparison to
the classical modular method which is a special case of our
method by assigning the coefficients one. The main key in our
method is that the coefficients are calculated very easy and
fast and by only accessing impulse response of interpolation
function (h[n]). Moreover the coefficients are calculated just
one time for an interpolation function and are stored in a
lookup table and does not need to find them again every time
we need them.

IV. Simulation Results and Discussion

We utilized MATLAB R© simulation environment to evaluate
and compare the performance of methods. To have fair com-
parison, initial band limited signals are produced randomly,
and the performance of each method is averaged over 100
signals. The initial signal is FFT lowpass filtered version of
white Gaussian noise signals. To show the significance of this
method, the sampling rate is performed at the Nyquist rate.
The performance criterion for our simulations is the Signalto
Noise Ratio (SNR) in dB. To avoid transient errors at the
end points, SNR is calculated for interior points and 10%
of the end points are ignored. As illustrated in Fig. 3, the
SNR increases monotonically in dB for classical method as
the number of modules increases, while the optimum method
increases exponentially as the number of modules increases.
This means more than 250dB for simple S&H interpolation
and this is quite impressive in real engineering applications.

Fig. 4 shows similar results for the Linear Interpolation (LI).
The difference between the classical method and the optimum
at the first few numbers of modules is not very significant.
However, as the number of modules increases, the difference
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Fig. 3. SNR vs. the number of modules for Classical Modular method and
our proposed Optimized Modular method for S&H interpolation

becomes apparent. This shows that our method can find the
optimum coefficients for any interpolation independently.

To study the effect of noise, we added a white Gaussian
noise to the band limited signal. This is the model of the
electronic devices that generate thermal noise. Fig. 5 shows
that for low SNR, the performance of our method is not so
significant over classical method, however as much as the
power of noise decrease our method give much greater SNRs.

These simulations show that using the modular method
by means of optimized coefficients enhance its performance
dramatically both in noisy and noiseless environments inde-
pendent of the type of interpolation.

V. Conclusion

A novel Optimized Modular method is proposed for com-
pensating error of any interpolation system. We add the
optimized coefficients calculated in a very simple manner into
the Classical Modular method in order to maximize its perfor-
mance as much as it could be. The simulations show very high
improvements versus classical methods. This proposed method
is also more favorable in terms of computational complexity
with respects to other error compensating methods, since not
only the modular method has very simple algorithm but also
we could reach better SNR values with just 2 modules rather
than 5 modules in the classical method.
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