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Abstract—A modular method was suggested before to recover modular method and is very simple for practical usages. The

a band limited signal from the sample and hold and linearly simulation results show that the dheients are well optimized
interpolated (or, in general, an nth-order-hold) version d the and perform better then classical method

regulfir samples. Inthis paper a novel approach for compengang Th t of thi . ized .f I . Seclion Il
the distortion of any interpolation based on modular methodhas € rest or this paper Is organized as 1ollows: section i,

been proposed. In this method the performance of the modular describes our general framework and introduces the terghs an
method is optimized by adding only some simply calculated concepts used throughout the paper. Se¢fidn 11l introdoaes
codficients. This approach causes drastic improvement in terms proposed method and is a straight forward manner to find
of SNRs with fewer modules compared to the classical modular y, o htimum cosiicients for the modular method. Simulation
method. Simulation results clearly confirm the improvementof - . :
the proposed method and also its superior robustness agains '€Sults and comparison with the classical modular method fo
additive noise. various interpolation systems will be presented in sedfidin
and finally, sectiol V will conclude this paper.

I. INTRODUCTION

Digital to analog converters are common in digital signal II. PRELIMINARIES
processing and communication systems to reconstruct an ana
log signal from its discrete time samples. Several methdtts w In this section we give a brief overview of the modular
different names were introduced in the literature in 1970's antethod [1] that compensates the distortion of any intetpola
1980's [3]. S&H and LI were the dominant methods beforguch as Sample and Hold (S&H) and linear order hold by
that time; today, Polynomial interpolation and B-Spline tre mixing the sum of cosine waves and then passing them through
usual interpolation function§1[4]-[6]. a lowpass filter.

These interpolators create some distortion at the NyquistSupposex(t) is sampled at the Nyquist ratérannd assume
rate after low pass filtering, especially when S&H or LI are&(t) is any interpolating function that fits the samples of
utilized. The advantage of these types of interpolatorbésrt x(t). According to these assumptions it can be formulated as
simplicity which makes them proper for practical use. Téollows:
alleviate this problem, several methods such as inverse Sin

filtering, over-sampling, nonlinear and adaptive algorith I
[7]-[9], a modular method of the recovery of a signal from S(t) = h(t) = Z X(nT)s(t — nT) (1)
its sampled-and-held version are described[ih [1] for the n==co

uniform samples,[2] for the nonuniform samples, and succ&gheren(t) is the impulse response of the interpolation func-

sive approximation using an iterative method|[10]+[12] &efijgn. The above equation can be written as shown below in
introduced. The modular method is compared to the inverggquency domain:

Sinc filtering in [1] which shows that by using a few numbers

of modules, the performance of the modular method excels the +o0
inverse filtering as far as noise is concerned. Over-samplin S(f) = H(f) x Z X(f—i/T) (2)
is not a practical solution due to its bandwidth requireraent i=—oo

The iterative method [10] outperforms the modular method at . .
y According to the modular method, an improved reconstruc-

the cost of more computation. . . k i
We propose an Optimized modular method which enhand¥" of X(t) can be drived frong(t) by following process:

the performance of the classical modular methiod [1]. Our

method is based on some optimum fméents which are ont 2Nt

computed very simply by solving a least square problem. X(t) = S(t) (1+2005(—)+ Zcos(?))*l‘[(t) 3)
Indeed, these cdigcients are calculated just one time for a

specific interpolation system and are independent of sigmwehere I1(t) is a lowpass filter with a bandwidth equal to
to which the modular method is going to be applied. Thiae bandwidth ofx(t) (W). Eg. [3) can be rewritten in the
codficients themselves do not increase the complexity of tfieequency domain as follows:
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2(6) and the result ig[n]. Therefore:

s(t)

+00

s{n] = h[n] + > X[KT]d[n - KT] 7)

k=—co
and equivalently:

+00
S() = HK = ) X((k=iN/T) (®)
=
Nt where S(k), H(k) and X(k) respectively are N-point DFTs of
2cos(=-) o], h[n] and x[n]. Supposing thaN is divisible by T, the
modular method can be formlated as follows:

Fig. 1. The reconstruction block diagram using Modular Meth
K[n] = LPHYN] (1 + 2cos(2xn/T) + - - - + 2c0s(2Mnn/T)) }

)
N where LPF is a FFT lowpass filter. Also it can be shown that
() = TI(f S(f—i/T applying more thanT/2] modules not only does not enhance

O ( )j; (f=J/m the performance but also may distort it. Considers even

N oo integer number and we have appliethodules more thafi/2,

= T(f) ) H(f = j/T) )" X(f —i/T - j/T) (4) then we have:
j=—-N j=—co
SinceX(f) is band-limited[(#) can be simplified as follows: 1+ Zj§=+1k Zcos(@)

+N _ 3 2inn Tk 2jmn
K(f) = X(N) x 11(F) > H(E = j/T) 5) =1+ 25 200805 + Xy, 200907
=N

=1+ Zil 2cos(Z™) + ¥, 2003(2(”#%)"")

Therefore, it is obvious that aBl increasesx "will per- B 1 2ixn K n 2ian
fectly converge tax if TI(f) £ \ H(f — j/T) becomes unity =1+ 22, 2008(57) + Ly (F1)'200(5F7) - (10)
which always occurs for all interpolation functions sincg is abvious that the third term in the above final result will
FHUSZ W H(f = j/T)) = &(t), for instance this summation distort previous modules; thigfect can be shown for odds
becomes summation of sinc functions which is unity faf the same way too. Hence, the maximum number of modules
Sample and Hold (S&H) interpolation function. Howevenrhat is able to be applied ig]2].
practically it is not possible to apply infinite numbers of Furthermore, in the case that the maximum number of
modules and only limited numbers of them are implementedodules are applied, if we put the multiplicand of last cesin
by means of oscillators shown in Fig. 1. So the method will instead of 2, we will reach the impulse train. By means of
have distortion and to measure the distortion, let us defiae tFourier series it would be proved as follows:
mean-square error as:

00

il N 2 il = Z sn-iT)=>" %ejzﬂk””
e:f [Z H(f - j/T)—1] df (6) 1= T/;l

W= = 1{1+(—1)”+ Z 2cos(27in/T)

and it is obvious tha&li;re =0. T o1
Another issue with this approach is that the signals are T/2:1 . T

considered to be analog. In practice, most of the signals tha = T+ Z 2c08(27in/T) + cos(2r-n/T) |(11)
we are dealing with are discrete especially in a computer for i=1
interpolation of images and audio files. So, in this situation it will gather the original samples dhd

In the next section, we will drive all these relations agaithe filter is ideal, the output would be perfectly interpeuﬂ
in the discrete domain and also minimize the mean squareThe equation[(9) will be rewritten in the frequency domain
error using the optimization cfiicients. The second part islike below:
the main part of this paper.

+M
I1l. Prorosep Oprivizep MobULAR METHOD )A((k) = X(K) x TI(K) Z H((k - jN/T))n (12)
A. Modular method in Diecrete Domain =M

Considerx[n] is band-limited discrete signal which is down 1150 true for analog PA where 22,...,2,1 is not optimum but better
sampled and interpolated at the Nyquist rat¢T(Lby h[n] than before.



Simultaneously, the error of the interpolation processldiou

be formulated in the same manner performed in the pervious C1 1 :08
section: C2 1 0
+N/T [ +M 2 C=1. 3= 2 : (18)
e= H((k— jN/T)n -1 13 ’ : :
_NZ/T ,ZM (k= iN/T)n (13) ., 1

directly to the performance of our system. In next subsactiocsimply rewritten as follows:

our proposed Technique will be introduced to achieve this )
purpose. e = (norm©®¢ - B)) (19)

B. Optimization Coefficients Hence, to minimize this error, we should solve:

Our goal is to minimize [(I3) and as a result reduce —_— 20
distortion in the modular method in order to reach more o€ = (20)

precise interpolation fok. Our idea is that modules could be sjnce the number of equations(T) are much more than
applied with some cd&cients shown in Fig.12. By choosingihe unknowns ), we could find the optimum answer by

these cofiicients appropriately, the performance of the methaghnsidering the mean square error method and the pseudo-
increases féciently and we can achieve the same result witfyyerse:

fewer modules.
Now consider modules are multiplied loy: C=(979) o™ (1)

some cofficients which minimize the error for the finite
(14) number of modules without any exception on interpolation
function. Furthermore, we will show in next section that
these cofficients cuase dramatic results in comparison to
+N/T[ +M ]2 the classical modular method which is a special case of our
(15)

orn oMxh Therefore, the problem can be solved and we have found
X[n] = LPF{s[n] (1 + chcos(T) + -+ 2cpycos( ))}

and therefore[{13) becomes:

e= Z Z cjH((k— jN/T))n -1 method by assigning the chieients one. The main key in our
SN/T\j=—M method is that the cdicients are calculated very easy and
fast and by only accessing impulse response of interpalatio
function ([n]). Moreover the cofficients are calculated just
one time for an interpolation function and are stored in a
Hi(K £ H((k=iN/T)n +H((k+iN/T))n lookup table and does not need to find them again every time

For convenience the following parameters are defined:

2jn we need them.
= FFTn{h[Nn] x Zcos(?)} (16)
IV. SmmuLatioN REsuLrs AND DiscussioN
H1(0) H2(0) ... Hu(0) We utilized MATLAB® simulation environment to evaluate

Hi(1) Ho(1) ... Hwm() and compare the performance of methods. To have fair com-
. . . (17) parison, initial band limited signals are produced randoml
and the performance of each method is averaged over 100
signals. The initial signal is FFT lowpass filtered versidn o
white Gaussian noise signals. To show the significance sf thi
method, the sampling rate is performed at the Nyquist rate.
X[nl  The performance criterion for our simulations is the Sigoal
Noise Ratio (SNR) in dB. To avoid transient errors at the
end points, SNR is calculated for interior points and 10%
of the end points are ignored. As illustrated in Hig. 3, the
SNR increases monotonically in dB for classical method as
the number of modules increases, while the optimum method
increases exponentially as the number of modules increases
This means more than 250dB for simple S&H interpolation
2cosm™ and_ this is quite_im_pressive in real en_gineering appli_a:mjo
T Fig.[4 shows similar results for the Linear Interpolatioh)(L
The ditference between the classical method and the optimum
Fig. 2. The reconstruction block diagram using Discrete MadMethod at the first few numbers of modules is not very significant.
and Optimazation cdgcients However, as the number of modules increases, tfferdnce

HuN/T) Ho(N/T) ... Hu(N/T)

s[n]
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Fig. 3. SNR vs. the number of modules for Classical Modulathwoe and

our proposed Optimized Modular method for S&H interpolatio

becomes apparent. This shows that our method can find
optimum codficients for any interpolation independently.

To study the &ect of noise, we added a white Gaussia
noise to the band limited signal. This is the model of th

electronic devices that generate thermal noise. [Big. 5 show
that for low SNR, the performance of our method is not sd°)

significant over classical method, however as much as t
power of noise decrease our method give much greater SN

These simulations show that using the modular methol§!
by means of optimized céiécients enhance its performance

dramatically both in noisy and noiseless environments-ind
pendent of the type of interpolation.

V. CONCLUSION

A novel Optimized Modular method is proposed for com-

Classical vs Optimum (Linear)
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Fig. 4. SNR vs. the number of modules for Classical Modulathae and
our proposed Optimized Modular method for Linear interfiota
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pensating error of any interpolation system. We add the

optimized coéicients calculated in a very simple manner intr

the Classical Modular method in order to maximize its perfo
mance as much as it could be. The simulations show very hi
improvements versus classical methods. This proposedoahet!
is also more favorable in terms of computational complexit
with respects to other error compensating methods, sinte
only the modular method has very simple algorithm but als
we could reach better SNR values with just 2 modules ratr
than 5 modules in the classical method.
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