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Abstract—Nowadays, recommender systems have been increas-
ingly used by companies to improve their services. Such systems
are employed by companies in order to satisfy their existing
customers and attract new ones. However, many small or medium
companies do not possess adequate customer data to generate
satisfactory recommendations. To solve this problem, we propose
that the companies should generate recommendations based on
a joint set of customer data. For this purpose, we present a
privacy-preserving collaborative filtering algorithm, which allows
one company to generate recommendations based on its own
customer data and the customer data from other companies. The
security property is based on rigorous cryptographic techniques,
and guarantees that no company will leak its customer data to
others. In practice, such a guarantee not only protects companies’
business incentives but also makes the operation compliant with
privacy regulations. To obtain precise performance figures, we
implement a prototype of the proposed solution in C++. The
experimental results show that the proposed solution achieves sig-
nificant accuracy difference in the generated recommendations.

Keywords—Recommender System; Collaborative Filtering;
Privacy; Homomorphic Encryption

I. INTRODUCTION

Web based shopping companies often provide customers
with recommendations for other products that they might be
interested in. Good recommendations point customers to inter-
esting and useful products and can increase sales. Consider the
following scenario: A customer has made several purchases in
an online bookshop and he has also given feedback about what
other books he likes and dislikes (for example on books that
he has purchased elsewhere). Upon returning to the bookshop,
the customer is given a personalized list of books that he may
be interested in and has not purchased or rated before. Such
a personalized list of interesting items is normally generated
using a recommender system, which often is a collaborative
filtering algorithm, that uses data from the entire customer
database. Companies, which have a lot of customers, are more
likely to have enough data to generate good recommendations.
However, other companies do not necessarily have enough data
to do so, as noted in [1]. In any case, more customer data can
only lead to better recommendations.

For companies to gain access to more customer data and
provide more meaningful recommendations for their cus-
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tomers, they can: (1) request the aid of another company
which has a large customer database, or (2) collaborate with
multiple other companies which contribute their relatively
small customer databases to create a large one. The issue
is that companies may not be able to simply share, or give
each other full access to, their customer databases. This will
result in an undesirable loss of control over their customer
database, which is basically their main asset. In addition,
privacy regulations may prohibit such data sharing activities.
Companies may be suggested to rely on a third party to
generate recommendations. However, this requires companies
to share all their data with the third party, and is undesirable as
well. The challenge is to find an efficient privacy-preserving
mechanism which allows companies to generate recommenda-
tions based on their joint sets of databases, while preserving
the privacy of their individual customer database respectively.

A. Contribution

There are two approaches to design collaborative filtering
algorithms. One is neighborhood-based (e.g. [2]), and the other
one is latent factor based (e.g. [3], [4]) which often rely on ma-
trix factorization techniques. In practice, latent based approach
is advantageous over the neighborhood-based because it al-
lows implicit feedbacks from customers. However, due to the
technical difficulty of integrating cryptographic mechanisms
with latent based approach, we focus on neighborhood-based
collaborative filtering algorithms in this paper.

We first propose two secure two-party protocols, namely se-
cure absolute value protocol ABS and secure division protocol
DIV. We then construct a privacy-preserving collaborative fil-
tering algorithm for the two-company setting, where company
A requests the aid of company B to get recommendations for
its customer. In our solution, company A uses a homomorphic
encryption scheme to hide its customer’s data and share the
encrypted data with company B, which computes its contribu-
tions to the final recommendations in the encrypted domain.
From company B, company A only obtains aggregated and
anonymized data, which however allow it to generate the top
X recommendations for its customer. In the honest-but-curious
model (where companies adhere to the protocol, but try to
learn additional information), our solution guarantees that: (1)
company A has only access to an aggregated and randomized

439



version of company B’ database; (2) company B does not
learn any information about company A’s customer data. We
then build a prototype implementation of our solution and
present performance (computation/communication costs and
accuracy) results based on the prototype. We show a linear
relation between the number of customers and execution time,
which is the best that can be achieved. We also show a larger
accuracy gain for company A as the difference in customer
population between the companies increases.

There are two approaches to achieve privacy-preserving
data mining. One is perturbation and anonymization based
following the work of Agrawal and Srikant [5], and the other is
cryptography-based following the work of Lindell and Pinkas
[6]. In dealing with a large data set, the perturbation and
anonymization based approach is generally efficient and flex-
ible, however this approach usually does not provide rigorous
security guarantees. For example, Narayanan and Shmatikov
have demonstrated serious de-anonymization attacks against
the Netflix Prize dataset [7]. Recently, McSherry and Mironov
[8] applied the concept of differential privacy to recommender
systems, and achieved rigorous security. However, this ap-
proach in general may reduce the computation accuracy as
it will modify the original data. In contrast, the cryptography-
based approach can provide rigorous security guarantees and
will not affect computation accuracy, but it is often too
complex to be practical. Our work demonstrates that, for
(at least some) recommender algorithms, the cryptographic
approach can be feasible, which means both efficiency and
rigorous privacy protection can be achieved at the same time.

B. Organization

In Section II, we formally specify the recommendation
scenario. In Section III, we present our solution and analyze
its security. In Section IV, we report on the performance of
our prototype implementation. In Section V, we review the
related work, and in Section VI we conclude the paper.

II. PROBLEM STATEMENT AND SECURITY MODEL

In this section, we describe the research problem in the two-
company setting, and present our security model.

A. Problem Statement

In the two-company setting, company A collaborates with
company B in order to get better recommendations for its
customers. We assume that company A has n’ customers
and company B has n — n’ customers, so that they have n
customers in total. We further assume that customers from both
companies have provide some ratings on the same set of m
items. For the simplicity of description, we assume that there
is no common customer between company A and company B.
Let a rating be an integer from a domain [Vsnin, Umaz]. The
ratings of customer y, for 1 <y < n, are denoted as a vector
Vy = (Vy1,0y,2, - ,Vym) Where v, ;, for any 1 < i < m,
represents customer y’s rating for item ¢. Company A holds

the rating vectors V, (1 <y <n’), and company B holds the
rating vectors V,, (n’ +1 < y < n). Let the average rating
of customer y be denoted by 7, = ZZT“” The research
problem is to design a privacy-preserving collaborative filter-
ing algorithm such that: for customer x, where 1 < z < n/,
company A can compute the top X unrated items (by customer
2) with the highest predictions, which are computed from its
own database and that of company B.

B. Security Model

We assume that both company A and company B are honest-
but-curious, which means that they will adhere to the protocol
specification but will try to infer information from the protocol
execution transcripts. The rationale behind this assumption
is that the companies are expected to have signed a service
level agreement when engaging in a collaboration. Malicious
behaviors will be deterred due to the potential monetary
penalties and legal actions. Customer feedback can be used
to test the validity of the recommendations. For example,
when a number of customers of company A receive useless
recommendations, company B might have acted maliciously.

Before describing the privacy requirements, we note an
asymmetry between the roles of company A and company
B: company A will make use of company B’s database to
generate recommendations, therefore company A will be able
to learn (or, infer) some information about company B’s
database; on the other side, there is no need for company B
to know anything about company A’s database because it will
not generate anything. We distinguish two cases for privacy
protection.

1) Privacy of Company A: Company A should leak no
information about its customer database to company B, namely
company B should learn nothing from a protocol execution.

2) Privacy of Company B: We observe that, if company
A learns the predictions for a customer, then it is able to
recommend those with high predictions to the customer. Note
that the predictions are generated based on the databases from
both company A and company B. Based on this observation,
we require that, in a protocol execution, company A learns
only the information that can be inferred from the predictions,
but nothing else.

Depending on the application scenario, the requirement for
the privacy of company B can be enhanced. For instance, in-
stead of learning the predictions, we can require that company
A only learns the top X items with the highest predictions.
Achieving such a strong privacy guarantee may result in
an intolerable complexity of the solution. We leave further
discussions of such specific scenarios as future work.

III. THE PROPOSED SOLUTION

In this section we first present the collaborative filtering al-
gorithm in plaintext domain, and then transform the operations
into the encrypted domain.
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A. Recommendation without Encryption

Following the framework proposed in [2], a collaborative
filtering algorithm generally operates in three steps:

1) The customer similarity computation step: the similar-
ities between customer z and all other customers are
computed based on their ratings.

2) The neighborhood selection step: the most similar cus-
tomers to customer x are selected. This step aims to
improve recommendation efficiency and accuracy.

3) The prediction generation step: the predictions for cus-
tomer = are computed.

In this subsection, we detail the formulas that are used in
our solution for each step. There is no privacy protection.

1) Computing Customer Similarity: Herlocker et al. [2]
provide a comparison of different similarity weighting tech-
niques. They conclude that the Pearson correlation is the
best correlation metric to use. The formula for the Pearson
correlation is given by:

i (Ve — Vo) (vy,i — Uy)
Vi Wi = 02)2 - 307 (vyi — Ty)?
The result of this formula sim; , is the similarity between

customers x and y. The range of sim, , is [—1,1]. For our
convenience, we rewrite the formula as follows.

D

S$1Myg,y =

m
SiMyg,y = Z Ca,iCy,i 2)
i=1
Vg,i — U, Vy,i — U
Cayi = 2 z Cy,i = LAl El 3)

)
Z;'nﬂ(vz,j —a)? 2?21(%,]' —y)?

Clearly, for 1 < ¢ < m, the range of ¢, ; or ¢, ; is [—1,1],
and only V. (V) is needed to compute c; ; (cy,;). Define the
vector Cy = (¢1,Cz,2," "+ , Cz.m). Then the similarity can be
computed by taking the inner product of the vectors C, and
Cy, where C,, is defined in the same way as C,.

2) Selecting Neighborhood: Instead of selecting a neigh-
borhood of similar customers, we select the entire customer
population as the neighborhood. We make this choice because
it will increase the performance in the encrypted domain. This
choice results in a slightly lower accuracy for items that were
already covered in the neighborhood selection scheme [2].
However, it enables us to use dissimilar customers through
negative correlation and increase the the coverage.

3) Generating Predictions: To generate a recommendation,
Herlocker et al. [2] suggest using a prediction algorithm that
uses the deviation from mean approach to normalization. We

use the following formula, introduced by Resnick et al. [9], to
compute predications:

22:1 (Vy,i = Dy)sima y

EZ:I |sima,y|

p'r’edz,i =Uz + “4)

The result of this formula pred, ; is a predicted rating for
item ¢ by customer x. The range of pred,; is [2 - Umin —
Umazs 2 * Umaz — Umin). Since we only need the relative order

of the predictions to compute the top X recommendations, we

use a simplified formula, namely pred,, , = s where

A B A B
E-’L‘,Z’ = Ez,i + Ez,ia DCL‘,i = Dz,i + Dz,i7

A n’ — . A n’ .
Eii= Zy:1(vy,i — Uy)siMma,y, Dy s = Zy:1 |sima,yl,
B n — . B n .
Bz = Zy:nurl('”yai — Dy)$iMa,y, Dy = Zy:n'+1 |sima,y|
&)
Intuitively, company A can compute E;‘Z and D;?’i, and,

given C,, company B can compute Eﬁ ; and Dﬁ ;- Together,

they can compute the order of the predictions pred, ;.

B. Cryptographic Preliminaries

In this subsection, we first review our main cryptographic
primitive, namely the Paillier encryption scheme [10], then
show how to encrypt negative values.

1) Paillier Encryption: The (KeyGen, Enc, Dec) algorithms
of Paillier encryption scheme [10] are as follows.

e KeyGen: This algorithm generates a tuple (N, p, q, g, \),
where p and ¢ are two primes, N = pg, A = lem(p —
1,q—1), and g €gr Z},.. The private key is SK = A,
and the public key is PK = (N, g).

e Enc: The ciphertext for a message m € Zy is ¢ = g™r
mod N2, where r €r Zy. For simplicity, we denote
Enc(m, PK) as [m].

e Dec: This algorithm computes the message as m = L(c*
mod N2)/L(g*> mod N?) mod N, where L(u) is de-
fined as (u — 1)/N.

N

The scheme is semantically secure under the decisional
composite residuosity assumption [10]. Based on the de-
scription, it is straightforward to verify that Paillier scheme
possesses the following homomorphic properties.

m2 — [m1 . mg].

[ma] - [me] = [m1 4+ ma], ([ma])
2) Encrypting Negative Integers: To represent negative in-
tegers we make use of the cyclic property of the cryptosystem.
The top half of the message space will represent negative
numbers. When the message space is m € Zy, we represent
—m by N—m, as N—m = —m (mod N). We have to
be careful of overflows so that a negative number does not
suddenly become a positive number or vice versa.

C. Cryptographic Sub Protocols

In this subsection, we describe the sub protocols for secure
comparison, secure absolute value, and secure division.

1) Secure Comparison Sub Protocol: The secure com-
parison protocol, denoted by COMP(z,y), is run between
company A and company B, where company A has x and
company B has y. At the end, company A should learn 1 if
x > y and -1 otherwise while company B learns nothing. Since
Yao [11], a lot of solutions have been proposed, including [12],
[13], [14], [15]. In this paper, we use that of Veugen [15].
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2) Secure Absolute Value Sub Protocol: The protocol,
shown in Fig. 1, is run between company A and company
B, where company A has a Paillier key pair (PK,SK) and
company B has [z]. We require that —250 < 2 < 250, At the
end, company B should learn [|z|] while company A learns
nothing. Let the protocol be denoted by ABS(z).

Company A Company B
(PK,SK) (PK, [z])
ber {—1, ]}, 71 €R Zo200
W =le b+r]=[2"[r]
M
Y
+ COMP(y,r1) —
res =1lorres = —1
[res]
[2] = [res])®
T2,73,74 ER LN
(@ +r4) - 72] = ([3] - [ra])™
[z 73] = [2]™
[(z+74)-ra],[zr3]
zZ+T3
[(@+7r4)-z-ro-r3) =[(x+7g) 1ro)*™

[(z+ra)-z-r2-73]
e,

t= [(x+r4)-z-7'2-7'3]ﬁ

Iz =t - ([z]")~*

Figure 1. Secure ABS Sub Protocol

In more detail, the protocol acts as follows:

1) Company B selects b €r {—1,1}, r1 €r Zg200. The
domain of 7; is chosen in such a way that it can hide
 with statistical security. Then, company B computes
y =2 -b+ry and sends [y] to company A.

2) Company A decrypts y and runs the secure comparison
sub protocol with company B who has r;. Company A
obtains res and sends [res| to company B.

3) Company B computes [z] = [res]’. Clearly, z = 1 if
x> 0and z = —1 if x < 0. It then selects 75, 73,74 €ER
Zn, and sends [(z 4 14) - r2] and [z - r3] to company A.

4) Company A decrypts [z-r3], and sends [(z+714)-72]* "3
to company B. .

5) Company B computes [|z|| = [(z+74) -2 -T2 13]7275 -

([2]™)

3) Secure Division Sub Protocol: The protocol, shown in
Fig. 2, is run between company A and company B, where
company A has a Paillier key pair (PK,SK) and company
B has [z] and [y]. We assume y # 0. At the end, company
A should learn gy”—: while company B learns nothing, where
Z%: = 7 and GCD(a',y') = 1. Note that the equation fl—: =2
holds 1n the integer domain instead of Z .

In more detail, the protocol acts as follows:

1) Company B selects r; € Zy and sends [y - 1] to
company A.

Company A Company B
(PK, SK) (PK, [2], [y])
r€R LN, [y-mi]= [y
ly-r1]
Lyl
yorn, y et
[yt
')
="
r2,73 ER LN, [v-7To] = [2]™
[y~ ] = [y
[a-ra] [y~ " 73]
T T9
[-y™t g rg] = [yt -rg]™
[wy™ " raorg]
T
oyl = oyt or g
[z-y™"]
x- y’l

Figure 2. Secure DIV Sub Protocol

2) Company A decrypts [y - 1] and inverts it to obtain

y~1 -t It then sends [y~! - r; '] to company B.

3) Company B computes [y~'] = [y~ - v ']™. It then
selects 72,73 €r Zy and sends [x - 7o) and [y~ 73] to
company A.

4) Company A decrypts [z - 75] and sends [z -y~ 17y - 73]

to company B.

5) Company B computes [z-y ] =[z- -y~ -7y rg]ﬁ,
and sends [z - y~!] to company A.

6) Company A decrypts to retrieve x -y~ -, which is in the
domain of Z};. Suppose =T < z,y <T and T' << N,
then company A can build a list of pairs (z - y~!, Z—:),
where ;—: = § and GCD(2',y') = 1. Company A then

looks up the list and obtains z—:

1

D. Recommendation with Encryption

As specified in Section II-A, company A’s customer
database size is n’ and company B’s database size is n — n’.
For customer z, the ratings are v,; (1 < i < m), where
vz,; = 0 means that the customer has not rated 7. We assume
that company A creates a Paillier key pair by running KeyGen
and the bit-length of modulo N is 1024.

1) Scaling, Rounding, and Inner Product: Paillier cryp-
tosystem deals with encryption/decryption of integers, how-
ever, in the recommender system we work with non-integer
values. Therefore, in the rest of this paper, we assume that
the values of c;; and ¢, ;, for all ,y, ¢, have been scaled by
100 and rounded to integers. In addition, when computation
is done with respect to Equation (5), we assume company A
and company B have already scaled the values v, ; — U, by
100 and rounded the results, for all y, i.
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For our recommender algorithm, the basic operation re-
quired is an inner product between two vectors, say C, and
C,, with different data owners. Given an encrypted vector [C,]
(meaning each element of the vector is encrypted [c;;]) and
an unencrypted vector Cy, anyone can compute the encrypted
similarity [sim ,] following Equation (2):

m m m

[sima) = [ coicyil = [[leciey] = [Jleail ™ ©)

i=1 i=1 =1

2) Privacy-Preserving Recommendation Generation: If
customer x requires recommendations, company A and com-
pany B engage in the protocol shown in Fig. 3.

Company A
(@, V, 1 <y<n)
(PK,SK) = KeyGen(1%)

Company B
(Vy,n' +1<y<n)

simg y, 1 <y <n'
For 1 <i <'m, compute:
[Cryf]’ [E?L]v [D_?L]
le,i.[E2 ] IDS ] (1<i<m)
[sinba:.y] = H?;][cm,i]cy'ivn/ +1<y<n
[E2:] = [Ty—p 1 [simay ], 1 < i <m

— ABS([simg y]),n' +1<y<n—
For 1 <i <m, compute:
(D2 = [Tz iallsimay ]
[Eoi] = [EL] - [EZ]
[Dei] = D3] - [DF)]
«— DIV([E, ), [Dqi]), 1 <i<m —
pred, ;,1<i<m

Figure 3. Collaborative Filtering in Two-Company Setting

In more detail, the protocol is detailed as follows.

1) Company A computes the Pearson correlations, namely
simgy (1 <y < n',y # x), between customer = and
all other customers in its own database. For 1 < i < m,
company A computes [c;;], [E4,] and [D2 ] according
to Equations (3) and (5), and sends them to company B.
Note that the encryption is done with PK.

2) Company B computes [sim, ] following Equation (6)
for n” + 1 < y < n, and then computes [Efl] for 1 <
1 < m following Equation (5). Company B then runs the
ABS sub protocol with company A to obtain [|simy ||
for n’+1 < y < n. Company B uses [|sim ] (n'+1 <
y < n) to compute [Dﬁi} = HZ:n,HHsimw,y\] for
1 <4 < m. Company B computes [E, ;] = [EZ;]-[EZ]
and [Dy;] = [D7] - [D}].

3) Company A and compahy B run the DIV protocol for
company A to retrieve pred;’i for 1 <4 < m. Company
A then chooses the top X predicted items among the
unrated ones, and sends them to customer x.

E. Security Analysis

We briefly analyse the privacy properties of the protocol,
and leave detailed analysis in a future version of this paper.
The sub protocols in Section III-C2 and III-C3 are secure.

Intuitively, in the ABS sub protocol in Section III-C2, company
A learns nothing about x because of the randomization resulted
from b,rq,72,73,74 and company B learns nothing about x
because everything is encrypted under company A’s public key.
In particular, we let r1 € Zs200, so that r; can statistically
hide x from company A. At the same time, 1 will not cause x
to overflow, which would lead to an incorrect result. Intuitively,
in the DIV sub protocol in Section III-C3, company A learns
nothing about x,y due to the randomization resulted from
r1,72,73 and company B learns nothing about z,y because
everything is encrypted under company A’s public key.

Based on the security of sub protocols in Section III-Cl,
II-C2 and III-C3, the recommendation algorithm in Section
III-D2 is secure with respect to the security model in Section
II-B. Given the security of the sub protocols, the algorithm is
secure for company A because everything sent to company B
is encrypted under the public key P K. Similarly, the algorithm
is secure for company B based on the security of the ABS and
DIV sub protocols. As all information that company B sends to
company A is in the sub protocols. Here, we have a minor note
on using DIV sub protocol in the recommendation algorithm in
Section III-D2. If D, ; = 0 for any 1 <7 < m, then the DIV
protocol will not work. Note the fact that D, ; = 0 means that
the similarities |sim, | = 0 for all 1 < y < n that rated 4,
which can be assumed to be negligible due to the randomness
in customers’ ratings and the size of customer population.
Our implementation in Section IV partially validates this
assumption. Should this assumption be untrue, company A
would be unable to generate a prediction for item i. But, this
would also happen in the unsecured version of the protocol.

Note that the security model is focussed on the privacy of
the companies’ information. The protocol does not prevent
unreliable recommendations. As the companies have access to
the customers ratings and recommendations, nothing changes
compared to an unsecured single company recommender.
Regular methods for preventing unreliable recommendations
apply. To prevent unreliable recommendations within the col-
laboration between the companies, a company can look at
recommendation differences between: (1) two different runs
of the protocol with the same input (2) a run of the protocol
and the recommendations without collaboration. If there are
significant differences, this can be an indication of unreliable
recommendations.

IV. PERFORMANCE EVALUATION

We have created a prototype implementation in C++. The
prototype uses the GNU Multiple-Precision (GMP) library and
consist of roughly 750 lines of code. To test this prototype,
we use the MovieLens dataset (http://grouplens.org/), which
contains 1 million ratings for 3900 movies by 6040 users. The
ratings are on an integer scale from 1 to 5. We split the rating
dataset in two parts by randomly selecting users as either a
customer of company A or company B. All tests are carried
out on an Intel Xeon at 3GHz, with 2GB of RAM.
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A. Computation Cost

Referring to the proposed protocol, the computational com-
plexity is related to both the number of customers of company
B and number of items. Theoretically, the computational
complexities is O(m(n — n')) for both companies. To obtain
concrete numbers for running time, we investigate two cases,
in which the total number of items is fixed.

1) Case 1: In this case, we want to investigate the running
time with respect to the total customer population. We take
a fixed population distribution as example, where company A
has 20% of the total population and company B has 80% of
the total population.

We compute the running time values for ten different total
populations, namely 604 x ¢ for 1 <4 < 10. The running time
figures are shown in Fig. 4, where the x-axis denotes the total
customer population and the y-axis denotes the running time.
The solid line indicates the total running time for company
A and company B, while the dashed line indicates only the
running time for company A. As expected, the graph shows
a linear relation between the number of customers and the
running time of the algorithm. The running time for both
company A and B individually increases linearly with the
customer population. When the total population is 6040 (the
full dataset), the running time is 354 seconds.

400

350 / ;
300 d

250 -
5 ! .
£ / E
g 200 / ;
g 1
w
150 =
100 L
[ - e B 3 ;
50 : \
' I j " T T : '
500 1500 2600 3500 400 5500 6500

Total Customer Population

Figure 4. Running Time w.r.t. Total Population

2) Case 2: In this case, we want to investigate the run-
ning time with respect to the population distribution between
company A and company B. The total population is 6040.

We compute the running time values for eight different
population proportions for company A, namely 1%, 2%, 5%,
10%, 20%, 30%, 40%, 50%. The running time figures are
shown in Fig. 5, where the x-axis denotes the population
distribution and the y-axis denotes the running time. Again,
the solid line indicates the total running time and the dashed
line indicates the running time for company A. The dashed
vertical line shows the intersection with Fig. 4. In particular,
when company A only has 1% of the population the running
time is 414 seconds, when company A is given 50% of the
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Figure 5. Running Time w.r.t. Population Distribution

population the running time is 270 seconds. As stated in Case
1, the running time for company A and B increases linearly
with the customer population of company B. As expected, we
see a linear relationship between the running time and the
distribution of the customers.

B. Communication Cost

The communication cost between company A and company
B is proportional to the number of items and the number of
customers held by company B. We give an estimate of the
communication cost for the scenario where the full customer
population is split between company A and B at a 20%
80% ratio. Given the composite number N of 1024 bits, an
encryption, which is essentially a number modulo N2, has a
maximum size of 2048 bits. When adding everything up this
results in a transmission of 15.2 MB of data.

C. Recommendation Accuracy

To evaluate the overall accuracy property of the protocol on
the whole customer population (namely, 6040 customers), we
randomly selects 10% of the 6040 customers, denoted as S,
and remove 5 ratings for each of them. The removed ratings
are used to compare against their predictions to determine
the accuracy. We use root mean squared error (RMSE) as the
accuracy measure:

1
RMSE = n Z (preds,i — ve,i)?, (7

zeS,1<i<m

where ¢ is the total number of predictions. Note that in our

case, the prediction formula pred;w- is only used to predict
the ordering of items, we use the formula for pred,, ;, defined
in Equation (4), to normalize back to predictions of actual
ratings. This formula will give the same ordering results
and meaningful accuracy figures. The computation shows an
average RMSE of 0.930. This is compared against k-nearest
neighbors, threshold neighborhood, and slope one prediction
in Fig. 6. The results show that our algorithm is comparable
to these established recommendation methods.
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Figure 6. Accuracy Comparison with Established Algorithms

To evaluate the recommendation accuracy gained by com-
pany A, we consider eight cases, where the population pro-
portion of company A in the whole population are 1%, 2%,
5%, 10%, 20%, 30%, 40%, 50% respectively. When the pro-
portions are 1%, 2%, 5%, 10%, we let company A’s customers
be from the set S. When the proportions are 20%, 30%, 40%,
50%, we let company A’s customers consist of all customers
from the set S plus customers from the rest of the whole
population. For every case, we compute the RMSE value for
company A, where the computation is only based on company
A’s customer data, and compute a difference by subtracting the
RMSE value based on the data of the whole population. The
RMSE differences of all eight cases are shown in Fig. 7, where
the x-axis denotes the population distribution and the y-axis
denotes the RMSE difference. From the figure, the accuracy
difference decreases when company A’s population proportion
increases. This implies that the accuracy gain becomes less
when company A has more customers.
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Figure 7. Accuracy Change w.r.t. Population Distribution

D. Improving the Efficiency

We foresee two ways to reduce the computation costs of
the proposed algorithm. Instead of using the data from all
customers, company B can use those from a subset of its

customers. For example, those customers that have rated a
lot of items. By using a subset of the customers, company B
has to compute fewer similarities between customers and has
fewer entries to compute the prediction with. When company
B uses a dense subset of the customers, the combined dataset
will also have a higher density. In this case, we will expect
the recommendation accuracy, compared to the accuracy com-
puted from the full set of B’s customers, will show only a
very small difference. As to the computational efficiency, both
companies will be much more efficient because [sim, ,] and
[|simg ], for any y not in the subset, will not be computed.
In summary, the performance will depend on how to choose
the subset by company B, and we leave it as a future work to
perform further investigation.

In the proposed algorithm, if company A discloses the items
that customer x has rated, then the computation becomes much
less complex. This is reasonable because it does not make
sense to make a prediction for an already rated item. Note that
company A does not disclose the ratings for the rated items.
In more details, for any item ¢ which has been rated by the
customer, the values [E; ;], [Dy ;], their components, and their
division pred, ; do not have to be computed. Furthermore,
for company B, computing [sim, ] can be done faster. In
summary, company A can sacrifice a bit of the privacy of its
customer for a better computational performance.

V. RELATED WORK

In the literature, the most relevant work to ours is that of
Basu et al. [16], [17] and that of Polat and Du [1]. Basu
et al. proposed a privacy preserving version of the slope
one predictor. They pre-compute the deviation and cardinality
matrices under encryption and make the cardinality matrix
public. Then the prediction for a single item can be computed
under encryption and all parties collaborate to decrypt the
result. Making the cardinality matrix public in the case of
two parties will leak information. Furthermore, their timing
information is based on a single prediction for a single cus-
tomer and item. When predicting the top X recommendations,
this timing information has to be increased proportional to the
number of items in the database (predictions can be computed
in parallel). The setting for Polat and Du [1] is slightly
different: a customer, who is not a member of either company,
wants company A and B to compute recommendations for
him/her. This customer plays an active role in the protocol and
privacy is based on randomizing values, rather than encryption.
Another difference in their work is that a rating is either O or
1, which makes protocol design easier than our case.

Some other privacy-preserving recommender algorithms
focus on the privacy of individual customers. Aimeur et
al. [18] provided a framework where customer data are sep-
arately stored over two parties, where an agent has access
to ratings and the company has access to the items so that
they together can generate recommendations for customers.
Polat and Du [19] proposed a singular value decomposition
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predictor based on random perturbation of data. They go
on to show the impact on privacy and accuracy, and their
inherent tradeoff due to perturbation. Berkovsky et al. [20]
proposed to combine random perturbation with a peer-to-peer
structure to create a form of dynamic random perturbation.
For each request, the customer can decided what data to
reveal and how much protection is put on the data. Different
perturbation strategies are compared based on accuracy and
perceived privacy. The requirement for a peer-to-peer structure
makes this approach less suitable for our scenario, where only
two parties are involved. McSherry and Mironov [8] proposed
collaborative filtering algorithms in the differential privacy
framework. Similar to other perturbation and anonymization
based approaches, this approach still has a tradeoff between
privacy and accuracy. In our approach, we preserve privacy
without decreasing accuracy.

Canny [21], [22] uses homomorphic encryption to privately
compute intermediate values of the collaborative filtering
process. These intermediate values are made public and used
in singular value decomposition and factor analysis, which
leads to recommendations. However, because the intermediate
values are made public, this leaks a lot of information about
the customers when all data is held by only two parties
(as is our case). Erkin et al. [23] proposed a collaborative
filtering algorithm based on homomorphic cryptosystems. This
algorithm requires every customer to take part in the protocol
execution in order to compute recommendations for a single
customer, and this makes the solution unscalable in practice.

VI. CONCLUSION

We have proposed a privacy-preserving collaborative fil-
tering algorithm for companies to compute recommendations
based on a joint set of customer databases. Based on the
experiment results from a prototype implementation, we have
shown that an individual company can generate more accu-
rate recommendations. The complexity analysis shows that it
takes about six minutes to computes recommendations for a
customer using a PC. Notice that company A can pre-compute
the encryptions and company B can perform most of the
computations in a parallel manner. Therefore, the performance
can be significantly improved in practical deployment, and
the solution is in fact feasible. This paper leaves many lines
of future work. First of all, it is interesting to investigate
stronger privacy definitions for specific scenarios, and to
compare the implications of cryptographic privacy definitions
and other definitions such as differential privacy. Secondly, it
is interesting to investigate methods of improving efficiency of
the proposed algorithm, as mentioned in Section I'V-D. Thirdly,
it is interesting to consider the situation where companies
possess a vertically partitioned dataset. This case seems to
have more privacy concerns because we somehow need to link
the records in different customer databases.
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