Cryptographic Framework for Analyzing the
Privacy of Recommender Algorithms

Qiang Tang
DIES, Faculty of EEMCS
University of Twente
Enschede, the Netherlands
tonyrhul@ gmail.com

Abstract—Recommender algorithms are widely used, ranging
from traditional Video on Demand to a wide variety of Web
2.0 services. Unfortunately, the related privacy concerns have
not received much attention. In this paper, we study the privacy
concerns associated with recommender algorithms and present a
cryptographic security model to formulate the privacy properties.
We propose two privacy-preserving content-based recommender
algorithms and prove their properties. Moreover, we show the
potential weakness in some existing collaborative filtering algo-
rithms which claim to provide privacy protection.

Keywords—Recommender algorithms; Privacy; Cryptography.

I. INTRODUCTION

Recommendation services are becoming ubiquitous in our
daily life. When we subscribe a Video on Demand service, we
get recommendations from our operator. When we use social
networks, such as Facebook and Linkdin, we will frequently
receive messages like “You know user X so you may also
know user Y.”. When we watch the video ”You Are Not Alone”
of Michael Jackson on Youtube.com, a list of other videos
about Michael will be suggested to us. There are many other
well-known recommendation services, such as those offered
by Amazon and Netflex, and new services emerge every day.

In the core of recommendation services are recommender
algorithms, which have been surveyed in-depth by Adomavi-
cius and Tuzhilin [1]. Let &/ be the set of all users and Z be
the set of all items that can be recommended. A recommender
algorithm can, for every user in the set U/, rank all the items in
the set Z so the top-X items can be recommended to the user,
where X is an integer and usually much smaller than the size
of 7. Typically, the recommender algorithm will be run by a
server, which aims at providing the recommendation service.
Roughly speaking, traditional recommender algorithms can be
classified into three categories: (1) content-based, which ranks
the items in the set Z with respect to their similarities to those
items that a target user has accessed before; (2) collaborative,
which ranks the items in the set Z based on the rating results
of a group of users who are similar to the target user; (3)
hybrid, which combines the above two.

978-1-4673-1382-7/12/$31.00 ©2012 IEEE

A. Problem Statement

In most currently-deployed recommendation systems, an in-
dividual user reveals all his personal data to the recommenda-
tion server in order for the latter to compute recommendations.
In fact, most of the time, the recommendation server keeps a
database with all its users’ personal data. This situation puts
users in a vulnerable position regarding to their privacy, and it
will pose serious risks of privacy loss to the users in case of
unintended data leakage. In addition, it puts a burden on the
recommendation server to protect users’ private data in order
to be compliant to privacy regulations and meet users’ privacy
expectations.

Perturbation and data obfuscation methods (e.g. [13], [15],
[16], [18]) have been proposed to address the privacy concerns.
However, with respect to such approach, it remains as a chal-
lenge to achieve both recommendation accuracy and expected
privacy guarantee. In fact, there is a general issue of privacy
leakage in using such approach in data mining [19]. McSherry
and Mironov [11] proposed collaborative filtering algorithms
in the differential privacy framework. Similar to other pertur-
bation and anonymization based approaches, this approach still
has a tradeoff between privacy and accuracy. In contrast, the
other approach is to employ cryptographic techniques, such as
homomorphic encryption and secure multiparty computation.
A number of papers employ this approach, including those by
Aimeur et al. [2], Canny [4], [5], Polat and Du [17], Zhan
et al. [20], and Erkin et al. [8]. However, so far, no rigorous
security model has been proposed, and corresponding security
analysis has not been done in these papers.

B. Contribution

The contribution of this paper is three-fold. The first con-
tribution is to look at the privacy issues of recommender
algorithms from a cryptographic perspective. We propose a
security model and formulate the privacy properties against
both a semi-trusted recommendation server and a group of
malicious users. The security model provides a framework
to formally prove the security of recommender algorithms.
The second contribution is to propose two privacy preserving
content-based recommender algorithms. In both cases, we
introduce the concept of proxy user into the setting to help

455

compute recommendations. Neither the proxy user nor the
recommendation server will learn anything about honest users’
sensitive data. The third contribution is to analyze some of the
existing collaborative filtering algorithms, in particular that
of Canny [4], which have been designed to provide privacy
protection for users in a fully decentralized environment. We
showed that there are many practical obstacles to protect
users’ privacy in such an environment without relying on a
recommendation server.

C. Organization

The rest of the paper is organized as follows. In Section II,
we describe the system model for recommendation services
and propose a security model for privacy preserving recom-
mender algorithms. In Section III, we propose two privacy
preserving content-based recommender algorithms and analyze
their privacy properties. In Section IV, we analyze some
collaborative filtering algorithms. In Section V, we conclude
the paper.

II. SYSTEM AND THREAT MODELS

The following notation is used throughout the paper. X =
— — K
(x1,@2, - ,x,) denotes a vector, X () Y denotes the inner
— - = = - =
productof X and Y, X 4+ Y and)_(> -Y iﬁ):note the element-
wise addition and substraction of X and Y respectively.

A. System Model of Recommendation Services

A recommendation system usually adopts a centralized
system structure, as depicted in Figure 1, and consist of three
types of entities.

e Users, who want to receive recommendations from the
recommendation server and retrieve items from the con-
tent server. Let all users be denoted by U; (1 < i < N)
where N is an integer denoting the user population in
the system. Let U;’s personal data be denoted as D; from
the domain D. Note that the personal data may include
profile, ratings, and recommendations received.

e A recommendation server, which will compute recom-
mendations for all users. The recommendation server’s
parameter is denoted as Dg. For instance, in a content-
based recommender algorithm, Dg contains the item
features.

e A content server, which provides users with the items
they want to retrieve.

At a high level, the workflow of a recommendation system
can be divided into two stages. The first stage is recom-
mendation retrieval: If a user wants to receive recommen-
dations, he sends his personal data to the recommendation
server. Based on the underlying recommender algorithm, the
recommendation server predicts the top-X items which best
fit the user’s taste, and sends the item identifiers to the user.
The second stage is content retrieval: After receiving the

Recommendation
server

Recommendation |
e e [
retrieval ! / \

Content retrieval ————-»=

<
<
‘:"' Content server

Figure 1. Centralized System Structure

recommendations, the user retrieves the recommended items.
At the same time, the user will generate ratings for these items.

In practice, a system may deviate from this system structure.
One possibility is that the recommendation server and the
content server can be the same entity or there is no explicit
content server and the user will find the content from any
available source on the Web. Another possibility is that a
recommendation system may adopt a decentralized system
structure, where a recommendation server is not required, and
its function (the computation of recommendations) can be
realized collaboratively by all (or a large portion of) the users
in the system. The benefit of such a system structure is that the
recommendations will not rely on a specific recommendation
server. The downside of this system structure is that the
accuracy of recommendations heavily rely on the participation
of individual users. In this case, for the privacy of an honest
user, we only need to consider a group of malicious users and
can use exactly the same formulation defined below. We leave
further investigation of these possibilities as a future work.

B. The Security Model

According to the system structure described in Figure 1, we
assume that there is an security channel between every user
and the recommendation server, where the channel provides
both confidentiality and integrity. With respect to an honest
user’s privacy, the threats come from two types of adversaries:
one is a semi-trusted recommendation server, and the other is
a group of malicious users.

e We respect to a semi-trusted recommendation server,
we assume that it will not deviate from the algorithm
specification in order to learn a user’s personal data. In
particular, a semi-trusted recommendation server will not
collude with a group of malicious users. Moreover, we
assume it will not forge dummy users and related data,
and then compute recommendations for an honest user

456

based on the forged data. We elaborate on this assumption
in Section V.

e With respect to a group of malicious users, we assume
they may collude. Note that there is a concern that
malicious users may use arbitrary data as their input
to the recommender algorithm. Nevertheless, we do not
address this concern in our security model.

In the ideal situation, the recommendation server should be
able to compute recommendations in an oblivious manner, i.e.
learning nothing about any user’s personal data. To formulate
the security, we use the indistinguishability approach used in
defining the security of encryption schemes [10].

Definition 1: A recommender algorithm achieves user pri-
vacy against a semi-trusted recommendation server if, for any
1 < ¢ < N, any polynomial-time adversary’s advantage in
the attack game (depicted in Figure 2) is negligible, where the
advantage is denoted as | Pr[b’ = b] — 1.

1) The adversary, which simulates the recommenda-
tion server, sets up the parameter Dg and generates
D;,, D;, € D and sends them to U;.

2) The challenger, which simulates U; and other users,
selects b €r {0,1} and generates data D; (1 <
j < N,j # i). The challenger then faithfully runs
the recommender algorithm with the adversary on the
input D;, and D; (1 <j < N,j#1).

3) The adversary outputs a guess bit '.

Figure 2. Attack Game against the Recommendation Server

If the adversary’s advantage is negligible then it cannot tell
whether D;, or D;, has been used by U; in the algorithm
execution. Intuitively, this means that the recommendation
server cannot distinguish U;’s input from any possible data
from D, so that the recommendation server learns nothing
about U;’s input.

Against a group of malicious users, the ideal privacy re-
quirement is that the algorithm does not leak more information
than what can be inferred from the recommendation results
that the malicious users receive. Note that the malicious users
can deviate from the algorithm specification. For a formal
definition, we use the simulation approach used in secure
multiparty computation [3].

Definition 2: A recommender algorithm achieves user pri-
vacy against a group of ¢ malicious users if, there exists a
simulator S, any polynomial-time adversary’s advantage in
the attack game (depicted in Figure 3) is negligible, where
the advantage is denoted as | Pr[b’ = b] — 3|.

Intuitively, if b = 1 in the game then the adversary learns
nothing more than Rj, (1 < k < t) because this is the only
information the simulator has access to. As a result, if the
adversary cannot distinguish whether it has interacted with
the challenger or the simulator, then the challenger leaks no
more information than R;, (1 <k <t).

1) The adversary, which simulates a group of ¢ malicious
users Uj, (1 <k <t,j;, € C), sets up colluded users’
data D;, (1 <k <t). Note that C is a set containing
the indexes of colluded users.

2) The challenger, which faithfully simulates the recom-
mendation server and un-colluded users, sets up the
un-colluded users’ data D; (1 < i < N,i ¢ C) and
the recommendation server’s parameter Dg. Let R,
(1 < k < t) be the recommendations received by
the colluded users when they behave honestly. The
challenger selects b € {0,1} and follows step (a) if
b = 0 and step (b) otherwise.

a) In this case, the challenger runs the recommender
algorithm with the adversary, which can behave
maliciously.

b) In this case, the simulator S takes R;, (1<k<¥)
as input and runs the recommender algorithm with
the adversary, which can behave maliciously.

3) The adversary outputs a guess bit ',

Figure 3. Attack Game against ¢ Malicious Users

ITI. SECURE CONTENT-BASED RECOMMENDER
ALGORITHMS

Following the discussion in [1], we assume that a content-
based recommender algorithm works in the following way.
Let K, (1 <2 <L) be a set of keywords used to define the
attribute vectors for users and data items.

e For the user U;, where 1 é i < N, his personal
data is an attribute vector V; = (Vi1,Via, -, Vip),
where an element represents the user’s preferences to the
corresponding keyword.

e The recommendation server’s parameter Dg is an item
database 7 of size M, where the j-th element coﬂains
an item identifier d; and an attribute vector I; =
(Ij1,I2,--- ,I;1), where an element represents the
item’s relevance to the corresponding keyword.

As mentioned in [1], the above attribute vectors can be
computed using the TF-IDF method. In order to generate
recommendations for U;, the rec%nmendation server first

computes the similarities between V; and I; (1 < j < M).
Here, we consider cosine similarities, defined below.

L Sy Ve Iy
Sij = > = M
\/Zt:l ‘/z% ’ \/Zt:l I_jzt
— —
Vi

[.
@ J
NI IRYS SN

The recommendation server then can rank S;; (1 < j < M)
and send the identifiers of top-X items to U;. Without any
privacy protection, to compute the recommendatigps for U;,
the recommendations server will directly access V. Clearll,
as shgwn by Equation (2), the cosine similarity between V;
and I; is the inner product of normalized versions of both

@

457

vectors. In addition, the normalized vector elements and the
ultimate similarities will be float numbers, which becomes an
obstacle to apply standard cryptographic techniques. However,
note that if we scale the normalized vectors using the same
parameter (say, multiple every element with 100) and make
their elements be integers, then the computed recommenda-
tions will stay the same.

To facilitate our discussion, we still use the notation Vi
and I (I < j < M) to denote the firstly normalized and
then scaled vectors, where the elements are integers from the
domain [0,24 — 1]. Moreover, we still use S;; (1 < j < M)
to denote the similarities, which are integers now.

A. First Privacy Preserving Algorithm

For a content-based recommender algorithm, in order to
achieve the privacy properties defined in Section II, the
recommendation server and the honest user should collab-
oratively compute the inner products and rank the results.
To our knowledge, to achieve this goal, the computation and
communication complexities will be linear for both the user
and the recommendation server in the size of item database.
For majority ordinary users in a recommendation system, the
complexities may be unaffordable.

We introduce the concept of proxy user into the setting.
As security is concerned, we assume the proxy user to be
malicious in order to obtain the honest user’s personal data.
However, we do not consider the case that the proxy user sends
manipulated data to the honest user to mount a DoS (denial of
service) attack. In practice, a proxy user is such an entity that
has adequate computation and communication capacities and
can help other ordinary users to compute recommendations.
Hence, a proxy user can be the powerful ones among the users
in a recommendation system. As a result, the computation
of recommendations will be a three-party protocol, running
among U;, the proxy user and the recommendation server. By
doing so, the computation and communication workload can
be shifted from the user U; to the proxy user. The resulted
algorithm is supposed to be much more efficient than a secure
solution without using the concept of proxy user.

Recommendation
SEfver

4

Proxy User

 848.-8 &

User 2 User N-1 LIe;erN

User | User 1

Figure 4. Illustration of the First Algorithm

The first privacy preserving algorithm is shown in Figure
4, with the details below. The step numbers correspond to
those in Figure 4. Note that all communications are carried
out through a secure channel.

1) U; generates a vector EZ, whose elements are randomly
chosen from [0,27 — 1] where B is an mteger actmg as
the securg parameter, and computes S = V +R Then
it sends S; to the recommendation server and sends R
to the proxy user.

2) The recommendation server sends S;; i (1 <Jj<M)
and the item 1dent1ﬁers to U;, where S,J =50I.In
addition, it sends I (1 <j < M) to the proxy user.

3) The proxy user sends SU (1 <j<M)toU,;, where
S“ = R ©) I R

4) After receiving SZ-]- and S;-j for1 <j< M, U; obtains
the similarities S;; = S;; — Si; (1 < j < M). Then, it
can easily sort the similarities and obtain the identifiers
of top-X items.

With this algorithm, U;’s communication complexity is
2(M-(logy L+2(B+1))) bits, and his computation complexity
is M +1 addition and M log M integer comparisons if a binary
sorting algorithm is used. The recommendation server’s com-
munication complexity is M -(logy L+2(B+1))+M-L-(B+1)
bits, and its computation complexity is M - (L — 1) addition
and M - L multiplications. The proxy user’s communication
complexity is M - (logy L +2(B+ 1))+ M -L- (B +1)
bits, and its computation complexity is M - (L — 1) addition
and M - L multiplications. Consider a naive solution, where
the recommendation server sends U; the item database. In this
case, U;’s communication complexity is M - L-(B+1) bits, and
its computation complexity is M - (L — 1) addition, M log M
integer comparisons, and M - L multiplications. Note that,
with the increase of M, for U;, the efficiency of the proposed
algorithm becomes more significant for U;.

Next, we consider the security of the proposed algorithm
in the security model proposed in Section II. The proxy user
learns no 1nformat10n about VZ, because it only receives a
random vector R Certainly other users will learn nothing as
well since they are not involved at all. Therefore, the following
theorem holds.

Theorem 1: The proposed algorithm achieves user privacy
against all (V 4 1) users with respect to Definition 2 uncon-
ditionally.

The recommendation server receives §:, which is arg random—
ized version of V. Consrder another vector S r = V* + R*
where the elements of V* are from the domain |0, 2A —1]
and the elements of R* are randomly chosen from the domam
0,28 — 1 The statistical distance between S and S* is at
most W‘ Therefore, the following theorem holds.

Theorem 2: The proposed recommender algorithm achieves
user privacy against a malicious server with respect to Defi-

458

L-24

24428
Note the fact that, for any existing databases, the value of

L - 2* will be smaller than 2'%8. Therefore, to achieve 128

bits security, the value of B can be set to be 256.

nition 1, if is negligible.

B. Second Privacy Preserving Algorithm

In the previous algorithm, the recommendation server needs
to send the item database 7 to the proxy user. In practice, the
recommendation server may not want to do so because 7 is its
own asset and may be regarded as private. We propose a new
recommender algorithm to mitigate the issue by only revealing
the permuted item database to the proxy user.

Recommendation
sarver

Proxy User @ Useri User1 User2 UserM-1 UserN
Figure 5. [Illustration of the Second Algorithm

The proposed algorithm is shown in Figure 5, with the
details below. The step numbers correspond to those in Figure
5. Note that all communications are carried out through a
secure channel.

1) U; generates a vector E;, whose elements are randomly
chosen from [0,257 — 1] where B is an integer acting as
the securi&/ parameter, and computes S; = V; +R;. Theg,
it sends .S; to the recommendation server, and sends R;
to the proxy user.

2) The recommendation server generates a random permu-
tation ®, which is used to permute the locations of
the elements in a vector of length M and generate a

new vector®. Then, it computes ®((S;1, S@;~ . ,_@ M))s

where, for 1 < 5 < M, 5’17 = S, (®I;, and
— = — -

sends <I>(£Il, Iy, ,Iar)) to the proxy user and sends

O((Si1, iz, Sim)) to Ui..

3) The proxy user sends ®((S;1, S, - ,S;M)) to U;,
= — =
where Sij = Rz @ Ij .
4) U; firstly sorts the elements of the
O((Sin, Sig,- -+, Sim)) — ®((Six, S+
2For instance, let M = 4 and a permutation be ® = (124)(3). Then,
for any vector (a1,a2,as,as), after applying @ the resulted vector is
(a2,a4,a3,a1).

vector

,Sin);

which is a permuted version of_> the similarity vector. As
a result, it obtains a vector O = (01,02, -+ ,0x),
where, for 1 <t < X, O, is an integer indicating that
the O;-th element in tge permuted vector ranks in the
top-X. Then, it sends O to the proxy user.

5) The recommendation server generates an encrypted
identifier database DB of the form DB =
(Enc(df1) S’C), Enc(dfz) S}C)a Ty EnC(dfM) SIC))’
where Enc is a symmetric encryption scheme such as
AES, SK is a symmetric key, and f; for 1 < i < M
is determined by the permutation ¢ in the following
way: the permutation ® turns the f;-th element of
a vector into the i-th element in a new vector. The
recommendation server sends SK to the user U;. Note
that dy, (1 < i < M) are item identifiers of the item
database 7.

6) For every 1 <t < X, the proxy user runs a PIR (Private
Information Retrieval) protocol with the recommendation
server to retrieve the O;-th element from the database
DB, namely Enc(dy,, ,SK), from DB. Many PIR pro-
tocols are surveyed available [9], and such protocols can
be efficient as shown in [12].

7) The proxy user sends Enc(dy,, ,SK) (1 <t < X) to U.

8) Ui decrypts Enc(dy, ,SK) (1 <t < X) and obtains the
item identifiers of the top-X rated items.

With this algorithm, U;’s communication complexity is
2(M - (logy L + 2(B + 1))) bits, considering M is much
larger K, and its computation complexity is M + 1 addition,
M log M integer comparisons, and M symmetric decryptions.
The recommendation server’s communication complexity is
M - (logyL+2(B+1))+ M-L-(B+1) bits and com-
munication caused by the PIR protocol, and its computation
complexity is M - (L — 1) addition, M - L multiplications,
M symmetric encryptions, and the computation caused by the
PIR protocol. The proxy user’s communication complexity is
M -(logy L4+2(B+1))+M-L-(B+1) bits and communication
caused by the PIR protocol, and its computation complexity is
M -(L—1) addition, M - L multiplications, and the computation
caused by the PIR protocol. Regarding the communication and
computation complexities for the involved parties, it is clear
that this algorithm is less efficient than the algorithm proposed
in Section III-A. The additional complexities are caused by
the executions of the PIR protocol in step 6 of the algorithm.
With PIR, the recommendation server will know the top-X
rated items for Uj;.

It is straightforward to see that, compared with the algorithm
from Section III-A, we have added some extra steps in this
algorithm to protect the privacy of the recommendation server.
In contrast to the previous algorithm, here, the proxy user only
obtains a randomly permuted version of Z. Even if the proxy
user and U; collude, they only obtain a randomly permuted
version of 7 and those top-X item features. Based on the same
arguments in III-A and the security properties of employed
encryption scheme and PIR protocol, it is straightforward
to verify that the Theorem 1 and 2, which hold for the

459

algorithm in Section III-A, still hold for the algorithm from
this subsection.

IV. COLLABORATIVE FILTERING ALGORITHMS

In this section, we briefly comment on the algorithm by
Erkin et al. [8], and then focus on the algorithm designed
by Canny [4]. The algorithm by Erkin et al. [8] is rather
straightforward in the sense that, in order to compute rec-
ommendations for a user, everything needs to be encrypted by
this user’s public key then this user and the recommendation
server need to perform some two-party computation. This
may cause efficiency problem if a lot of users want to
compute recommendations at the same time. In contrast, with
Canny’s algorithm, users can compute their recommendations
in a single protocol execution. There is no rigorous security
analysis in either [8] or [4].

A. Canny’s Recommender Algorithm

Suppose that the users in the system are denoted as U; (1 <
i < N) and there are M itemiin the system. The user U; has
a preference attribute vector V; = (V;1, Via, -+, Viar), where
Vij denotes U;’s rating on the j-th item.

It is assumed that every user is also a tallier, which is the
least structured case as claimed in [4]. Therefore, there are N
talliers in the system. It is assumed that a fraction @ > 50%
users (or talliers) are trustworthy, which means they will follow
the protocol specification. Furthermore, it is assumed that
there is a WORM (Write-Once, Read-Many) device, called
blackboard, which will be used by users to communicate with
each other. The system structure is shown in Figure 6. Finally,
it is assumed that there is a common source of randomness,
i.e. users can retrieve randomness using a global coin toss.

Blackboard

Figure 6. Canny’s System Structure

Canny’s algorithm has a global setup phase, in which, using
the (¢, N) threshold scheme [14], every user U; obtains a
private key share SIC; of a public/private key pair (PK,SK)
of the ElGamal public key encryption scheme (Enc, Dec) [7].
Note that ﬁ > 50% should hold. Canny’s algorithm makes
use of a conjugate gradient algorithm. Let A be a matrix

with K rows and M columns, where the matrix elements
are randomly-chosen integers. With respect to Canny’s rec-
ommender algorithm, the following steps are required to be
iterated about 40-60 times.

1) The user U;, for any 1 < ¢ < N, com utgs his
contribution to the gradient vector, which is AV, TV;. For
‘@ convenience, the contribution is written in the form
G; = (g)ﬂ,gig,“ . ,Giy), where Y = K - M. U; then
writes C;, D;, and E; to the blackboard. These values
are defined as follows.

. a = (CilL)CZQ, -++,Cyy), which is an encrypted
version of G, i.e. Cj; = Enc(G,;, PK) for 1 < j <
)L)

e D; = (Dj1,Do,- - ’Dﬂf)’ which is an encrypted
version of the square of G, i.e. C;j = Enc(ij7 PK)
for1 <j;<Y.

e [, contains the following proofs: for 1 < 57 <Y,
the value encrypted in D;; is a square of the value
encrypted in Cj;, and the sum of encrypted values

in 5; namely Z;le ij, is less than a bound B.

2) Based on a global coin toss, U;, for any 1 < ¢ < N,
chooses a subset of log NV users, denoted as U;, (1 <
k <logN). For 1 <k <logN, U; does the following.

— —

e Retrieve {C;,, D;,, E;, } from the blackboard.

e Verify the zero knowledge proofs in E;, are valid. If
the verification passes, write “OK” on the backboard
for U;, , otherwise write “not-OK”.

At the end of this step, every user will have log N votes,
which are either “OK” or “not-OK”.

3) Based on a global coin toss, U;, for any 1 < ¢ < N,
chooses a subset of log N items to aggregate. Let the
subset with indexes from the set {ji, , ji,, " Jijo, v }- FOT
1 < k < logN, U; computes Ajik = HheH Chj,, s
where H is the set of indexes for users with “OK”. U;
writes Aj, (1 <k <log N) on the blackboard.

4) For1 <353 <Y, U, forany 1 < ¢ < N, checks that
the majority of the values computed for the j-th item are
equal, denoted as A;. If so, U; then writes the partially
decrypted values Dec(A4;, SK;) on the blackboard.

5) Recall from Step 3 that the user U, forany 1 <i < N is
responsible for the data items with indexes from the set
{Jirs Jiny - ~jilOgN}. For 1 < k <log N, the user U; then
multiply all the partially decrypted values for the j;, -th
item, and compute the value of), ,, G hj,, Where H is
the set of users with “OK”.

6) Users perform other operations following the conjugate
gradient algorithm [4].

B. Observations on Canny’s Algorithm

Canny’s algorithm assumes a fully decentralized setting, in
an attempt to avoid relying on a semi-trusted recommendation
server. With respect to the security model described in Section
I, the extensive usage of cryptographic techniques seems not

460

sufficient to make Canny’s algorithm secure in practice. We
have three major observations.

The first issue with this algorithm is the user membership
management in a fully decentralized environment. In par-
ticular, in the initialization, the users should collaboratively
setup their parameters. Thinking about a typical application
of collaborative recommender algorithms such as Video on
Demand service, it may contain thousands of users. Without
any coordination, it seems to be a challenge to run the
initialization. Additionally, users may dynamically join or
leave the service, in a decentralized setting, it remains as a
challenge to deal with the membership management because
it requires add/delete secret shares of the employed threshold
cryptosystem.

The second issue is that that the blackboard is purely a
storage facility and it does not get involved in any other
activities, hence, the users are assumed to be self-organized.
Due to this nature, it may suffer from Sybil attacks [6], where
malicious users will try to register a large number of new users
in the system until they gain control over the whole system.
As a consequence of a Sybil attack, the assumption that “A
fraction o > 50% users (or talliers) are trustworthy” will not
hold anymore, and malicious users may recover the personal
data of the honest users. In this case, the security notion
of Definition 2 cannot be achieved. Without a commonly
(semi-)trusted party such as the recommendation server in the
centralized structure, it is unclear how to defend Sybil attacks.

The third issue is that the blackboard should be at least
semi-trusted by all users, so that it fails to avoid relying on a
semi-trusted party (if the blackboard is required to be semi-
trusted, then it is equivalent to a semi-trusted recommendation
server) as hoped by employing a decentralized approach.
It and the users will mutually authenticate each other and
establish a secure channel (with integrity protection) for all
the communications. If the blackboard does not authenticate
the users, then malicious users can impersonate honest users to
upload forged data and influence the recommendation results.
This will make the zero knowledge proofs in Step 1 of
the algorithm ineffective. If the users do not authenticate
the blackboard, then the same problem as described in the
previous case remains because the malicious users can try to
impersonate the blackboard. Moreover, the blackboard should
not supply forged data to tlﬁ users, then it can obtain the
users’ personal data, namely V; (1 < i < N). Additionally, in
a fully decentralized environment, it is unclear how to choose
a party to act as the blackboard.

V. CONCLUSION

In this paper, we presented the first cryptographic security
model for analyzing the security of recommender algorithms.
We proposed two privacy preserving content-based algorithms,
and proved their securities in our security model. Both al-
gorithms use lightweight cryptographic techniques such as
random permutation and symmetric key encryption for the

users involved, and the resulted communication and compu-
tation complexities are low enough for the algorithms to be
efficient in practice. Moreover, we analyzed Canny’s algorithm
[4] and showed that there are many obstacles to protect users’
privacy in a fully decentralized environment without relying
on a recommendation server. This paper leaves us many lines
of future work.

e One is to design a secure collaborative filtering algorithm
which can be proved secure in our security model.
With such an algorithm, there are other issues worth
investigating. For example, how to address user member-
ship management issue? We have shown that this issue
may make Canny’s algorithm insecure and unrealistic in
practice. Another issue is that, if threshold cryptographic
techniques are used, how to dynamically adjust the
threshold? This is important because, for a recommender
algorithm, user membership may be dynamic in nature.

e Another is that, in the security model, we explicitly
make the assumption that a semi-trusted recommendation
server will not forge dummy users and related data, and
then compute recommendations for an honest user based
on the forged data. For a content-based recommender
algorithm, this assumption does not make a difference
because recommendations are generated based on a hon-
est user’s own personal data. However, for a collaborative
filtering algorithm, if this assumption is not true then the
recommendation server can trivially figure out an honest
user’s personal data by computing recommendation for
the dummy users based on the honest user’s data. How
to deal with this is an open issue for future research.
It seems that we may need a decentralized setting to
throttle a malicious recommendation server. However, in
this direction, we need to address a lot of problems such
as those we have pointed out for Canny’s algorithm.

e Finally, in our security model, we have focused on
protecting the privacy of users. In Section III, we have
indicated that there may be privacy concerns for the
recommendation server as well. It remains as a future
work to extend the security model to cover such privacy
requirements. The algorithm in Section III-B may still
need to be improved.

ACKNOWLEDGEMENT

The research for this work was carried out within the
Kindred Spirits project, part of the STW Sentinels research
program. The author would like to thank the anonymous
reviewers and Michael Beye (from Delft University of Tech-
nology) for their comments.

REFERENCES

[1] G. Adomavicius and A. Tuzhilin. Toward the next generation of
recommender systems: A survey of the state-of-the-art and possible
extensions. /EEE Trans. Knowl. Data Eng., 17(6):734-749, 2005.

[2] E. Aimeur, G. Brassard, J. M. Fernandez, and F. S. M. Onana. Alambic:
a privacy-preserving recommender system for electronic commerce. Int.
J. Inf. Secur., 7:307-334, 2008.

461

[3] R. Canetti. Security and composition of cryptographic protocols. Journal
of Cryptology, 13:143-202, 1999.

[4] J. F. Canny. Collaborative filtering with privacy. In IEEE Symposium
on Security and Privacy, pages 45-57, 2002.

[5] J. E. Canny. Collaborative filtering with privacy via factor analysis. In
Proceedings of the 25th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, pages 238-245,
2002.

[6] J. R. Douceur. A threshold cryptosystem without a trusted party. In
International workshop on Peer-To-Peer Systems, volume 2429 of LNCS,
pages 251-260. Springer, 2002.

[7]1 T.ElGamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. In G. R. Blakley and D. Chaum, editors, Advances
in Cryptology — CRYPTO 1984, volume 196 of LNCS, pages 10-18.
Springer, 1985.

[8] Z. Erkin, M. Beye, T. Veugen, and R. L. Lagendijk. Efficiently
computing private recommendations. In International Conference on
Acoustic, Speech and Signal Processing, 2011.

[9] W. Gasarch. A survey on private information retrieval.
http://www.cs.umd.edu/ gasarch/pir/pir.html.

[10] S. Goldwasser and S. micali. Probabilistic encryption. Journal of
Computer and System Sciences, 28(2):270-299, 1984.

[11] F. McSherry and I. Mironov. Differentially private recommender sys-
tems: building privacy into the Netflix prize contenders. In Proceedings
of the 15th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 627-636, 2009.

[12] Femi Olumofin and Ian Goldberg. Revisiting the Computational Practi-
cality of Private Information Retrieval. In Financial Cryptography and
Data Security, 2011.

[13] R. Parameswaran. A robust data obfuscation approach for privacy
preserving collaborative filtering. PhD thesis, Georgia Institute of
Technology, 2006.

[14] T. P. Pedersen. A threshold cryptosystem without a trusted party. In
Proceedings of the 10th annual international conference on Theory and
application of cryptographic techniques, pages 522-526, 1991.

[15] H. Polat and W. Du. Privacy-preserving collaborative filtering using
randomized perturbation techniques. In Proceedings of the Third IEEE
International Conference on Data Mining, pages 625-628, 2003.

[16] H. Polat and W. Du. Privacy-preserving collaborative filtering. Interna-
tional journal of electronic commerce, 9:9-36, 2005.

[17] H. Polat and W. Du. Privacy-preserving top-N recommendation on
distributed data. J. Am. Soc. Inf. Sci. Technol., 59:1093-1108, 2008.

[18] R. Shokri, P. Pedarsani, G. Theodorakopoulos, and J. Hubaux. Pre-
serving privacy in collaborative filtering through distributed aggregation
of offline profiles. In Proceedings of the third ACM conference on
Recommender systems (RecSys *09), pages 157-164, 2009.

[19] J. Vaidya and C. Clifton. Privacy-preserving data mining: Why, How,
and When. IEEE Security and Privacy, 2:19-27, 2004.

[20] J. Zhan, C. Hsieh, I. Wang, T. Hsu, C. Liau, and D. Wang. Privacy-
preserving collaborative recommender systems. Trans. Sys. Man Cyber
Part C, 40:472-476, 2010.

462

