Targeted Question Answering on Smartphones
Utilizing App Based User Classification

Yavuz Selim Yilmaz

Bahadir Ismail Aydin

Murat Demirbas

Department of Computer Science and Engineering
SUNY University at Buffalo
Buffalo, New York, 14226, USA
Email: {yavuzsel | bahadiri | demirbas} @buffalo.edu

Abstract—State-of-the-art question answering systems are
pretty successful on well-formed factual questions, however they
fail on the non-factual ones. In order to investigate effective
algorithms for answering non-factual questions, we deployed
a crowdsourced multiple choice question answering system for
playing “Who wants to be a millionaire?” game. To build a
crowdsourced super-player for “Who wants to be a millionaire?”,
we propose an app based user classification approach. We identify
the target user groups for a multiple choice question based on
the apps installed on their smartphones. Our final algorithm
improves the answering accuracy by 10% on overall, and by 35%
on harder questions compared to the majority voting. Our results
pave the way to build highly accurate crowdsourced question
answering systems.

Keywords—targeted crowdsourcing, app-based classification,
question answering

I. INTRODUCTION

Question answering (QA) is considered as a fundamental
problem by the artificial intelligence (AI) and the machine
learning (ML) communities since the early years of the
information retrieval (IR) research. Search engines show
that computers can answer well-formed factual queries
successfully. Still, non-factual questions have been a setback
on the overall accuracy of these systems. There has been a
substantial research effort on answering this kind of questions
by incorporating the IR and the natural language processing
(NLP) techniques. Even though there are some encouraging
real-life examples [1]-[3]], Al systems has a long way to
go for answering non-factual questions with a near-perfect
accuracy. Crowdsourcing, on the other hand, is a natural fit
for QA of non-factual questions because it utilizes the human
intelligence to solve this kind of problems which are hard for
the computers.

We believe that asking multiple choice questions is more
productive than asking open-domain questions for effective
crowdsourcing. By definition, crowdsourcing consists of two
basic steps: (1) Tasking the crowd with small pieces of a
job, and (2) merging the outcomes or the answers in order to
complete the entire job. Open-domain questions result in a
large set of possible answers which makes it hard to aggregate
the responses from the crowd to produce a final answer. On
the other hand, presenting binary or multiple choices for
the questions facilitates the aggregation. It also makes the
job of the crowd easier: punch in the choice (A, B, C, or
D) instead of figuring out how to present the answer. This
lets the crowd to complete the tasks in a shorter time. We
also suggest that providing multiple choice questions is often

feasible. The original asker can provide the multiple options
when the question is on deciding among some choices (hotels
to stay, products to buy, music to listen). Otherwise, it is also
possible to automate the process of adding multiple choices
to an open-domain question using ontologies and lightweight
ML techniques [4].

In this work, we study collaboration techniques for high
accuracy multiple choice question answering (MCQA). To
this end, we deployed a crowdsourced system to play “Who
wants to be a millionaire?”” (WWTBAM) [5]] live. Our work
was inspired by IBM Watson’s success at Jeopardy and
aims to utilize the crowd to answer WWTBAM questions
accurately. We provide an Android app to let the users play
the game while the quiz-show is live on TV simultaneouslyf}
When the show is on air, this app makes a notification sound
to alert the users to pick up their phones and start playing.
Our two project members type the questions and multiple
choices as they appear on the TV, and the app users enter
their answers using their phones. The system has a backend
server to dispatch the questions to the app users, and collect
the answers from them. We run our MCQA algorithms on
this backend server.

To the best of our knowledge, our work is the first
crowdsourcing study on WWTBAM game. For the easier
questionﬂ our majority voting performs over 90% success
rate on average. However, on the harder questionsE the success
of the majority voting slips below 50%. Therefore, we study
more complex methods to pull the crowd’s performance up
on the harder questions.

To improve the accuracy on the harder questions, we
suggest to define target user groups for those queries by
utilizing the applications installed on the smartphones. This
classification reduces the number of votes at the group level
while increasing the homogeneity of the votes inside the user
groups. By this way we are able to identify the appropriate
minority voice and design effective MCQA algorithms based
on those user groups.

The Android applications in the Google Play Store [6]
are categorized into 34 discrete categories. We form 34

2The app also has offline question answering option for the users who are
not present when the show is on air.

YThe question difficulty and threshold is determined by the show’s format:
easier questions are from level 1 to 7, and harder ones are level 8 and above.

Server

Admin UserManager

Decider Client
API

Asker

Collector

Figure 1.

user groups to match those app categories, and then we
classify the users into these user groups based on the number
of the installed apps from each of those corresponding
categories. We then utilize these user groups in our MCQA
algorithms to answer the questions accurately. On overall,
our final algorithm improves the answering accuracy by 10%
compared to the basic majority voting. More importantly, it
pulls up the success rate on the harder questions by 35%
where majority voting falls short. These results suggest that
building a crowdsourced super-player for MCQA using our
methods is feasible. In future work, we will investigate
adapting lessons learned from the WWTBAM application
to general/location-based crowdsourcing applications and
recommendation systems.

The rest of the paper is organized as follows: We summarize
the design of our system in Section [[I, Then we provide the
details about our dataset in Section In Section we
present the performance of the majority voting to set a base
to our performance evaluations. Then in Section [V] we discuss
how to build the app based user groups, namely we present
our user classification methods. In Section we evaluate
the performance of different crowdsourcing algorithms that
leverage our user classification methods. Then we conclude
the paper with reviewing the related work in Section and
presenting our future directions in Section

II. CROWDREPLY: A CROWDSOURCED WWTBAM APpP

We developed an Android app and the backend software to
enable the audience watching WWTBAM on the TV to play
along on their smartphones simultaneously. We targeted the
Turkish audience due to the high popularity of the show there.
(Our app has been installed more than 307K times [6].) When
the show is on air, CrowdReply app makes a notification
sound to alert the users to pick up their phones and start
playing. Our two project members type the questions and
multiple choices as they appear on the TV, and the app
users enter their answers using their phones. The users are
incentivized to participate as they enjoy the game-play, and
they can see their ranking among the other players. We also
provide offline question answering for the users who are not
present when the show is on air.

The game enables us to collect large-scale crowdsourcing
data about MCQA dynamics. In total, we have more than 5
million answers to more than 3000 questions. The ground-
truth of a question is the correct answer announced on the TV.
There are up to 12 questions with increasing difficulty levels,

Mobile

: ’
Google Cloud
Messaging Server

MessageService Statistics ‘

LiveGame
>

The system architecture

and the harder questions appear based on the performance of
the TV contestant.

The overall architecture of the CrowdReply is shown in
Figure |1} CrowdReply consists of three main parts, an admin
part for entering the questions & the multiple choices while
the game is live on the TV, a mobile side for presenting the
questions to the users and letting them answer the questions,
and a server side for dispatching the questions, collecting
the answers, and providing useful statistics. We described the
design, implementation, and deployment of the CrowdReply
in a previous work [7]. In this paper, we leverage this app and
the data for targeted MCQA.

III. OUR DATASET

In order to define the target for an MCQA query, we
leverage app type based user classification by utilizing the
applications installed on the smartphones. To study this ap-
proach, we collected the installed apps from our users who are
currently using the CrowdReply app to play the WWTBAM
game [6]. In order to evaluate the feasibility of our approach,
we used a subset of our user base. In our dataset, we have 1397
unique devices (i.e. users) and 16651 unique apps installed on
them. Figure [2| shows the distribution of the apps over the
devices. The graph unveils that, there are about 10 popular
apps which are installed on almost every device in our dataset.
Furthermore, around 100 apps are installed on 100 devices or
more. The remaining apps, which count to more than 16500
apps, are scattered among the devices.

1400

1200

=
o
=3
[=]

800

-]
(=]
=]

Number of Devices

'y
(=3
[=]

~N
(=3
=]

o

1 10 100
Apps

1000 10000

Figure 2. Apps vs the number of devices each app is installed on (app
names on the x-axis are replaced with the incremental app id’s to make the
axis labels readable)

We used Google Play Store [8] listings to categorize the
applications. Among those 16651 apps we collected, we were
able to categorize 11652 of them. It is due to the fact that

TABLE I
GOOGLE PLAY APP CATEGORIES AND THEIR APPEARANCE IN OUR

question level.

TOTAL NUMBER OF QUESTIONS AND ANSWERS BY QUESTION LEVEL IN

TABLE I

OUR DATASET

Question Num. of Num. of
Level Questions Answers
1 508 27742
2 471 20643
3 443 16437
4 343 10766
5 310 9837
6 238 4639
7 176 3080
8 87 994
9 40 386
10 24 139
11 14 72
12 0 0

DATASET
App Category Num. Num.
of of
Apps | Devices
Books and Reference 336 690
Business 128 887
Comics 42 75
Communication 214 1389
Education 732 535
Entertainment 990 1324
Finance 121 313
Health and Fitness 162 236
Libraries and Demo 40 250
Lifestyle 403 549
Live Walpaper 0 0
Media and Video 388 1318
Medical 62 76
Music and Audio 467 853
News and Magazines 222 967
Personalization 748 579
Photography 409 724
Productivity 299 1126
Shopping 107 312
Social 202 1339
Sports 198 459
Tools 779 1397
Transportation 77 224
Travel and Local 245 1359
Weather 50 203
Widgets 0 0
Games - Arcade and Action | 1126 1145
Games - Brain and Puzzle 1075 1397
Games - Cards and Casino 190 825
Games - Casual 1111 993
Games - Live Wallpaper 0 0
Games - Racing 395 707
Games - Sports Games 334 580
Games - Widgets 0 0

some of the apps are system apps and they don’t have a
Google Play Store listing, and some others are either never
published through Google Play Store or they were removed at
the time we crawl the listing data. Table [l shows the Google
Play Store app categories, the number of unique apps in our
dataset, and the number of unique devices which has at least
one installed app from the given category.

The format of the WWTBAM game categorizes the ques-
tions into 12 levels based on their difficulty. In our exper-
iments, for all 12 question level§] we have total of 2654
questions that are answered by our 1397 test users. For these
2654 questions, we have total of 94735 answers. Table |E|
shows the distribution of the questions and the answers by

€As there exist no level 12 question in our dataset, we exclude this level
from our results hereafter.

IV. THE NAIVE APPROACH: MAJORITY VOTING

An MCQA algorithm for our WWTBAM game tries to
answer a question using crowds’ responses. The success of
an algorithm is defined as the percentage of the correctly
answered questions in a given question level. For example,
if an algorithm is able to answer p number of questions out
of total Q questions from level /, then its success S for the
question level / would be:

p
S (100 X Q) % (1)

In order to analyze the success of our classification methods
and the accuracy of our MCQA algorithms, we compare the
results with our base algorithm: majority voting. Majority
voting for MCQA works as follows: Given a question and
a set of answers, the algorithm counts the user answers for
each choice, and then selects the mostly voted choice as the
final answer. Figure [3] shows the success of the base majority
voting algorithm for our dataset.

100%

90%
80%
70%
6

509
40%
309
2

10%
0%

1 2 3 4 5 6 7 8 9 10 11

Figure 3. Base majority voting success by question level

o
X

=]
X

Q
B

Q
B

1]
X

While the overall success of the base majority voting
algorithm for the easier questions is above 90%, it dramatically

decreases for the harder questions (slips below 50%). Namely,
the base majority voting is able to answer the easier questions
accurately, however it falls short for the harder questions. The
success graph shows an increase on the question levels 10 and
11, but it is due to the fact that the number of questions we
have for that levels in our dataset is less.

V. APP BASED CLASSIFICATION OF THE ANDROID USERS
FOR MCQA

In this section, we evaluate how the installed apps and the
users’ question answering success is correlated. In order to
explore this relationship, we classify the users into 30 different
user groups based on the apps installed on their deviceﬂ The
user groups are named after the app type categories given in
Table |l and they have one-to-one correspondence with those
categories. After this classification, we perform majority
voting inside each user groups to measure their success.

During the classification phase, our objective is to
maximize the success of the best performing user group
for each question level. However, we also measure how the
least successful user group performs to efficiently design our
MCQA algorithms. Here we do not include the details of how
each individual user group performs because of the space
constraints. But still, only measuring the performances of the
most and the least successful user groups gives us enough
clues on how to design our MCQA algorithms.

Next, we introduce and compare four different classification
techniques to classify the users based on the apps accurately.
Figure [4] shows the performances of these classification tech-
niques by question level compared to the base majority voting
algorithm we defined in Section

A. Basic User Classification

In basic user classification method, a user belongs to a
group if she has at least one application of the corresponding
app type category installed on her device. Figure shows
how the best and the worst user groups perform by question
level when using this classification method.

It is clear from the graph that, although the best performing
user groups slightly outperform the base majority voting, the
overall success remains parallel to it.

B. Weighted User Classification

Weighted user classification method clusters the users based
on the number of the apps installed from each corresponding
app type category on their devices. For example, consider a
device which has total of N number of apps installed, where k
number of them are of the app type category A. Then, for the
user group Uy, the user’s response weight Wy, would be:

Wo, = @)

Hence, if a user has more apps of a particular app type
category, then her answer will have more significance in the

dNote that, although there are total of 34 application categories, 4 categories
do not appear in our dataset as seen on Table [[] Therefore we define 30 user
groups instead of 34.

corresponding user group. Notice that, in this classification
method, each user response has different weight for a given
question based on the user’s response weight Wy, .

Figure shows the performances of the best and the
worst user groups by question level when the weighted user
classification is used.

C. Significant User Classification

We claim that the more apps installed from an app type
category, the more the user is interested in that type of apps.
In order to leverage this fact, we designed our significant
user classification method. In this method, we define a
minimum number of apps threshold, and classify the users
based on this criteria. After some trials on our dataset, we
determined this threshold as 5. Therefore, in this classification
method, a user belongs to a group if she has more than 5 apps
of the corresponding app type category installed on her device.

Figure shows how the best and the worst user
groups perform by question level when the significant user
classification method is used. Note that, as the classification is
significant when using this method, some of the user groups
have less number of users. As a result, those groups do not
have an answer for each and every question in our dataset.
Therefore, in our analysis for significant user classification
method, when a user group does not have an answer for a
given question, we consider it as a non-correct answer.

Figure reveals that, the better classification of the
users increases the success of the user groups. It is also
clear from the graph that, the best performing user groups
are significantly better when using this classification method
compared to the basic and the weighted user classification
methods. Furthermore, the sharp success decrease for the
higher question levels disappears when this method is used.

D. Competent User Classification

Competent user classification method clusters the users
identical with the significant user classification method.
Namely, in this method, a user belongs to a group if she has
more than 5 apps of the corresponding app type category
installed on her device. However, these two classification
methods differ from each other based on how we analyze them.

Notice that, when analyzing basic, weighted and significant
user classification methods, our objective is to answer all the
questions in our dataset within each of the user groups. On
the other hand, in the competent user classification analysis,
we analyze how the user groups perform on the questions
they send us answers. Therefore, in this classification method,
some user groups will not be able to answer some of the
questions, but they will be competent when they have an
answer for a question.

Figure [d(d)] shows the success of the user groups by question
level when the competent user classification method is used.
The graph reveals that, for each question level, there exist at
least one user group which has all of its answers correct.

100% -
90% 90%
80% 80%
70% 70%
60% 60%
& sox% 8 so%
a a
40% 40%
30% 30%
20% 20%
10% 10%
0% 0%
1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11
Question Level Question Level
(a) Basic user classification (b) Weighted user classification
100% 100%
90% 90%
80% 80%
70% 70%
Majority Voting
60% 60%
]]
§ so% g so%
a a
0% 0%
30% 30%
20% 20%
10% 10%
0% 0%
1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11
Question Level Question Level
(c) Significant user classification (d) Competent user classification

Figure 4. Success of the user groups using our classification methods: Given a question level, all the user groups have a success rate inside the colored area.
Namely, area boundaries for each question level are set by the success rates of the best and the worst performing user groups for that question level, based
on the user classification methods.

100%

90%

80%

70%

Success

60%

50%

40% =
1 2 3 4 5 6 7 8 9 10 11
Question Level

=+Business =*Cards and Casino ~o-Casual =~Comics ==Communication ~—Education
=t=Entertainment <~Finance ~/~Health and Fitness =*Libraries and Demo —*Lifestyle Media and Video
==Medical ==Music and Audio News and M. i Per lizati <>-Photography Productivity
=*Racing Shopping Social Sports Sports Games Tools

Transportation Travel and Local Weather ==Arcade and Action <@Books and Reference <#=Brain and Puzzle

Figure 5. (This figure corresponds to Figure@ Success of the user groups in detail when using competent user classification method: This figure and
thus Figure [(d)] show the success rates among only the answered questions by a user group, as opposed to the Figures fi(a)] (D) and which show the
ratio of the correct answers to the all questions.

100%

90%

80%
70% -
60%
50% -
40% -
30% -
20%
10%

0%

I |nter-group Consensus " Weighted Majority Voting ~ =®=Majority Voting

(a) Algorithms based on Basic user classification

100%

90% |
80%
70% -
60% |
50% -
40% -
30%
20% -
10%
0%

I |nter-group Consensus

[Weighted Majority Voting

~&=Majority Voting
(c) Algorithms based on Significant user classification

Figure 6.

VI. CROWD PLAYING “WHO WANTS TO BE A
MILLIONAIRE?”

In this section, we first present two MCQA algorithms in
order to investigate how our classification methods described
in Section [V] affect the performances of the algorithms.
Then using our observations, we design and introduce our
super-player algorithm.

For each of the four classification methods, we execute the
below two MCQA algorithms, and measure their success rates.
The success of an algorithm is defined as the percentage of
the correctly answered questions in a given question level.
Figure [6] shows how these two algorithms perform based on
the classification methods, and how they are compared to our
base majority voting algorithm.

Algorithm 1: Inter-group Consensus

The inter-group consensus algorithm has two phases. In
phase one, the algorithm classifies the users into the user
groups based on the classification methods described in
Section [V] Then it performs majority voting inside the user
groups to define an answer for each group. In phase two,
the inter-group consensus algorithm performs majority voting
among the user groups where each group has a single vote.
The result of this voting in the second phase is the final
answer selected by the algorithm.

Notice that, when using the significant and the competent
user classification methods, some of the user groups do not
have an answer for some of the questions in our dataset. In case

100%

90%
80%
70% -
60% -
50% -
40% -
30%
20%
10%

a

0%
1 2 3 4 5 6 7 8 9 10 11

I |nter-group Consensus " Weighted Majority Voting ~ =®=Majority Voting

(b) Algorithms based on Weighted user classification

———————

1 2 3 4 5 6 7 8 9 10 11

I |nter-group Consensus " Weighted Majority Voting ~ =®=Majority Voting

(d) Algorithms based on Competent user classification

Success of the inter-group consensus and the weighted majority voting algorithms by question level when using our user classification methods

a user group does not have an answer, if the algorithm is using
the significant user classification method, then it randomly
votes for a choice as a substitute during its phase two majority
voting. It is due to the fact that, when using the significant
user classification method, all the user groups have to answer
all of the questions in our dataset. On the other hand, if the
algorithm is using the competent user classification method, it
ignores the non-answering user groups during the phase two
majority voting, namely those non-answering groups would
have no votes for the final answer.

Algorithm 2: Weighted Majority Voting

The weighted majority voting algorithm defines the user
groups based on the classification methods in Section [V]
Then for a given question, it performs majority voting among
all the users, where every user has different answer weights
based on their user groups and the observed average group
success ratest]

For example, consider a user who is classified into two
user groups A and B, and the observed successes of these two
groups for the question level [are A;% and B;% respectively.
Then the weight W of the user’s answer for the question level
[would be:

A+B
mi= (55 t) /2 9
Finally, the weighted majority voting algorithm selects the
final answer for the given question by performing majority

°In order to incorporate these success rates into the algorithm, we used
two-fold cross validation [E]]

voting on those per user weighted answers.

Algorithm 3: Our Super Player

A. Design Considerations: Observations that led to the super
player algorithm

e Performance of the Weighted Majority Voting Algorithm

It is clear from the Figure [f that, regardless of which
classification method it uses, the weighted majority voting
algorithm performs similar to the base majority voting. It
is due to the fact that the observed group success rates are
not significantly distant from each other. Even taking the
squares of the observed success rates does not provide enough
separation, and the performance of the algorithm remains
similar. This reveals that, weighting user answers does not
make much difference.

e Performance of the Inter-group Consensus Algorithm
when using the Significant User Classification Method

As seen on Figure [the user groups individually perform
better when using significant user classification compared to
the basic and the weighted user classification methods. On the
other hand, inter-group consensus algorithm performs similar
for all the three classification methods as seen on Figure [6]
Namely, when using the significant user -classification
in the inter-group consensus algorithm, even though the
user groups individually know the correct answer, they
cannot agree on the correct answers successfully. This unveils
that the user groups are successful on dissimilar question sets.

e Performance of the Inter-group Consensus Algorithm
when using the Competent User Classification Method

As seen on Figure [6(d)] the inter-group consensus algorithm
when using the competent user classification method outper-
forms all other methods (note that the question level 11 is
rare, thus it is not statistically significant). Based on the fact
that the user groups are successful on dissimilar question sets
when using the significant user classification, we infer that
the user groups have an answer on dissimilar question sets
when using the competent user classification (recall that the
non-answering groups have no votes for the final answer when
using the competent user classification).

B. Our Super Player Algorithm: Selective User Groups

In order to leverage the success of the inter-group consensus
algorithm when using the competent user -classification
method, and the fact that the user groups are successful on
dissimilar question sets, we designed the following algorithm:

Given a question, the algorithm searches for the most
successful user group of the same question level. In order to
calculate the user groups success map, we use a subset of our
questions as our training dateﬂ and performed the competent
user classification analysis that we explained in Section

After finding the most successful user group, the selective
user groups algorithm performs majority voting inside that
group. The selected choice by this majority voting is the final

fWe used two-fold cross validation for this algorithm [9].

Data: user groups success map by question level,
question
Result: answer to the question

while has next user group do
get the next most successful user group as the current

user group;
if the current user group performs better than the
base majority voting then
if the current user group can answer then
perform majority voting on the current user
group;
return answer;
end
else
break the while loop;
end

end
perform the base majority voting;
return answer;

Algorithm 3: MCQA using Selective User Groups

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

1 2 3 4 5 6 7 8 9 10 11
B Selective User Groups =®=Majority Voting

Figure 7. MCQA using the Selective User Groups algorithm success by
question level

answer of the selective user groups algorithm.

Note that, when using the competent user classification
method, some user groups will not be able to answer some
of the questions. Therefore, if the most successful group does
not have an answer for the given question, then the selective
user groups algorithm looks for the second best performing
group for that question level to answer the question. And if
that group also cannot answer the question, the algorithm
keeps searching for the next group until no further group
remains that perform better than the base majority voting. In
the worst case, the selective user groups algorithm answers
the question using the base majority voting. Algorithm [3|
shows this execution flow.

Figure [/| shows how the selective user groups algorithm
performs by question level. As it is clear from the graph
that this algorithm performs significantly better than the base
majority voting especially for the higher level questions where
the base majority voting falls short. Note that the selective user
groups algorithm also outperforms our second best algorithm

which is the inter-group consensus algorithm when using the
competent user classification method shown in Figure [6(d)]
On the other hand, the inter-group consensus algorithm when
using the competent user classification method is remarkable
in the sense that it does not require any training data.

VII. RELATED WORK

In recent years, ML and IR communities have been
producing large and growing literature on question answering.
Today, there are many studies on question answering in the
form of game playing. Some of these systems rely on the
Al based reasoning and NLP. IBM Watson’s [3] Jeopardy
challenge is the best known example of such systems. In
order to outperform the human contestants, IBM Watson’s
Jeopardy system leverages NLP, ML and IR techniques.

MCQA is also drawing researchers’ attention and there
are several recent works on MCQA. Lam et al. [[10] describe
how search engines can be utilized to play WWTBAM
game. Their basic method is to race the hit numbers of
question+choice pairs by searching the possible combinations
of such pairs on the search engines. With this naive strategy,
out of 635 questions, their system is able to answer 44.4%
of them using MSN.com and 55.6% of them using Google.
In their advanced approach, they use the proximity of the
question and the choice keywords as they appear in the search
results. With the help of this strategy, their system is able
to answer 68.9% of the questions. In [11], authors work on
Japanese WWTBAM questions, and they try to detect the
question phrase to decouple the choices before performing
the hit race. With this keyword association, their system is
able to answer the questions with 79% overall success rate.
However, in another work [12f], the same method performs
45% on Arabic WWTBAM dataset. The authors of the latter
work, on the other hand, are able to pull the performance
up to 55% with an improved method on Arabic questions.
Their system also performs 62% on English questions. In
a recent work [13] on WWTBAM, authors build a virtual
player to play the game using Italian questions. Similar to
IBM Watson’s Jeopardy system, their virtual player leverages
the information retrieved from Wikipedia. The overall success
rate of their system is 76.33%. However, in none of the
works above, the performance is proportional to the difficulty
of the questions, because they are based on IR techniques as
opposed to our system that leverages the crowd’s intelligence.

Crowdsourcing has been employed for answering subjec-
tive, relative, or multidimensional location-based queries for
which the traditional search engines perform poorly [[14], [15].
Similar to our previous location-based question answering
work [14], there are several other question answering systems.
AskMSR [16] leans on the redundant data on the web instead
of the complex NLP techniques. ChaCha [17] and SMS-
Find [[18]] are other examples of SMS-based question answer-
ing systems. ChaCha tasks the users based on their location
and the user statistics. SMSFind leverages the search engines
to answer the questions automatically. It tries to find the
best matching answer by using both IR and NLP techniques.
Although SMSFind is not a crowdsourced answering system,
it is remarkable in the sense that the authors point out what

type of questions are ambiguous to their system and where
the human intelligence is needed. In another work, CrowdDB
[19], authors present an SQL-like query processing system
to collect large amount of data with the help of microtask-
based crowdsourcing. CrowdDB is piggybacked to Amazon
Mechanical Turk [20].

VIII. FUTURE WORK

Our work reveals that the app based user classification
improves the success of our MCQA algorithms. Recall that,
it is due to the fact that the user groups are successful
on dissimilar question sets. Therefore, we foresee that
the classification of the questions will further improve
our performance. As a future work, we plan to categorize
our question set and then investigate how this question
categorization changes the success of our algorithms.

Furthermore, in the scope of this paper, we classify the users
into the user groups where many users belong to multiple
groups. We plan to employ some ML clustering algorithms
to classify our user base where each user belongs to a single
cluster. Using the question categorization and this clustering
together, we plan to extend our understanding of the targeted
MCQA dynamics more.

REFERENCES

[1] “Google now,” http://www.google.com/now.
2] “Ap]g e siri,” http://www.apple.com/10s/s1r1.

D. Ferrucci, E. Brown, J. Chu-Carroll, J. Fan, D. Gondek, A. A.
Kalyanpur, A. LallK, J. W. Murdock, E. Nyberg, J. Prager et al.,
“Building watson: An overview of the deepqa project,” Al magazine,
vol. 31, no. 3, pp. 59-79, 2010.

[4] C. H. Lin, Mausam, and D. S. Weld, “Crowdsourcing control: Moving
beyond multiple choice,” in UAI, 2012, pp. 491-500.

[5] “Who wants to be a millionaire?” http://en.wikipedia.org/wiki/Who_
Wants_to_Be a Millionaire?

[6] “Google play page of application,” https://play.google.com/store/apps/
details?id=edu.buffalo.cse.ubicomp.crowdonline,

[7] B 1. Aydin, Y. S. Yilmaz, M. F. Bulut, and M. Demirbas, “Crowdreply: A
crowdsourced multiple choice question answering system,” ACM/IEEE
IPSN ’13 3rd International Workshop on Mobile Sensing: The Future,
brought to you by Big Sensor Data, 2013.

[8] “Google play store,” https://play.google.com/store/apps.

[9] F. Mosteller and J. W. Tukey, Data analysis, including statistics, 1968.

[10] S. K. Lam, D. M. Pennock, D. Cosley, and S. Lawrence, “1 billion
Eages: 1 million dollars? mining the web to play” who wants to
e a millionaire?”,” in Proceedings of the Nineteenth conference on
Uncertainty in Artificial Intelligence. ~ Morgan Kaufmann Publishers
Inc., 2002, gp. 337-345.
E. Sumita, F. Sugaya, and S. Yamamoto, “Measuring non-native speak-
ers’ proﬁcienci of english by using a test with automatically-generated
fill-in-the-blank questions,” in Proceedings of the Second Workshop on
Building Educational Applications Using NLP, ser. EdAppsNLP 05.
Strogds6181rg, PA, USA: Association for Computational Linguistics, 2005,
. 61-68.

IﬁP Awadallah and A. Rauber, “Web-based multiple choice question
answering for english and arabic questions,” in Advances in Information

Retrieval. Springer, 2006, pp. 515-518.
P. Molino, P. Basile, C. Santoro, P. Lops, M. de Gemmis, and G. Se-
meraro, “A virtual player for who wants to be a millionaire? based on
uestion answering,” in AI* IA 2013: Advances in Artificial Intelligence.

pringer, 2013, pp. 205-216.

M. F. Bulut, Y. S. Yilmaz, and M. Demirbas, “Crowdsourcing location-
based queries,” in PerCom Workshops, 2011, pp. 513-518.

M. Demirbas, M. A. Bayir, C. G. Akcora, Y. S. Yilmaz, and H. Fer-
hatosmanoglu, “Crowd-sourced sensing and collaboration using twitter,”
in WOWMOM, 2010, pp. 1-9.

E. Brill, S. Dumais, and M. Banko, “An analysis of the askmsr
question-answering system,” in Proceedings of the ACL-02 conference
on Empirical methods in natural language processing - Volume 10, ser.
EMNLP ’02. Stroudsburg, PA, USA: Association for Computational
Linguistics, 2002, pp. 257-264.

[17] http://www.chacha.com,

[18] J. Chen, L. Subramanian, and E. Brewer, “Sms-based web search
for low-end mobile devices,” in Proceedings of the sixteenth annual
international conference on Mobile computing and networking, ser.
MobiCom *10. New York, NY, USA: ACM, 2010, pp. 125-136.

M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and R. Xin,
“Crowddb: answering queries with crowdsourcing,” in Proceedings of
the 2011 ACM SIGMOD International Conference on Management of
data, ser. SIGMOD ’11. New York, NY, USA: ACM, 2011, pp. 61-72.
“Amazon mechanical turk: Artificial artificial intelligence,” https://www.
mturk.com/mturk.

(11]

[12]

[13]

[14]
[15]

[16]

[19]

[20]

http://www.google.com/now
http://www.apple.com/ios/siri
http://en.wikipedia.org/wiki/Who_Wants_to_Be_a_Millionaire?
http://en.wikipedia.org/wiki/Who_Wants_to_Be_a_Millionaire?
https://play.google.com/store/apps/details?id=edu.buffalo.cse.ubicomp.crowdonline
https://play.google.com/store/apps/details?id=edu.buffalo.cse.ubicomp.crowdonline
https://play.google.com/store/apps
http://www.chacha.com
https://www.mturk.com/mturk
https://www.mturk.com/mturk

	Introduction
	CrowdReply: A Crowdsourced WWTBAM App
	Our Dataset
	The Naive Approach: Majority Voting
	App based Classification of the Android Users for MCQA
	Basic User Classification
	Weighted User Classification
	Significant User Classification
	Competent User Classification

	Crowd Playing ``Who Wants to be a Millionaire?''
	Design Considerations: Observations that led to the super player algorithm
	Our Super Player Algorithm: Selective User Groups

	Related Work
	Future Work
	References

