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Abstract—Visual imaging under water is characterized by
low range of visibility and poor image quality. Light interacts
with water and its inherent particles in the form of absorption
and scattering, causing image degradations, which have to by
considered by underwater imaging systems. This can be done
by optimizing the image acquisition and image post processing
with respect to the properties of water and scene. Therefore a
physically based computer graphical model is presented which
describes the occurring effects of blurring, loss of contrast, color
shift and brightening through backscattering. This model can
be used for both: efficient simulation of underwater images and
model based image restoration. Furthermore, the presented model
can be used to answer theoretical questions on visibility range
and imaging performance.

I. INTRODUCTION

Digital Imaging and image processing have been estab-
lished in a wide range of challenging topics, in surveillance
tasks, industrial quality assurance, inspection applications and
exploration. All over the world and even in cosmic space
optical imaging sensors became very popular. The reason
therefore is the human interpretability of visual information. In
underwater tasks visual sensor systems are paid little attention.
Acoustical sensor systems are the means of choice. Imaging
systems under water give only poor results in terms of image
quality. That’s because of water and its inherent particles
interact with light resulting in absorption and scattering and
thus in image degradations. Nevertheless, a growing demand
on oceanic resources will make visual information of under-
water scenery essential in the future. Several underwater tasks
in inspection, surveillance and exploration cannot be done
without visual information like texture and color. Through the
worldwide population increase aqua-farming, oceanic mineral
resources like manganese nodules and marine infrastructure
like offshore wind parks become more and more important.
These all are reasons for an increase of visual imagery systems
in future.

But a waterproof housing of camera systems cannot solve
the imaging task alone. Optical sensor systems have to cope
with many imaging problems. Low light intensities, color
shifts, dazzling by backscattering, loss of contrast and blurring
reduce the visibility range and the image quality. The result
of underwater imagery highly depends on the scenery and on
the way to illuminate that scenery. Though, imaging systems
for underwater tasks have to be designed by computational

imaging aspects: One has to regard both, image acquisition
and image processing together.

Creating an underwater imaging system considering only
image post processing without regarding integrated image
acquisition and lightening, as it was done by most image
enhancement and restoration approaches in the past, mostly do
not lead to generalizable imaging systems. Otherwise, planning
acquisition process and lightening without designing image
processing do not result in accurate images either. A very
accurate underwater imaging system has to be conceptualized
by optimizing both aspects. Therefore, an underwater imagery
model is needed, which is able to explain image acquisition
process and lightening. A model, which can answer the theo-
retical questions of visibility range and which can be used for
image post processing like image restoration.

A. Related Works

In the 60s and the 70s of the last century essentials of
light transportation in scattering medium has been researched
[1]–[3]. The radiative transfer equation (RTE) [1] has been
developed, which is the fundamental of the physical model
of underwater imaging process. Thereof different suitable
simulation models were derived, which could be used for
simulation of underwater images. The models of Jaffe [4]
and McGlamery [5] are based on a small-angle-approximation,
which can be used to calculate the point-spread-function (PSF)
assuming the phase-function to be small angled. With the
aid of a heuristic part, backscattering is also modeled in this
approach. These models can be used to synthesize underwater
images considering different degradation effects like loss of
contrast, brightening by backscatter, blurring and color shift.
Furthermore this model is very general and can be used in most
underwater tasks without violating inherent assumptions. How-
ever, this model also has some disadvantages. The backscatter-
ing part is modeled heuristically without considering the real
properties of backscattering. This implicit shaped model cannot
easily be used for image restoration tasks. Another approach
to model underwater imagery was developed by Hou et.al. [6].
They measured real PSFs in different distances and different
turbidities and fitted a parametric model. Thus PSF can be
easily described by a parametric model. This model can be
used in terms of image restoration, but it is limited by implicit
assumptions concerning lightening, scenery and water inherent
properties. In the last few years many image enhancement



and image restoration approaches have been developed [7].
Thereby, heuristically image enhancement methods [8], [9] can
produce impressive quality results, but they are restricted by
its implicit assumptions and therefore, can only be used under
constrained lightening conditions. Many developed image and
color restoration methods are based on a simplified imaging
model

I(x) = J(x)t(x) +A · (1− t(x)) , (1)

where I(x) is the observed color vector, J(x) is the scene
radiance, A is the global atmospheric light and t(x) is the
medium transmission. This model is often used with assump-
tions like the dark channel prior [10]. These approaches [11]–
[13], based on (1) contain a strong assumption as shown in
[11]: Global homogeneous lightening. Thus, they only can
be used under very special conditions. These models cannot
handle other illumination types like artificial illumination.

B. This Paper

Today, computer graphical methods are the means of choice
for visual simulation and modeling tasks. They can be used to
synthesize photorealistic imaging results, taking into account
mostly every optical effect. But, using the whole range of
photorealistic rendering is of computational complexity and
therefore expensive in terms of computational performance. To
model underwater imaging processes, using all these methods
is quite oversized from practical point of view. In this paper a
model is presented, which is based on the computer graphical
recursive rendering equation adapted onto underwater imagery
by using specific properties and assumptions, which are mostly
fulfilled. Hence, this model can be used for efficient simulation
and theoretical issues, also visibility ranges dependent on the
water properties and for image restoration methods.

First the fundamentals of the recursive rendering equation
will be described in II-A. Afterwards the new imaging model
will be described in II-B, presented in a clear mathematical for-
mulation as affine transformation (II-C) and then be discussed
in II-D.

II. UNDERWATER IMAGING MODEL

Using computer graphics for simulating photorealistic im-
ages is common practice. Nevertheless, modeling and simulat-
ing participating medium like scattering water or haze is still a
major challenge in computer graphical research [14], [15]. All
computer graphic render approaches are based on the recursive
rendering equation.

A. Recursive Rendering Equation

The rendering equation [16], [17] was developed in 1986
by David S. Immel et al. and James T. Kajiya. In this recursive
integral equation, the radiance Lo leaving a point x into
direction ro is given by the sum of emitted radiance Le and
reflected radiance Li.

Lo(x, ro) = Le(x, ro)+

∫
S2

ρ(x, ri, ro)Li(x, ri) 〈ri,n〉dri ,
(2)

where r ∈ S2 =
{
r ∈ R3| ‖r‖ = 1

}
is a normalized direc-

tion, ρ(·) is the bidirectional reflectance distribution function
(BRDF) depending on the direction of ingoing radiance ri and

of outgoing radiance ro and 〈ri,n〉 is the cosine angle of the
ingoing radiance and the normalized surface normal n. Fig. 1
illustrates the disposal of the used variables.
The problem is the recursive character and the computational
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Fig. 1: Radiance Lo (x, ro) reflected by object surface point
x can be calculated by weighted integration (2) of incoming
radiation Li (x, ri) at x

expensive integration. The ingoing radiance Li(x, ri) can then
again be caused by reflection of light at another position x′.
Thus, modern render algorithms must solve two important
problems. Choosing recursion depth depends on scenery, re-
flectance and lightening and chosen integration algorithm. Out
of this, quite different approaches have been developed for
different field of use. Examples therefore are photon mapping
[18], path tracing, bidirectional path tracing [19], metropolis
light transport [20] and many more.
Whereby, assuming light rays travelling through empty space
without any change, rendering in participating medium is much
more computational complex. Therefore, one has to consider
light interaction in medium. This can be done by the transport
equation [15], [21]

Lo(x, ro) =

∫ ∞
0

T (x,x+ τro)Ls(x+ τro,−ro)dτ , (3)

where T (·) can be calculated by

T (x,x+ τro) = exp

(
−
∫ τ

0

c(x+ τ ′ro)dτ
′
)
, (4)

where c(x) = a(x) + b(x) is the extinction coefficient, which
is the sum of the absorption coefficient a(x) and the scattering
coefficient b(x).

Assuming a homogeneous medium T (·) degenerates to the
attenuation factor T (x, z) = exp (−c ‖x− z‖) of the Beer-
Lambert law. Ls(xτ , ro) is the radiation caused by inscattering
and can be calculated by

Ls(xτ , ro) = Le(xτ , ro)+

∫
S2

β (xτ , 〈ro,−ri〉)Li(xτ , ri)dri ,
(5)

where Le is the emitted radiation and β(·) is the so called
phase function, which describes the scattering distribution
dependent on the cosine of the scattering angle. Li can
be calculated recursively with (2) and (5). For better
understanding, Fig.2 illustrates the volume rendering setting.
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Fig. 2: Radiance Lo (xτ , ro) scattered by medium at point xτ
can be calculated by weighted integration (5) of incoming ra-
diation Li (xτ , ri) at xτ , where the weights can be calculated
by the angle dependent phase function β(·).

If camera is modeled as pinhole camera, the pixel intensity
can be calculated, by integrating the incoming radiance

g ∝
∫

Ω⊂S2

Li(p, r)dr , (6)

where p is the pinhole and Ω ⊂ S2 is the solid angle of
the cone, spanned by the projection of the pixel area and the
projection center p.

B. Computergraphical Model for Underwater Imaging

The challenge of modeling light transportation for un-
derwater imagery lies in the choice of recursion depth, by
neglecting light paths with small contribution to the total
amount of image intensity. In this approach a single-scattering
model will be presented, which is able to explain the common
degradations of underwater imaging, like low intensities, loss
of contrast, color shift, brightening by backscattering and blur-
ring. Thereby – similar to the model of McGlamery [5] – the
total image intensity g(u) is split into three different additive
components, based on the physical rendering equations. Fig.
3 shows the three different components and the properties of
the camera model.

1) Direct Component: The direct component represents the
path of light transportation, which goes from the light source
to the camera sensor by reflecting at the object surface point
without any interaction of medium than by attenuation. This
component contains the most information about the object
reflectance. This component can be derived from the rendering
equation (2) and the transport equation (3) by assuming a ho-
mogeneous medium, lambertian reflection ρ(x, ri, ro) = ρ(x)
and a pinhole camera model.

gdir(x) =

∫
Ax
Iξ

(
x̂− ξ

) ρ(x)

‖x− p‖2 ‖x− ξ‖2
·〈

ξ̂ − x,nx
〉
e−c(‖x−ξ‖+‖p−x‖)dx , (7)

where Iξ (r̂) is the intensity of light source at ξ emitted into
the normalized direction r̂ = r

‖r‖ . Ax is the projected object-
sided pixel Area. Fig. 4 shows the arrangement of the scene.
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Fig. 3: This figure shows the three considered components of
light paths affecting the perceived pixel intensity. The direct
component (green line) represents the path of light reflected
by the object surface x towards the camera pinhole p. The
blurring component (red lines) contains all paths, reflected by
an object surface point x′, which are scattered into the line of
sight px. The indirect component (blue lines) represents the
light rays emitted by the light source and scattered into the
line of sight px without being reflected on scene surface.

The direct component can be approximated without intro-
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Fig. 4: This figure illustrates the direct component. Light rays
emitted by light source ξ are reflected by the scene surface x
into direction of the pinhole p of the camera. Radiation has to
be integrated over the surface area Ax, which is the projection
of the pixel area Ap onto the object surface

ducing major errors by assuming the reflectance ρ(x) to be
constant over the area Ax

g̃ dir(x) =
|Ap|
b2

Iξ

(
x̂c − ξ

) ρ(xc)

‖xc − ξ‖2
·〈

ξ̂ − xc,nxc
〉
e−c(‖xc−ξ‖+‖p−xc‖) , (8)

where |Ap| is the size of one pixel, b is the distance between
the sensor and the pinhole p and xc is the center point of Ax.

2) Blurring Component: The blurring component repre-
sents the paths of light transportation, which travel from the
light source at ξ,these are reflected by an object surface x′ and
inscattered into the line of sight px at ητ . This component
describes how neighboring object points contribute to the total
amount of pixel intensity and therefore how much the image
will be blurred. This component can be used to PSFs by given
water inherent optical properties. Fig. 5 shows the arrangement



of the scene.

gblur(x,x′) =

∫ ‖p−xc‖
0

∫
Ax′

∫
Aητ

Iξ

(
x̂′ − ξ

)
·

ρ (x′)β
(〈
x̂′ − ητ , p̂− ητ

〉)
‖x′ − ξ‖2 ‖ητ − x′‖

2 ‖p− ητ‖
2

〈
ξ̂ − x′,nx′

〉
·

e−c(‖x
′−ξ‖+‖ητ−x′‖+‖p−ητ‖)dητdx′dτ , (9)

where Aη is slice of the cone spanned by the projected pixel
perpendicular to the sight line pxc. β (cos(α)) is the so called
phase function and describes the angle dependent scattering
distribution. This equation also can be approximated according
to (8)

g̃ blur(x,x′) = ‖p− xc‖2
|Ap|2

b4

∫ ‖p−xc‖
0

Iξ

(
x̂′c − ξ

)
·

ρ (x′c)β
(〈
x̂′c − ηc, p̂− ηc

〉)
‖x′c − ξ‖

2 ‖ηc − x′c‖
2

〈
ξ̂ − x′c,nx′

c

〉
·

e−c(‖x
′
c−ξ‖+‖ηc−x′

c‖+τ)dτ , (10)
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Fig. 5: The blurring component describes how neighboring
pixels affects the perceived pixel intensity. A surface area Ax′

is illuminated by the light source ξ. The reflected light travels
through the medium and is scattered at ητ into direction of
pinhole p, whereby ητ is inside the cone, spanned by the
projection of the pixel area Ap. Radiation have to be integrated
over the object surface Ax′ and over each point into the
spanned cone. Hereby, Ax′ is the projection of another pixel.

3) Indirect Component: The indirect component represents
the paths of light transportation, which are traveling from the
light source at ξ and are inscattered into the line of sight px
at ητ without reflection at any object surface. This component
is an additive part without any object reflectance information
(Fig.6). It causes image brightening and loss of contrast. The
indirect component increases monotonically with the distance
to the object surface. It can be calculated by

gind(x) =

∫ ‖p−xc‖
0

∫
Aητ

Iξ

(
η̂τ − ξ

)
·

β
(〈
η̂τ − ξ, p̂− ητ

〉)
‖ητ − ξ‖

2 ‖p− ητ‖
2 e
−c(‖ητ−ξ‖+‖p−ητ‖)dητdτ (11)

and be approximated by

g̃ ind(x) =
|Ap|
b2

∫ ‖p−xc‖
0

Iξ

(
η̂c − ξ

)
·

β
(〈
η̂c − ξ, p̂− ηc

〉)
‖ηc − ξ‖

2 e−c(‖ηc−ξ‖+‖p−ηc‖)dτ (12)
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Fig. 6: The indirect component adds intensity to the perceived
pixel, which contains no information of the object reflectance.
Light, emitted by the light source ξ is scattered at η towards
the pinhole p, whereby η lies inside the cone, spanned by the
projection of the pixel area Ap. To get the whole amount of
the indirect component, radiation has to be integrated over the
spanned cone.

C. Affine Transformation

These three components can be subsumed to one affine
transformation containing the direct, blurring and indirect
component. Thereby the image g is represented as vector
containing every pixel intensity. The affine transformation is

g = Γρ+ b , (13)

where ρ is the reflectance vector containing the object surface
reflectance to the corresponding pixels. The matrix Γ = Γdir +
Γblur is the sum of the direct and the blurring transfer function.
b represents the indirect component, which does not interact
with the object surface reflectance.

Γdir =
(
γdir
ij

)
with

γdir
ii =

g̃ dir(xi)

ρ(xi)
and (14)

γdir
ij = 0 where i 6= j

is a diagonal Matrix. Γblur has a block like structure just as
other space variant transfer functions in computer vision [22],
its elements are

γblur
ij =

g̃ blur(xi,xj)

ρ(xj)
. (15)

Dependent on the width of the blurring kernel, Γ is sparsely
populated.



D. Model Discussion

Every model raises the question of its reliability in a
given environment. The mainly restricting assumption of the
proposed model is the single-scattering assumption. Thus,
in our case, this leads to the question whether the single-
scattering model is sufficient for underwater imaging process-
ing. In order to discuss this, the quantity of optical thickness
will be introduced. Optical thickness or optical depth is the
multiplication of distance (in meter) and extinction coefficient
c[ 1
m ] and as a consequence it is dimensionless. The quantity of

optical thickness also has a physical meaning. The stochastic
mean path length, which a ’photon’ travels through water
without being scattered or absorbed is exactly one optical
depth [23]. The distance, where on average the first scattering
or absorption event takes place, is at one optical depth, the
second scattering event nearly at two optical depths. As a
consequence, the contribution to imaging process decreases
with the number of scattering events, if the target distance is
less than one optical depth. Fig. 7 illustrates the decrease of
the total contribution of image intensity due to the number of
scattering events for different distances.

0 1 2 3 4

Τ = 0.2

Τ = 0.5

Τ = 1

%

scattering events

Fig. 7: This plot shows the contribution – determined by
monte-carlo simulation – to the total image pixel intensity due
to the number of scattering events and target distances (blue:
τ = 0.2, yellow: τ = 0.5, red: τ = 1.0).

Furthermore, scattering events fan out light beams resulting
in enlarged PSF parts. As a consequence the intensity caused
by multiple scattering distributes to a wider area. As a result,
the peak to peak ratio of the PSF caused by multiple scattering
and the PSF caused by single scattering is often less than the
sensor sensibility (Fig. 8). Therefor, multiple scattering has
only a slight impact on the imaging process for distances less
than one optical depth.

Thus, this model is sufficient for underwater vision tasks at
the minimum up to one optical depth. Acquired images as part
of a series of underwater imaging tests has shown, that it is
hardly possible to perceive anything in more than one optical
depth. For illustration purpose some images of this series is
shown in Fig.9

(a) single-scattering PSF (b) double-scattering PSF

Fig. 8: Simulated PSF parts, caused by single-scattering (left)
and double-scattering (right) in a distance of one optical
depth (τ = 1). These results were simulated by monte-carlo
simulation. For the purpose of visibility PSF caused by double-
scattering is brightened up. The peak to peak ratios are 0.51%
for the single-scattering PSF and 0.015% for the double-
scattering PSF compared to the direct component. Hence, parts
of PSF, caused by multiple scattering has only slight impact
to the total PSF.

III. SIMULATION

The purpose of simulation often is to plan and design
underwater imaging systems. Such systems are very expensive
and the cost increase with the water depth in which it will
be applied. Furthermore, producing an underwater imaging
system is very time-consuming, because there is only a limited
market of underwater components; which is why many com-
ponents of such systems are self-elaborated. Thus, it is not
be able to afford to create a system, which gives only poor
imaging results. Simulation of imaging systems can be done
before creating systems in hardware to optimize configuration
of lightening and imaging in advance, in order to reduce costs.

The proposed model can be used to simulate underwater
images. It can be calculated very efficiently by GPU paral-
lelization and rasterization techniques. The components (direct,
blurring and indirect) can be calculated separately, whereby
different effects can also be rated separately. Thus, loss of in-
tensity and color shifts condenses very apparently in the direct
and blurring component, brightening through backscattering
and loss of contrast can be seen at the indirect component
and the amount and strength of blurring is part of the blurring
component. Lightening for example can be optimized on the
basis of direct and indirect component, whereas blurring barely
depends on position of light sources, but on existing water
properties. Fig. 10 shows a simulated example and its three
components. The potential of computational efficiency of the
proposed method make an automated optimization possible.
Lightening parameters, such as light positions and light shape
characteristics can be optimized to get better imaging results.

Simulation results also can be used to implement and
validate image enhancement and image restoration approaches.
To objectively verify image post processing methods one
has to know the original object reflectance to compare it
with the processed image. Getting ground truth data about
scene properties and surface reflectance is a difficult task.



Changing water inherent properties in a desired manner is
nearly impossible. In this cases, simulation is unavoidable.

IV. RESTORATION

Underwater image restoration is an inverse problem, which
is ill-posed. As a consequence the image process cannot be
inverted naively; otherwise restoration results are dominated
by unpleasing artifacts. Model inverting must be regularized.
Solving ill-posed problems by regularization can be very
complex, but there is a mathematical domain, in which ill-
posedness is studied very well [24]. These are linear problems.
Within this domain there are different regularization methods.
In spectral domain these are for example truncated singular
value decomposition (TSVD), Tikhonov regularization and the
Wiener filter. Other popular methods are the Richardson-Lucy
algorithm, steepest descent and total variation approaches. The
formulation of the proposed model as affine image model
can be used for image restoration in a conventional way.
Blind deconvolution approaches can also be used to perform
restoration results by shaping a-priori knowledge about the
PSF. First experiments of image restoration based on the
proposed method perform promising restoration results. Fig.
11 shows some restoration results based on this model.

V. CONCLUSION

The introduced model has many advantages against other
existing underwater imaging models. It can be calculated
more efficiently than oversized computer graphical techniques,
which do not fully consider the properties of underwater
imaging. However it is more accurate than existing under-
water imaging models and can be extended by adding multi-
scattering components. This model can be used for a wide
range of underwater sceneries and is not restricted by strong
assumptions on lightening. Therefore, the range of applica-
tion is wider than by existing models, it also can be used
for automatized image post-processing workflows. It enables
another access to theoretical questions on visibility range,
lightening techniques and image post-processing. modeling
underwater imaging as affine transformation has outstanding
benefits. This formulation can be used in standard image
restoration approaches. Restoration techniques like Tikhonov
filter, Wiener filter and total variation filter can be adapted
easily to underwater vision tasks.
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(a) τ = 0.2 (b) τ = 0.48 (c) τ = 0.9

Fig. 9: This images figure the visibility decrease with decreasing optical thickness. The seen target is positioned in a distance
of 1.5m. With increasing turbidity optical thickness also increase (from τ = 0.2 over τ = 0.48 to τ = 0.9). In small optical
distances the target can be perceived very accurately, in contrast even the surrounding of the target at τ = 0.9 can hardly be seen.
Underwater image acquisition is mainly useful below a distance of one optical depth. Thus, the single-scattering assumption
matches very well for underwater imaging tasks.
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Fig. 10: This figure shows an underwater simulation based on the proposed model (for the purpose of visibility the direct and
the blurring component have been brightened up). The Simulation result (left image) is the sum of direct, blurring and indirect
component (from left to right). Color-shift can be seen at the direct and the blurring component, where the brightening caused
through backscattering shows up in the indirect component.

Fig. 11: This figure shows first experimental results of image restoration on real – non-simulated – images, based on the proposed
model. For image restoration a total variation approach has been used, where the kernel was calculated by evaluating the blurring
component (10). As a consequence the image could be sharpened, hence, details are more visible, which can be seen especially
at the concentric circles.


