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ABSTRACT

In this work, we present a system for the automated classifica-
tion of seabed substrates in underwater video. Classification
of seabed substrates traditionally requires manual analysis by
a marine biologist, according to an established classification
system. Accurate, consistent and robust classification is dif-
ficult in underwater video due to varying lighting conditions,
turbidity and method of original recording. We have devel-
oped a system that uses ground truth data from marine bi-
ologists to train and test per-frame classifiers. In this paper
we present preliminary results of this using various feature
representations (histograms, Gabor wavelets) and classifiers
(SCM, kNN).

Index Terms— Underwater Video, Seabed Classifica-
tion, Substrates, Computer Vision, Texture, Wavelets, Ma-
chine Learning

1. INTRODUCTION

Marine habitat monitoring and study has been a subject
of interest for research as technology has permitted new
approaches to this historically manually-performed task
[1, 2, 3]. It directly relates to ongoing ecological surveil-
lance methods, the monitoring of climate change and the
management of fisheries. Gaining useful information on
subaquatic environments has historically been difficult [3].
Direct-contact monitoring is expensive both in money and
time. When considering even specific regions of interest, the
sheer scale and area to cover makes this an unfeasible task.

Cardigan Bay is the largest oceanic bay in Wales, located
on the western coast with Bardsey Island in the north, and
Strumble Head in the west. A local organisation, Friends of
Cardigan Bay (FoCB), engage in monitoring the bay’s habi-
tat and ecology. We target our approach to the marine habi-
tats in this area, working directly with the organisation’s re-
searchers. As with a number of coastal inlets, most of the
subaquatic region at Cardigan Bay has gone relatively unex-
plored, save for specific mandates. We investigate the use of
computer vision and machine learning techniques in order to
automatically classify seabed ecology. Building upon work in

the areas of texture modelling, understanding and representa-
tion [1, 4], we evaluate their application to underwater video
analysis.

Numerous factors affect the utility of the resultant video
and images, both natural and mechanical. The physical prop-
erties of sea-water mean that obtaining uniform illumination
is difficult, specifically when the depth of the sea increases.
Organic particles can obscure frame clarity, and add motion
to a scene which can be difficult to cleanly disregard. Colour
information varies both within and between videos due to dif-
ferences in lighting at different depths. Visibility can be sub-
stantially affected given the turbidity (the cloudiness of a liq-
uid given particles within, shown in Figure 2) present in the
field of view. Finally, limitations of the recording hardware,
such as low resolution or low frame-rate capture can also ad-
versely affect any attempts to automatically analyse the video
content.

Existing work in this area has investigated the improve-
ment of capturing, cataloging and understanding video data.
Most prominently, MBARI’s AVED system deals with recog-
nition and classification of different fish species, by identi-
fying regions of interest in a frame through the use of vi-
sual saliency, before submitting this area of interest for fur-
ther analysis [5]. A similar example is the Fish4Knowledge
project at The University of Edinburgh, which focused on ex-
tracting information from video based on user queries [6, 7].
Research into the effects of climate change on species rich-
ness of marine fishes and the optimisation of fishing strategies
using these methods continues to be performed. This paper
looks at building a more efficient way of selecting regions of
video which are known by marine biologists to have a higher
probability of containing the sought-after marine species.

The Countryside Council for Wales (CCW) produced a
catalog of classifications for marine habitats present in the
seas around Wales [8]. In total, 31 distinct classifications are
defined, of which 13 have been identified as candidates for
the areas covered in our source material, listed in Table 1.
The omitted categories have been excluded as marine biolo-
gists have confirmed they are not encountered in the surveyed
areas.



Table 1. Classes from the CCW schema selected as candi-
dates.

ID Short Description

0 No relevant data present

14 Vertical subtidal rock with associated community

16 Coarse sands and gravels with communities that include large and/or
long lived bivalves

17 Maerl beds

18 Stable predominantly subtidal fine sands

19 Subtidal stable muddy sands, sandy muds and muds

20 Predominantly subtidal rock with low-lying and fast growing faunal turf

22 Shallow subtidal rock with kelp

23 Kelp and seaweed communities on sand scoured rock

24 Dynamic, shallow water fine sands

27 Biogenic reef on sediment and mixed substrata

28 Stable, species rich mixed sediments

29 Unstable cobbles, pebbles, gravels and/or coarse sands supporting rela-
tively robust communities

31 Seagrass beds

Table 2. Our texture-based classification schema.

ID CCW Aesthetic Description

0 0 No relevant data present

I 18, 19, 24 Fine sands

II 16, 28, 29, 31 Coarse sands with occasional rocks and fauna

III 20 Pebbled seabed with occasional rocks

IV 14 Predominately large-boulders

V 17, 22, 23, 27 Coral & rich in organic life

The CCW schema provides a foundation upon which a
more concise schema for classification based on visual prop-
erties may be derived. This is necessary as a number of the
classifications require sampling the seabed, to disambiguate
classes that are very similar visually. The classes in Table 2
map to one or more possible classes in the CCW document,
and are visually distinct.

2. METHODS

Ground truth was collected using a custom interface permit-
ting a marine biologist to assign one of the aforementioned
classes to ranges of frames in the videos. This range-based
markup is illustrated in Figure 3.

A number of different video sets are used in this research,
collected via two methods. We focus on two of these sets
in this paper, and select videos from each. It is not possible
to use every video as many have the same substrate through-
out, so here we select videos containing multiple substrate
changes.

(a) Focused, directed light (b) Normal with Laser-line

(c) Normal (Desirable) (d) Heavy Green Hue

Fig. 1. Contrast between varying illumination patterns of
seabed substrates in source video. The four frames all cor-
relate to class III.

Fig. 2. Typical scene demonstrating difficulties of auto-
mated analysis, specifically when underwater conditions in-
clude high turbidity.

Video Markup - Ranges

0 II III 0 II 0 I

0 frames n

Fig. 3. A sample video is considered a collection of n frames
that are split into continuous ranges corresponding with our
classification schema, based on manual analysis. Class 0 rep-
resents non-viable training / testing frames.

1. Sled with GoPro attached - Launched from a boat and
attached via rope, the sled trawls the seabed collecting
video data from a GoPro camera, equipped with 2 sta-
tionary lights as demonstrated in Figure 1(a). These
videos were generously offered by Bangor University
collected whilst researching the effects of trawling on
the seabed [2]. We evaluate videos from sites 2, 3 &



10.

2. CCTV pin camera - A technique used by FoCB, a
commercial DVD recorder system is used with a pin-
camera dropped over the boat’s edge. This is a direc-
tional sensor attached via cable, and sending signal
through, to a DVD recorder on the boat’s deck. The
camera component is attached to a weight to control
depth. This method relies on the operator’s personal
knowledge of local seabed depths and environment.
The camera is lowered and raised manually via the
boat’s deck. This is delivered in PAL interlaced, and
pre-processed to remove artefacts before use.

Due to the nature of underwater video captured via
trawler, seabed disturbance is to be expected upon the trawler’s
impact. During the marking up phase, the start and end sec-
tions of a classification range are set to omit these frames.

To alleviate problems related to non-uniform illumina-
tion and dominant colours in the source video, RGB and
greyscale histograms were generated. Colour correction is
performed using histogram equalisation. In the case of colour
histograms, RGB sub-channel histograms were horizontally-
concatenated into a feature vector of the form R781×1. This
representation loses colour channel correlation.

Our second approach to the problem is the use of textural
image descriptors. This involves the use of a number of Gabor
filters defined at a number of different orientations. It has
been shown that Gabor filters in this way approximate the cell
receptors of the mammalian visual system [9].

The filter g(x, y, λ, θ, ψ, σ, γ) is derived, where λ repre-
sents wavelength and θ represents the orientation. In this ex-
ample, we consider a combined, complex-number approach,
not separately filtering the imaginary and real parts. This is
defined in equation 1 where x′ = x cos(θ) + y sin(θ) and
y′ = x sin(θ) + y cos(θ).

g(x, y, λ, θ, ψ, σ, γ) = exp
(
−x

′2+γ2y′2

2σ2

)
exp

(
i
(
2π x

′

λ + ψ
))

(1)

We use parameters θ ∈ [0, 45, 90, 135], σ = 5, ψ =
90, λ = 50 and a kernel size of 21. These values were de-
cided upon through testing the impulse response given by
Equation 1 against viable frames with different parameters
until a whole-texture pattern was obtained.

Sub-band histograms taken of the impulse responses at
each rotation are used as a feature vector of the target train-
ing frame. Using the four responses together, Local Binary
Patterns (LBP) [1, 4] are used to model local texture infor-
mation on the final texture representation. Three sets of val-
ues for radius r and points p are evaluated: (r = 1, p = 8),
(r = 2, p = 12) & (r = 3, p = 16).

Support Vector Machines (SVM) are binary classifiers,
but can be used to classify multiple classes; in order to achieve
this, a cluster of SVMs are trained to form a SVC (Support

(a) Original Frame (b) θ = 0 (c) θ = 45

(d) θ = 90 (e) θ = 135

Fig. 4. Impulse responses based on input frame, the four ro-
tation values of θ used, and the resultant output.

Vector Classifier). These are trained using both linear (SV-
CLIN) and radial basis function (SVCRBF) kernels, using our
selected features. This results in a cluster of SVMs in a hier-
archical formation. These are compared with kNN classifiers
using the ball tree algorithm with k = 5 [10].

A testing & training strategy of 10:90 n-fold cross vali-
dation was used, where 10% of a given class’ frames from
within a video were selected at random and used as its train-
ing data. Figure 5 illustrates the datasets, experiment setup,
and the video subdivision into the following categories: train-
ing, testing and other. Other is for any frames of class 0 which
have been recorded as not containing relevant information.

3. RESULTS

All preliminary experiment results are noted in Table 2,
grouped by video. Reviewing these, kNN classifiers perform
with greater accuracy than SVCs. The difference between a
kNN approach and SVCLIN is as high as 35% increase in
successful classification. Using the same features and the
same video, SVCLIN outperforms SVCRBF by up to 79%
success rate. These findings demonstrate that the problem
responds well to a clearly linear and isolated classification
system, which remains constant irrespective of the feature
being trained.

Features which are dependent on texture result in suc-
cessful classification on par, or below, the statistical frame
histogram metrics. LBPs do not follow a clear correlation of
effectiveness based on the radius and number of points used,
and sub-band histograms perform better than LBP where
comparable data is present.

4. CONCLUSION

We have evaluated several machine learning and computer
vision techniques as preliminary steps in understanding un-
derwater environments. The complexity of our classifica-
tion schema is sufficient for the identification of seabed
substrate types, however more detailed analysis as per the
CCW schema requires further additional non-visual infor-



Table 3. Experiment Results: Preliminary results of research. All values are percent of testing frames correctly classified as
per our classification schema (where 0 indicates no data and B. refers to the Bangor dataset).

VIDEO B. SITE 2 B. SITE 3 B. SITE 10 FOCB 1 FOCB 2
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Histogram (Greyscale) 0 0 0 0 0 97 0 0 86 53 93 97 54 71 83 53 85 97

Histogram (Colour) 0 0 98 0 0 0 0 0 88 53 96 98 54 79 86 53 87 98

Gabor Sub-band Histogram 0 0 96 0 0 0 0 0 79 0 85 99 0 68 91 68 88 99

Gabor LBP (r = 1, p = 8) 0 0 95 0 0 0 0 0 74 53 72 99 54 61 69 53 71 99

Gabor LBP (r = 2, p = 12) 0 0 95 100 0 0 0 0 75 0 0 91 0 0 0 75 93 100

Gabor LBP (r = 3, p = 16) 0 0 0 100 0 0 0 0 76 53 85 93 0 0 0 53 85 100

MIN 0 0 95 100 0 97 0 0 74 53 72 91 54 61 69

MEDIAN 0 0 97 100 0 97 0 0 79 53 0 98 54 70 85

MAX 0 0 98 100 0 97 0 0 88 53 96 99 54 79 91

FoCB Descriptor &
Feature ExtractionOther

Training

Testing

Bangor University

Other
Training

Testing

kNN & SVC Training

Test Classifier on 
Testing Data

Fig. 5. Training & testing methodology for both datasets

mation. Approximating this information could potentially
be performed by identifying regions for further analysis, and
observing specific fauna.

We have shown that it is possible to use existing meth-
ods to achieve suitable classifiers on underwater video, with
a number of caveats. The results gathered indicate a higher
than anticipated rate of success using full-frame classifica-
tion methods, in the case of using an SVCRBF classifier and
LBP patterns with r = 3, p = 16, 100% testing success is
noted. A key reason for this is that the videos selected from
each dataset were those deemed to be most complex by a ma-
rine biologist. Complex being defined as most changes in
the observed sea-bed substrates. However, even in these cho-
sen videos the range of visually-distinct substrates as per our
schema is low. This is due to the short length of the videos
themselves and their coverage not being in areas pre-selected
for likelihood of substrate complexity. The results validate the

use of these methods to build a more generic underwater sub-
strate classification system but do not yet give any indication
as to what its accuracy could be. Given the acknowledged
shortcomings, the results presented in this paper should be
viewed as exploratory findings only.

The use of different image descriptors and evaluation of
different texture extraction methods (and parameters thereof)
could provide more successful classification. In particular,
shape and approximation of motion against a static back-
ground could theoretically eliminate issues in existing video
relating to trawler-impact debris via automated dismissal.
The most prominent direction for continued research is the
automatic isolation of regions-of-interest (suitable illumina-
tion, accurately masking any visible recording equipment
present in frames) rather than full-frame processing.

Furthermore, the project aims to investigate the use of
ROVs in obtaining footage for further analysis. The collection
of meta-data including depth, water temperature and GPS co-
ordinates during ROV survey will enable research into more
detailed mapping of the sub-aquatic environment. Sea-bed
depth and temperatures are also key factors in identifying
habitats for species of interest to marine biologists which, in
conjunction with the work presented in this paper, could lead
to accurate, automated systems for surveying in the future.
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