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Abstract—Hyperspectral imaging has continued to be exploited
in various fields for its offer of gain in accuracy, despite the
cost and complexity of its acquisition. However, accuracy must
be maintained in all processing chain for the potential to be
optimally exploited. A spectrum is a continuous function over
the wavelengths and it must be processed as such. Taking that
into consideration, in this article, a statistical processing of
hyperspectral images is proposed. The statistics is based on the
Kullback-Leibler pseudo-divergence measure, which incorporates
the mathematical definition of a spectrum as a continuous
function. The interest of these statistics is then demonstrated
through a task of spectral texture discrimination.

Index Terms—Hyperspectral, texture, Mahalanobis distance,
Kullback-Leibler pseudo-divergence

I. INTRODUCTION

Hyperspectral imaging (HSI) was originally developed for
the earth observation and remote sensing fields [1]. However,
nowadays, it has garnered attentions from a wide variety
of disciplines and applications. HSI has been employed to
assess the quality and safety of food products due to its offer
of speed, accuracy, and reliability [2], [3]. By coupling a
hyperspectral imager and a microscope, a multiscale method
was proposed for noninvasive detection of cervical cancer.
Its results were consistent with those of hystopathological
analysis, demonstrating accuracy and efficacy [4]. In wood
product manufacturing, where logs need to be sorted according
their moisture content (MC), HSI has been used to generate
MC model with reasonable accuracy [5]. It has also been
largely exploited in precision agriculture due to its spectral
range and precision to profile materials and organisms [6].

The common reason found in the aforementioned uses
of HSI is its accuracy, precision, and reliability. In other
words, it has been increasingly exploited due to its potential
and capability in adhering to metrological constraints. And
this is despite its costly and complex acquisition. However,
an accurate measurement of scene or surface does not au-
tomatically entail an accurate and relevant final processing
result. The metrological aspects, e.g., bias and uncertainty [7],
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of hyperspectral data have to be maintained throughout the
subsequent processing steps.

With the end goal of developing a full metrological frame-
work of hyperspectral image analysis and processing, we have
carried out extensive works on more basic levels, i.e., spectral
difference functions [8], [9], spectral ordering relations [10],
and elementary operations for spectral mathematical morphol-
ogy [11]. In this study, we are introducing our next endeavor
on the framework development, specifically on statistics/ mo-
ments for hyperspectral data. The proposed spectral statis-
tics are built based on Kullback-Leibler pseudo-divergence
(KLPD) [9] and their potential will be demonstrated in a
preliminary study of spectral texture assessment.

The rest of the article is organized as follows. Section II
provides a recall to the definition of a spectrum being used
in our study. As a note, the content of this section has first
appeared in [12]. The proposed spectral statistics are provided
in Section III, along with brief explanations of its building
blocks. Applications of the proposed statistics are provided in
two parts. Section IV provides a demonstration of how the
statistics can be used to model the spectral content of texture
images. Then, in Section V, average spectral Mahalanobis
distance is employed to determine the similarity between
pairs of texture images. This texture discrimination application
exploits the knowledge obtained through the modeling of
spectral content provided in Section IV. Finally, Section VI
provides the concluding remarks for this article.

II. SPECTRAL MEASURE, SPECTRAL FUNCTION, AND
SPECTRAL SIGNAL

Under the point of view of signal and image processing, a
spectrum is a signal that is associated to a mathematical model
of a continuous function over the wavelength λ [9], [11]. It
expresses the acquired energy coming from a surface, scene,
or light source. This makes a spectrum directly related to the
physical and optical properties of the objects. Furthermore,
under this physical point of view, a spectrum is positive since
it is related to energy (radiance, in Wm−2sr−1) or its ratio
(reflectance, in percentage).

In remote sensing applications, we can find discontinuities
in several wavelengths due to atmospheric corrections, e.g.,



water absorption around 1200 and 1450 nm. Thus, a spectrum
S can be more specifically defined as a continuous function
over the wavelengths f(λ), that is of C0 class function to say
that S is not differentiable everywhere. Finally, a hyperspectral
acquisition of a continuous spectrum can be regarded as a
spectral sampling of the continuous physical spectrum S(λ),
generating a sequence of measurements s(k · δλ) (Eq. 1).

s(k · δλ) = 〈f(λ), ζ(λ− k · δλ)〉 (1)

The spectral sampling is performed using optical filters ζ(λ)
upstream the photon detector, justifying the use of scalar
product. ζ(λ) is generally approximated by a Gaussian or
trapezoidal functions and is characterized by the Full Width
Half Max (FWHM).

Due to the sequence of measures s(k · δλ), a spectrum
has often been implicitly considered as a set of independent
measures. It is then being used as a vector, probability density
function, or sequence [8]. Consequently, L2 norm and its
derived forms and also divergence functions are often used
to assess differences or similarities between spectra. Such
similarity constructions are at the core of strategies commonly
used for hyperspectral data, e.g., dimensionality reduction.

In the rest of this article, a spectrum will be considered in
its continuous expression. However, readers are asked to keep
in mind the spectral sampling δλ of the digitization, derivation,
and other basic digital signal processing understanding.

III. SPECTRAL DIFFERENCE-BASED STATISTICS

In this work, a spectrum S is defined as the realization
of a random variable S. The mathematical definition of a
spectrum and the choice of distance/ difference measure cannot
be separated [8]. Thus, the measure to choose must be one that
considers S as a continuous function rather than, e.g., as a vec-
tor. Once the choice has been made, more advanced analysis
and processing tools will become available, e.g., mathematical
morphology, nonlinear filtering, and classification.

A. Kullback-Leibler pseudo-divergence

Kullback Leibler pseudo-divergence (KLPD) [9] was devel-
oped specifically for hyperspectral data, taking into account
its continuous expression. Strictly speaking, KLPD is not a
distance function since it does not hold triangular inequality
criterion. However, it passes the metrological protocol devel-
oped in [8]. KLPD dK̃L measures the difference between two
arbitrary spectra S1 and S2 through the formula in Eq. 2. As
stated, KLPD is composed of two components, i.e., differences
in shape ∆G and intensity or energy level ∆W .

dK̃L(S1, S2) = ∆G(S1, S2) + ∆W (S1, S2)

∆G(S1, S2) = k1 · dKL(S̄1, S̄2) + k2 · dKL(S̄2, S̄1)

∆W (S1, S2) = (k1 − k2) log

(
k1
k2

) (2)

The construction of KLPD is based on information di-
vergence using Kullback-Leibler (KL) divergence [13]. KL
divergence dKL is, however, designed to measure similarity
between two probability density functions. And to use it for

(a) HSD–1D histogram (b) BHSD–2D histogram

Fig. 1. Histogram of spectral differences (HSD) computed using KLPD dif-
ference function and bidimensional histogram of spectral differences (BHSD)
obtained by separating the shape and energy components of KLPD.

spectra, the spectra must satisfy the constraint of probability
density functions, i.e., their integrals must be equal to 1. Thus,
the input to dKL are normalized spectra S̄1 and S̄2, see Eq. 3.

dKL(S̄1, S̄2) =

∫ λmax

λmin

S̄1(λ) · log
S̄1(λ)

S̄2(λ)
dλ

S̄ =

{
s̄(λ) =

s(λ)

k
, ∀λ ∈ [λmin, λmax]

}
k =

∫ λmax

λmin

s(λ) dλ

(3)

B. Bidimensional histogram of spectral differences

The distribution of a spectral set S can be observed through
the histogram of differences {dK̃L(Si, Sref),∀Si ∈ S}, where
Sref is any arbitrary spectral reference. As an illustration, spec-
tral differences of image parchment-P1 (Fig. 3e) are obtained
using KLPD function and a theoretical equi-energetic white
spectrum as reference. The histogram of spectral differences
(HSD) is as shown in Fig. 1a.

The fact that KLPD is composed of two independent shape
and energy components allows expanding the HSD into a
two-dimensional one. The bidimensional histogram of spectral
differences (BHSD) of the same image using the same spectral
reference is plotted in Fig. 1b. In this representation, the x-
and y-axes display spectral variations in shape and intensity,
respectively. The origin of BHSD is always of the chosen
spectral reference Sref, which partially dictates the distribution
of spectral differences of any given image. However, the
discussion of spectral reference selection is out of the scope
of this article and, instead, can be read in Ref. [11].

C. Spectral variance-covariance matrix

By defining a spectrum S as the realization of random
variable S, dK̃L(S, Sref) can therefore be considered as a
random process (or a multivariate one) with two components
∆G and ∆W . This further allows analyzing the diversity
of S relative to a spectral reference Sref, through variance-
covariance matrix Γ̃S,Sref , see Eq. 4 and 5.

Γ̃S,Sref =

(
αGG,Sref αGW,Sref

αGW,Sref αWW,Sref

)
(4)



αGG,Sref =
∑
Si

(
∆G(Si, Sref)

)2
f(Si)

αWW,Sref =
∑
Si

(
∆W (Si, Sref)

)2
f(Si)

αGW,Sref =
∑
Si

∆G(Si, Sref)∆W (Si, Sref)f(Si)

(5)

Γ̃S,Sref can be further developed into spectral inner variance-
covariance matrix when the median µ̃S of a spectral set S is
employed as the reference Sref. The variance-covariance matrix
Γ̃S,µ̃S provides a model of spectral difference distribution as
a bivariate normal law.

D. Spectral Mahalanobis distance

Spectral variance-covariance matrix introduced in the pre-
vious section further allows computing spectral Mahalanobis
distance (MD) between a given spectrum S to the distribution
of S in the histogram of spectral differences. The mathematical
expression to MD is provided in Eq. 6.

dM(S,S) =

√
(xS − µ̃S)T Γ̃S,µ̃S (xS − µ̃S) (6)

This expression provides a natural definition of the distribution
of S through the use of its median µ̃S and variance-covariance
matrix Γ̃S,µ̃S , where xS corresponds to the location of spec-
trum S in the BHSD space computed relative to µ̃S .

As a final note, in these spectral statistics, a median
spectrum µ̃S instead of an average one µS has been used
to model the spectral expectation E[S]. This is because to
define a spectrum of local average µS , a marginal average
of spectral values is required, in which the natural inter-
dependency between spectral channels are lost.

IV. SPECTRAL STATISTICS FOR
MODELING SPECTRAL TEXTURE

The inner nature of textured surfaces or objects induces
an important variability of spectra within a spectral image.
Several approaches are available to measure spectral variability
[14]–[16], including statistical models [17], [18]. However,
in these statistical approaches, a spectrum is considered as
a vector. In the following, we will use the proposed spectral
statistics to model spectral variability within a spectral image.

A. Experimental setup and dataset

Experimental setup for using the proposed spectral statistics
to model spectral variability of a set or image can be seen in
Fig. 6. Note that the computation of spectral differences is
only carried out once. But since KLPD function is composed
of two independent components, inner BHSD representation
is also obtained in addition to the total KLPD map.

11 texture images of size 250×250 pixels are used in this
study, see Fig. 3. Each of them is of 186 spectral channels,
in the range of 405.37–995.83 nm, in 3.26 nm interval. The
dataset consists of man-made texture coming from textile and
commercial grade parchment and papyrus, and objects coming
from the nature, i.e., leaves, rose petal, moss, and lichen.

Fig. 2. Experiment workflow of the use of proposed spectral statistics for
modeling spectral variability of an image. Spectral difference computation is
carried out once, providing both KLPD map and inner BHSD representation.

(a) textile-T1 (b) textile-T2 (c) textile-T3

(d) textile-T4 (e) parchment-P1 (f) papyrus-P2

(g) leaf-L1 (h) leaf-L2 (i) rose petal-R1

(j) moss-M1 (k) lichen-L6

Fig. 3. Hyperspectral texture dataset used in the experiment. Each image
is of 250×250 pixels and 186 spectral bands in the range of 405.37–995.83
nm. The color images are generated from the hyperspectral images using CIE
CMF 2°observer and D65 illuminant.



B. Results and analysis

From the dataset in Fig. 3, we can see that there are some
pairs of texture images that, by visual observation, seem to
have similar color averages. As an example, the pair of textures
L2 (Fig. 3h) and L6 (Fig. 3k) with their dark brown colors. To
observe their actual spectral variability, the median spectrum
of each texture image is computed. Through these median
spectra, we then obtain their respective inner BHSDs in Fig. 4
and inner variance-covariance matrices below:

Γ̃SL2,µ̃L2 =

(
0.028 0.031
0.031 0.087

)
Γ̃SL6,µ̃L6 =

(
3.44 5.32
5.32 11.7

)
As seen from the inner variance-covariance matrices, distribu-
tion of spectra within each image differ significantly. Observ-
ing the inner BHSD of L2 in Fig. 4, we can see that most of
the pixels in this image are contained within the ellipses that
visualize bivariate normal law in the representation. Note that
the difference between one ellipse and the next is one variance-
covariance unit (or standard deviation in the univariate case).
On the other hand, spectral variability of L6 is above 3 and it
is approximately 100 times larger than that of L2. From the
BHSD of L6, roughly two groups of pixels can be observed.
The first group is the one that is in the direction of the long
axis of the plotted ellipses. Then, another one can be seen as
the group of pixels that has a more vertical direction or along
y-axis of the BHSD. Finally, it can be said that for L6, the
modeling through a bivariate normal law that is induced by
the spectral MD is not fully suitable.

A BHSD is constructed by the two independent components
of KLPD, i.e., shape and intensity differences. Total KLPD,
which sums up the two components, allows us to produce a
distance map for every single pixel in image. Total KLPD
maps for L2 and L6 are provided in Fig. 5, with identical
dynamic ranges up to approximately 27. First of all, since
they are presented under identical dynamic ranges, in this
representation it is also evident that spectral variability of L6
is larger than L2. This is due to physical variations of the
surface being captured. L2 is a capture of one single dry leaf,
which can be considered as relatively flat. On the other hand,
L6 is a capture of lichen that in itself is composite organisms
and composed of objects having different sizes and heights,
inducing areas with dark colors or shadow. MD maps in Fig. 5
then allows us to better perceive the variations of texture inside
L2, using a standard dynamic range of a normal distribution.

V. SPECTRAL STATISTICS FOR
SPECTRAL TEXTURE DISCRIMINATION

A. Experimental setup

The experiment workflow is as shown in Fig. 6. The
similarity of a target texture image will be computed through
its average MD to the model of a reference texture image.
For the reference texture image S, its texture information will
be modeled through its median µ̃S , inner BHSD, and inner
variance-covariance matrix Γ̃S,µ̃S . This part of the experiment
is what has been provided and discussed in Section IV.

Fig. 4. Inner BHSDs of L2 and L6. Despite visually having similar color
averages, their spectral variations are significantly different, see also the
dynamic ranges of each variance-covariance matrix.

L2 L6

To
ta
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K
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D

Fig. 5. Spectral difference (KLPD) and spectral Mahalanobis distance (MD)
maps of L2 and L6, relative to each inner variance-covariance matrices and
spectral medians. KLPD and MD maps each share identical dynamic ranges.

The last step of this texture discrimination application is
the decision step, which includes a thresholding. Average
MD is not symmetric, since it measures the distance between
a spectrum and a distribution. Thus, to determine whether



Fig. 6. Experiment workflow for the use of spectral statistics in spectral texture discrimination. For every target image, its average Mahalanobis distance
(MD) to every reference texture image S will be computed, followed by a decision/ thresholding step.

texture image i and j belongs to the same category, we take the
maximum of average MD dM, see Eq. 7. After obtaining this
maximum value, a threshold of 3 standard unit of a bivariate
normal distribution is applied to provide a decision.

d(Si,Sj) = max
(
dM(Si,Sj), dM(Sj ,Si)

)
(7)

B. Results and analysis

Average MD between pairs of target and reference texture
images from the dataset in Fig. 3 is provided in Table I. In this
table, images in the row and column are target and reference
images, respectively. It can be observed that the similarity of
an image to itself is always under 1.5 units, see green colored
diagonal cells in the table. There are also instances where one
texture is considered similar to the other since its average MD
to the reference is between 1.5 and 3 units (light green colors).
The red cell colors say that the target image is definitively
different from the reference, with average MD above 50 units.

One immediate observation that can be taken is that these
average MD values are not symmetric. E.g., average MD of
L2 relative to M1 is 0.8. However, for M1 relative to L2 it is
15.9 standard units. These results are not unexpected. If we
observe the inner BHSDs of L2 (Fig. 4) and M1 (Fig. 7), it is
evident that the variability of M1 is larger than L2. Thus, L2
is expected to be more similar to M1 rather than M1 to L2. To
also observe the variability within each texture images, their
MD maps relative to each other are provided in Fig. 8.

The last step of this texture discrimination application is the
decision and thresholding steps, which generate the results in
Table II. Through this table, we can see that each texture image
is only being attributed to itself, due to having maximum
average MD of less than 3 standard units. Furthermore, none
of the different images are being considered as similar to
the other. Finally, we can conclude that the proposed spectral
statistics have allowed achieving good performance in texture
discrimination using a simple thresholding step.

VI. CONCLUDING REMARKS

Mahalanobis distance (MD) allows to use normalized
threshold for discrimination purposes. According to a model
of multivariate normal law, 99.7% of the spectra from a
distribution are at a distance lower than 3. According to
the obtained distances and to the asymmetry of similarity

Fig. 7. Inner BHSD of M1, showing that a bivariate normal distribution model
does not fit the spectral variability within the image.

(a) L2 relative to M1 (b) M1 relative to L2

Fig. 8. MD maps of L2 and M1, computed relative to the model of each
other, presented in a log colormap.

measures between two textures, the texture discrimination
task becomes direct. These preliminary results validate the
proposed spectral MD.

Under the texture point of view, the proposed approach is
only based on the analysis of spectral variations. It does not
take into account the spatial arrangement of spectra within
the image. Nevertheless, this study shows the great potential
to model a hyperspectral image of a given texture using
the spectral median of the image and a variance-covariance
matrix processed in the bidimensional histogram of spectral
differences (BHSD) space. Our current work continues in
the construction of the proposed hyperspectral texture image
database, where majority of the images come from the nature.



TABLE I
AVERAGE MAHALANOBIS DISTANCE (MD) OF EACH TEXTURE IMAGE i RELATIVE TO THE MODEL OF REFERENCE TEXTURE IMAGE j . AVERAGE MD OF
AN IMAGE TO ITSELF IS ALWAYS UNDER 1.5 VARIANCE-COVARIANCE UNIT (GREEN COLORS). AN IMAGE IS RELATIVELY SIMILAR TO ANOTHER IF THE

VALUE IS BETWEEN 1.5–3 UNITS (LIGHT GREEN), AND DEFINITIVELY DIFFERENT ABOVE 50 UNIT (RED). NOTE THAT THIS TABLE IS ASYMMETRIC.

Relative to the distribution of image
T1 T2 T3 T4 P1 P2 L1 L2 M1 R1 L6

Av
er

ag
e

M
D

of
im

ag
e

T1 1.1 11.9 2.6 4.4 81.4 7.3 5.8 62.3 9.1 33.9 27.2
T2 11.9 1 2.9 4.3 87.2 11.9 4.7 15.3 1.7 24.5 4.5
T3 9 3.2 1.1 2.1 110.6 12.9 4.6 21.5 3.5 21.5 12
T4 31.3 13.2 7.4 1.1 230.9 24.1 11 41.8 5.9 7.3 10.7
P1 69.2 49.7 23.1 29.1 1.2 4.1 18.8 178.5 20.3 93.2 55.6
P2 55.7 46.3 20.1 25 11.8 1.1 13 90.4 12.1 109.8 29.2
L1 10.2 12.3 4.3 6.3 68.3 6.4 1.1 17.5 3.2 46.2 11.6
L2 24.9 9.4 6.1 5.8 102.8 13 4.2 1 0.8 23.6 4.8
M1 21.8 8.2 7.8 8.8 89.6 13.2 6.6 15.9 0.9 53 2.4
R1 61.1 26.9 15.8 3 324.3 34.2 20.7 62.4 9.1 1.1 9.5
L6 28.8 15.8 15 16.7 114.8 19.5 14.9 47.9 3.2 117.7 1

TABLE II
MAXIMUM AVERAGE MD BETWEEN TEXTURE IMAGES i AND j . IMAGE i AND j ARE CONSIDERED TO BE FROM THE SAME CATEGORY ONLY IF THEIR
MAXIMUM AVERAGE MD IS BELOW THE THRESHOLD OF 3 STANDARD UNIT OF BIVARIATE NORMAL DISTRIBUTION LAW (GREEN COLORED CELLS).

Maximum average MD between pairs of images
T1 T2 T3 T4 P1 P2 L1 L2 M1 R1 L6

T1 1.1 11.9 9 31.3 81.4 55.7 10.2 62.3 21.8 61.1 28.8
T2 1 3.2 13.2 87.2 46.3 12.3 15.3 8.2 26.9 15.8
T3 1.1 7.4 110.6 20.1 4.6 21.5 7.8 21.5 15
T4 1.1 230.9 25 11 41.8 8.8 7.3 16.7
P1 1.2 11.8 68.3 178.5 89.6 324.3 114.8
P2 1.1 13 90.4 13.2 109.8 29.2
L1 1.1 17.5 6.6 46.2 14.9
L2 1 15.9 62.4 47.9
M1 0.9 53 3.2
R1 1.1 117.7
L6 1
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