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Abstract

We present a novel algorithm for automated video production
based on content ranking. The proposed algorithm generates
videos by performing camera selection while minimizing the
number of inter-camera switches. We model the problem
as a finite horizon Partially Observable Markov Decision
Process over temporal windows and we use a multivariate
Gaussian distribution to represent the content-quality score
for each camera. The performance of the proposed approach
is demonstrated on a multi-camera setup of fixed cameras with
partially overlapping fields of view. Subjective experiments
based on the Turing test confirmed the quality of the
automatically produced videos. The proposed approach is also
compared with recent methods based on Recursive Decision
and on Dynamic Bayesian Networks and its results outperform
both methods.

Keywords: Best-view selection; Feature analysis; Content
ranking; Autonomous video production; Camera scheduling.

1 Introduction

The selection of the camera that best describes a dynamic
scene is an important problem in multi-camera networks. This
selection is useful for automated video production and for
highlights generation. The main challenges in addressing this
problem are the effective analysis of the video content and the
identification of the best view to satisfy the objectives of the
task at hand. These objectives can be selecting the camera
capturing the maximum number of people, or offering the best
view of a specific person or an activity.

Camera selection can be seen as an optimization [10] or as a
scheduling [14] problem, where the goal is to maximize the
visibility of the features or events of interest while minimizing
inter-camera switching. Camera selection methods involve
a content analysis stage that assigns a score to each camera
based on its Quality of View (QoV). Scoring can be based on
a single feature [15] or a combination of features [9]. Naive
methods for best-view selection based on QoV usually perform
poorly, as they generally produce frequent view changes [10].
To mitigate this problem, reward and cost functions associated
to camera switching have been introduced [6, 11]. Reward
can be expressed in terms of feature observability and

smoothness of the final output video and a cost is incurred
whenever the selected view is switched. In general, best-view
selection requires knowledge of the selected camera and the
QoV over a finite time horizon [15]. Moreover the camera
selection strategy should be able to predict the time intervals
during which features or objects of interest would be most
visible [12]. For this reason, an efficient camera selection
strategy should take into account past as well as future (or
predicted) information.

The works in [2, 15] use a scheduling interval to observe
targets for a certain minimal duration. This approach does
not scale to large camera networks where multiple cameras
may be simultaneously competing for the best view. In [2],
Time Dependent Orienteering (TDO), target motion, position,
target birth and deadline are used to trigger a pan-tilt-zoom
camera that captures targets in the scene. The cost of the
system is associated to the number of targets not captured.
The scheduling strategy is the Kinetic Traveling Salesperson
Problem with deadlines. A schedule to observe targets is
chosen that minimizes the path cost in terms of TDO. This
work does not consider target occlusions and does not predict
the best time intervals to capture images. In [10] a cost function
is proposed that depends on QoV using features such as object
size, pose and orientation. While this approach minimizes
frequent switches, it tends not to select the best-view for highly
dynamic scenes, as demonstrated in Sec. 3.

Scheduling strategies based on queue processing techniques
have also been used for camera selection [19, 14]. In this case
views compete to be selected and are assigned priorities based
on their features. In [19] when more than one person is in the
view of a fixed camera an active camera focuses on the closest
target. The performance of the system does not scale with the
number of objects as the camera switches from target to target.
The work in [14] uses a Weighted Round Robin technique
for scheduling each target that enters the monitored area,
but no penalties are assigned to frequent camera switching.
Greedy scheduling policies have also been used for camera
scheduling [4]. In these methods targets are treated as network
packets and routing approaches based on techniques such as
First Come First Served (FCFS), Earliest Deadline First (EDF)
and Current Minloss Throughput Optimal (CMTO) are used.
These approaches do not include the transition cost for the
camera that is associated with target swaps. Moreover, all
these approaches assume that the dynamics of the observed
site remain constant when a certain person is viewed and,
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Figure 1: Block diagram of the proposed approach.

while minimizing the switches, they do not quantify the loss
of information in the views that are not selected.

In this paper we model the view-selection problem as a decision
process during which information is only partially visible.
In particular we use a Partially Observable Markov Decision
Process (POMDP), where the process measured by the cameras
(e.g., object size, location or scene activity) is a Markov
process and the sensor scheduling is based on recursively
estimating and updating the belief state, the sensor-scheduling
actions, and the posterior distribution of the process given the
history of the sensor measurements. We represent the process
dynamics and measurements as linear Gaussian state-space
models and track the belief using the Bayes Rule. The reward
for camera selection is modeled as a function on a content-
quality score and the related camera switching. This reward
modeling allows the proposed approach to control the number
of camera switches, thus enabling the generation of pleasant
videos. The proposed approach is tested using both objective
and subjective evaluations on a real multi-camera setup with
partially overlapping fields of view.

The paper is organized as follows. In Sec. 2 we present
the proposed approach for feature-based camera selection.
Experimental results on a real multi-camera basketball dataset
are evaluated and discussed in Sec. 3. Finally conclusions are
drawn in Sec. 4.

2 Proposed approach

Let a site be monitored by a set of cameras C = {C1, . . . ,CN},
with N ≥ 2. Dynamic best-view selection can be regarded as a
three-stage problem (see Fig. 1).

The first stage focuses on the extraction over time t for each
view i (1) of a feature vector for each object j within the view,
ψ

i j
t , and (2) of features associated to the entire camera view,

ψ i
t . The selection of the features depends on the task at hand.

In the second stage, a QoV score, ρ i
t , is computed for each

camera Ci at each time t based on the object features ψ
i,o
t (i.e.,

all ψ
i j
t : j = 1, . . . ,Ji

t where Ji
t is the number of objects in the

view of Ci at time t) and the camera features ψ i
t . ρ i

t can then be
represented as a measure of feature visibility:

ρ
i
t = M (ψ i,o

t ,ψ i
t ), (1)

where M (.) generates the QoV ρ i
t given the two feature

vectors. In the third stage, a best-camera selection mechanism
is constructed as a function of time t such that the best trade off
between the best-camera selection and number of switches is
found.

2.1 Camera selection

Let the selected camera at time t be represented by an N
dimensional vector Ωi∗

t = (c1
t , . . . ,c

N
t ) which has 1 only in the

index i∗ and is 0 elsewhere. The best view can be selected for
each t as

i∗ = argmax
i=1,...,N

(ρ1
t ,ρ

2
t , . . .ρ

N
t ). (2)

However in such selection the number of switches are not
constrained, thus generating unpleasant videos1. To solve
this problem, fixed constraints such as a minimum scheduling
period ∆ can be introduced [2]. However in realistic scenarios
such a constraint may cause loss of information as sudden
and important changes in video content from one view will
not be catered for. To this end it is preferable to set ∆→ 1,
such that the selected camera is the best camera most of the
time [10]. To constrain the number of inter-camera switching,
past information [10] as well as future information [12] can
be used. Moreover, the best-camera selection process should
take into account the currently selected view. This dynamic
modeling of the multi-camera system can be done by modeling
the state of each camera using a random variable at each point
of time. The instantaneous snapshot of such random variables,
at each t, describes the state of our multi-camera system at
t. To this end we model the camera selection problem as a
Markovian Decision Process (MDP), with partially observable
states (POMDP) where each decision (action) takes our system

1An example can be seen at http://www.eecs.qmul.ac.uk/∼andrea/view-
selection.html
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to the next state. POMDP implies control over the states while
having partial observability i.e. no information about the future
states [18]. Within the POMDP framework, for best-view
selection we first map the observation and the selected camera
to associate a utility to the system; then an optimal policy is
defined that maximizes this utility. The maximization of the
utility relates to the best-view selection.

A POMDP can be defined by the influence diagrams shown in
Fig. 2. Let the state of a camera Ci at time t be represented as
si

t ∈ R+, where the state space for the POMDP is S = [0,1].
Thus the state for the multi-camera system at time t can be
expressed as

st = (ρ1
t , . . . ,ρ

N
t ) ∈ (R+)

N
. (3)

Let the action space be represented by C and the action at any
time be represented by the camera transition as c j

t → ci
t+1. Then

the reward u(st ,ci
t) of selecting a camera ci

t ∈C, given the state
st can be represented by the one-step reward function

u(st ,ci
t) = αρ

i
t +(1−α)ϑ i

t , (4)

where α ∈ [0,1] is a scaling factor and ϑ ∈ {0,1} is defined
based on the previously selected camera

ϑ
i
t =

{
1 if ci

t−1 = 1
0 otherwise (5)

It should be noted that if α = 1, u(st ,cn
t ) = ρn

t thus converting
this utility into the quality score (Eq. 10). Hence the system
will select only the best camera over a temporal window
without introducing any smoothing. The one-step cost function
described in Eq. 4 is an integrated metric that accounts for both
camera switching and the observability of features given by the
accumulated quality score at each time k. The state space of
a POMDP is continuous and estimating the current state from
such a large state space is computationally intractable. Thus
approximate solutions for state estimation are formulated [16].
These solutions assume that the space S is quantized with a
factor g such that the quantized state is represented as sd

t = g.st ,
where g = (g1,g2, ...,gS) and gk+1 > gk, with k ∈ [1,S]. For
clarity, we will drop the superscript d from sd

t and refer to this
discrete state as st .

The solution to the POMDP is a policy that can be represented
as π = {µ(p(st |It))} such, that for each t, µ(p(st |It)) is
a state feedback map that specifies an action ci

t → c j
t+1

on C depending on the belief state probability p(st |It). A
graphical representation is shown in Fig. 3 where the posterior
probability distribution of the state st is conditioned on the
observable history It such that

It :=
{

p0 if t = 0
(p0,ϖ0, . . . ,ϖt) otherwise (6)

Here ϖt = (Ωi
t ,(ψ

1
t , . . . ,ψ

N
t )), where p0 is the initial

probability distribution and ψ i
t ∈Ψ is the observation from Ci,

0c 1tc tc

0 t 1t

1tsts
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ts
1ts
1t

tc

),( tt csu

(a) (b)

Figure 2: Influence diagram describing a POMDP model.
Rectangles correspond to decision nodes (actions), circles
to random variables (states) and triangles to reward nodes.
Links represent the dependencies among the components.
st , Ωi

t , ψt , and u(.) denote the state, action, observation
and reward at time t. Information states (It and It+1) are
represented by double-circled nodes. (a) Note that an action
at time t depends on past observations and actions, not on
the states. (b) An action choice (rectangle) depends on the
current information state only.

drawn from the observation space Ψ, given by the observation
equation as

ψ
i
t = h(si

t ,wt), (7)
ψt = (ψ1

t , . . .ψ
N
t ), (8)

where h represents the observation map and wt represent the
randomness in the observations at time t. We assume that
wt is an independent and identically distributed (iid) random
variable with zero-mean Gaussian distribution. Then the
sequence of states within the POMDP are generated such that
at time t = 0 the system starts at an initial unobservable state s0
with the given initial distribution p0. If at any time t, the system
is in state st ∈ S, and taking an action c j

t−1→ ci
t (selecting the

camera Ci given that the camera C j was selected at the previous
time instance t− 1) takes the system to the next state st+1 ∈ S
and an immediate reward u(st+1,Ω

i
t) is achieved. This state

transition is governed by the state transition equation

st+1 = f (st ,Ω
i
t ,vt), (9)

where f and vt represent the state dynamics and randomness
in the state transitions, respectively. Since the state equation
st is composed of two segments, the state dynamics (Eq. 9)
can be decomposed as f (st ,Ω

i
t ,vt) = [ f s(st ,vt), f c(Ωi

t)]. All
the components of f c(Ωi

t) are 0 but the ith component that
corresponds to the selected camera Ci. The specific form
of f s represents the model for the QoV evolution which we
approximate with a Gaussian distribution [9] as

ρ
i
t = N (µ i,Σi,ψ i

t ), (10)

where µ i and Σi are the mean and the covariance of the
Gaussian model N for Ci.

Please note that the belief state probability p(st |It), i.e., the
probability of being in state st , is the posterior probability
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Figure 3: Belief state distribution for three consecutive time
steps. Please note that It(cn

t ,c
m
t+1) signifies the observable

history It given cn
t = 1 and cm

t+1 = 1.

distribution of state st conditioned on the observable history It .
Then the estimated belief state probability s̄t+1, given st after
selecting camera Ci, and observing ψt is given by the Bayes’
rule as

s̄t+1 = η p(ψt |st ,ci
t) ∑

st∈S
p(st |ψt ,ci

t)p(st |It), (11)

where η−1 = p(ψt |p(st |It),ci
t) is a normalizing constant.

The next step calculates the optimal value µ∗(p(st |It)) and the
optimal policy π∗ that constructs the value to action mapping

π
∗ : µ

∗(p(st |It))→ C (12)

These can be estimated using the Bellman equations [1]:

µ
∗(p(st |It)) = (13)

= max
ci

t∈C

 ∑st∈S u(st ,Ω
i
t)p(st |It)+

+γ ∑ψt∈Ψ

(
p(ψt |p(st |It),ci

t)
µ∗(p(st+1|It+1))

)  ,
where γ ∈ [0,1] is a discount factor and the corresponding
optimal policy selects the value-maximizing action as

π
∗(p(st |It)) = (14)

= argmax
ci

t∈C

 ∑st∈S u(st ,Ω
i
t)p(st |It)+

+γ ∑ψt∈Ψ

(
p(ψt |p(st |It),ci

t)
µ∗(p(st+1|It+1))

)  .
The optimal value function in Eq. 14 or its approximation
can be computed using the value iteration algorithm [3]. As
demonstrated in [8], the optimal value function µ can be
determined within a finite horizon by performing a sequence of
value-iteration steps assuming that the sequence of estimates
converges to the unique fixed-point solution. To this end we
need to rewrite Eq. 11 in the value-function mapping form.
Let the real-valued bounded functions µ∗ be such that value
function mapping H for all information states can be written

π∗ = Hµ∗ and the value mapping function H can be written as

(Hµ)(p(st |It)) = max
Ci∈C

h(p(st |It),Ωi
t ,µt), (15)

where H is an isotone mapping and such that value-functions
are estimated per each iteration as:

h(p(st |It),Ωi
t ,µt) = (16)

=
∑st∈S u(st ,Ω

i
t)p(st |It)+

+γ ∑ψt∈Ψ ∑st∈S

(
p(ψt |p(st |It),ci

t)
µ∗p(st+1|It+1)

)
.

The error in the belief state is estimated using the error in the
estimated and observed belief state

g(st ,Ω
i
t) = E[‖st − s̄t‖2]+ (1−u(st ,Ω

i
t)). (17)

Ideally this should continue until g(st ,Ω
i
t) = 0. However, in

practice, we stop the iteration well before it reaches the limit
solution (10−5). Finally, camera selection is performed ∀ t
using the belief-to-action mapping of Eq. 14.

2.2 Quality of View

The Quality of View (QoV) is computed at each time t using
information related to the amount of activity, the number of
visible objects, the visible events and the accumulated object
score. The frame score is dependent on the application at hand.
While keeping most of the descriptions generic, we will focus
in this section on the coverage of team sport events and, in
particular, on basketball.

Let di
t represent the binary mask for camera Ci encoding the

position of the pixels that changed their intensity due to motion.
In this implementation we use the color based change detector
presented in [17]. The amount of activity,

∣∣di
t
∣∣, observed in a

view at time t is thus based on the amount of non-zero motion
observed in a frame.

The observation vector is ψt = (ψ1
t , . . . ,ψ

N
t ), where each ψ i

t is
constructed as

ψ
i
t = (Ji

t ,
∣∣di

t
∣∣ ,E i

t ,Θ
i
t), (18)

where Ji
t is the number of objects in the view of a camera Ci,

E i
t = ∑

Ji
t
j=1 ε

i j
t is the sum of individual object scores ε

i j
t : j =

1, . . . ,Ji
t and Θi(t) is the total event score in the view of the ith

camera at time t.

The number of objects Ji
t is computed based on a multi-level

homography of di
t , that projects the moving objects from each

view to a common ground plane [7]. The homography is
constructed by labeling associated set of points across camera
views and on a virtual top view. By construction, all the points
from the di

t that are labeled as 1 because of the presence of
a target in a particular plane project to the corresponding top
view position. Each object is assigned an object score ε

i j
t ,

which is indicative of the importance of an object within the
scene and it is based on its size, location and proximity to
calculate the object score.
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The size score si j
t of the jth object in the ith camera is calculated

as

si j
t =

1
Ai

wi j
t .h

i j
t

wi j
t +hi j

t
, (19)

where Ai is the imaging area of camera Ci, wi j
t and hi j

t are the
width and height of the jth object, respectively, at time t when
viewed from Ci.

The proximity of the targets to certain objects or areas in the
scene is also taken into account for calculating the object
score ε

i j
t . Authors in [5, 14] consider the distance between

the current location of the target being observed and the exit
points located in the scene, to estimate the deadline (i.e., the
approximate time before the target leaves the scene). Similarly
in sports scenarios, the ball is the object of attention and needs
to be in the selected view most of the time. Moreover, objects
near the ball are of higher interest. The distance of each jth

object xi j
t in each camera Ci at time t from the point of interest

is calculated and is used as a proximity Ri j
t . The lower the value

of Ri j
t , the more significant the object in the scene.

For generating the location score, the site is divided into K non-
overlapping regions and each region is assigned a region score
γk ∈ [0,1], where γk → 1 represents the region of maximum
significance. In basketball scenarios, these could be the regions
near the basket (see Fig. 7, where regions of high interest are
shown in green). Based on its location in the image plane, each
object is assigned a region score γ

i j
t at time t.

The object observation vector for the jth object in Ci at time t
is then constructed as

ψ
i j
t = (si j

t ,γ
i j
t ,Ri j

t ), (20)

and the object score ε
i j
t is then modeled as a multivariate

Gaussian distribution

ε
i j
t = N (µo

i ,Σ
o
i ,ψ

i j
t ), (21)

with mean µo
i and covariance Σo

i . The motivation for using

Figure 5: Example of object scores based on the proximity of
players to the object of interest (i.e., the ball shown with the
blue circle).

a multivariate Gaussian as opposed to a linear fusion of
features [5] is to normalize each feature individually in
its own feature space. Moreover, such fusion of features
allows the extension of the feature vector to suit a specific
task, for instance, visibility of faces, team information or
object associated event score. These local features provide
information about the interesting objects inside each camera
view. Figure 4 shows the values for ε

i j
t for an object according

to its distance from the region of interest (marked in green
in Fig. 7) in a camera view that observes the object from a
distance (top row) as compared to a closeup view of the same
object (bottom row) in another camera view. When object
moves closer to the region of interest there is an increase in
the significance of the object from 0.42 to 0.57 and then to
0.63 (left to right) when the object is approaching the point of
interest (the basket). For the camera with a larger version of
the same object, ε

i j
t goes from 0.53 to 0.63 and then to 0.78.

Because of this, the object instance in the bottom-right part of
the Fig. 4 will have a higher score (larger size and within the
area of interest) and the object instance in the top-left will have
the lowest score (smaller size and outside the area of interest).

The effect of proximity is shown in Fig. 5. As mentioned earlier
the objects closer to the object of interest are more important
than other objects, hence the object closest to the ball (shown
with a blue circle) will have higher score (0.87) as compared to
other objects (0.83 and 0.79).

The visibility of events occurring in the site causes certain
views to be more significant than others. Let us assume that
there are L possible events which can happen for a multi-
camera setup. Based on the significance of each event, it is
manually assigned a score θl indexed by l = 1, . . . ,L. The total
event score Θi

t for Ci at time t is given as

Θ
i
t =

L

∑
l=1

θl . (22)

The events which are not observed by the camera at time t are
assigned a 0 score.

In a basketball scenario, attempt on basket is identified using
motion vectors and the contextual information associated to a
view. We consider the region in the vicinity of the basket and
when the overall magnitude of vectors in this basket region is
larger than a pre-learned threshold, this is considered to be an
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Figure 6: Quality score based on the Gaussian distribution model for C1 from frame 1000 to frame 2000. Sample images at
frame (a) 1140, (b) 1321, (c) 1500, (d) 1621, and (e) 1736.

event.

A sample output for the QoV score of camera C1 is shown
in Fig. 6. Starting from a near zero score for an almost
empty frame (Fig. 6 (a)), as players start entering the view
of the camera, the score starts increasing (Fig. 6 (b)) and
reaches a higher value when multiple players are within the
view (Fig. 6 (c)). The score reaches its maximum when an
attempt-on-basket event is detected (Fig. 6 (d)). After the
attempt on basket, players start moving outside the field of view
thus leading to a decrease in the score (Fig. 6 (e)).

3 Results

3.1 Experimental setup

We test the performance of the proposed method on a
basketball match monitored by 5 cameras with partially
overlapping fields of view (Fig. 7). The data consist of
approximately 15 minutes (22475 frames at 25 fps) of
recording for each camera. We used 500 frames per camera for
training the system. The regions of interest are defined as the
areas bounded by the three-point-line (Fig. 7, shown in green).
The value of α was selected to be 0.75. The point of interest
is the ball and its location was marked manually. Alternative
approaches exist to detect the ball automatically [13], however
they work only on portions of a scene and are not reliable for
the entire match. The camera selection reference videos (ϒgt )
was generated by 11 non-professional users for approximately
4 minutes of the video and the mode at each time was taken as
the reference ground truth for the selected camera.

To evaluate the effectiveness of the proposed camera selection
strategy, here referred to as ϒutil , we compare it with three
alternative scheduling strategies: the maximum-rank ϒmax
(selecting the camera with the highest value of ρ i

t ), the
recursive decision on a group-of-frames ϒgo f , implemented
via Dynamic Programming (DP) [10], and the Dynamic

Figure 7: Camera layout with the field of view of each camera
Ci highlighted. The regions of high importance are shown in
solid (green) color.

Bayesian Network (DBN) based approach ϒdbn. Please
note that ϒdbn [6] uses only past information and does not
take into account the future (predicted) values, that humans
use when watching a video. The automatically generated
video using the proposed approach and its comparison
of various camera selection strategies can be seen at
http://www.eecs.qmul.ac.uk/∼andrea/view-selection.html

3.2 Analysis

The performance of each method for camera selection is
compared to ϒgt . The overlap between ϒgt and the results of
the methods under analysis is shown in Table 1 as a function of
the selected features. It can be seen that the choice of features
has an impact on the overlap score. For instance, when we use
only the number of objects, Ji

t , in the view of each camera (F1),
there is a very small overlap. Such values are due to the camera
layout (Fig. 7) as C2 observes the whole basketball court and
thus it is selected most of the time. Here, ϒmax outperforms
the three other methods that penalize camera switching. In
comparison F2, which only uses the amount of motion |di

t |, has
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Figure 8: Selection output for different methods for camera selection. (Key. Black: ϒgo f ; brown: ϒmax; blue: ϒgt ; red: ϒdbn;
pink: ϒutil)

Table 1: Comparison of camera selection approaches on different feature sets. The numbers represent the % of frames
selected by a specific approach on a particular feature vector composition that overlaps with the reference selection ϒgt . (Key.
ϒmax: maximum-score-based; ϒgo f : DP-based [10]; ϒdbn: DBN-based [6]; ϒutil: proposed method; F1−F15: feature vector
compositions; Ji

t : Number of objects; |di
t |: Amount of motion; E i

t : Accumulated object score; Θi
t : Event score)

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15

Fe
at

ur
es

Ji
t X X X X X X X X

|di
t | X X X X X X X X

E i
t X X X X X X X X

Θi
t X X X X X X X X

M
et

ho
ds

ϒmax 16.24 68.14 30.65 28.14 83.17 41.38 36.16 73.65 84.17 48.43 81.65 83.17 86.23 49.52 88.13

ϒgo f 4.49 70.17 24.26 17.89 78.13 40.52 27.26 83.72 74.46 47.93 83.72 82.14 74.59 45.97 83.80

ϒdbn 3.39 68.37 28.14 28.37 80.17 38.39 30.39 79.37 74.37 53.06 88.42 81.34 86.53 48.49 91.35

ϒutil 4.39 70.21 29.46 32.31 81.31 48.23 30.07 78.80 78.29 44.09 88.97 83.85 90.27 51.73 95.42

a larger overlap for all methods as the amount of motion can
be treated as an indicator of the significance of the content.
However, as discussed earlier, it does not compensate for
events that do not considerably affect the motion in the view
(for instance the ball being thrown to the basket). Moreover, it
is very sensitive to noise due to illumination changes and using
it alone is not always appropriate. Similarly, the use of event
information Θi

t alone, F4, is not a reliable feature as events
may be very sparse in time and can thus lead to decision points
that are far apart in time. In F3, the accumulated object score
E i

t , that includes the object size and location information has
generally a larger overlap than F1. However these features are
local, depend on the objects only and do not take into account
any event information.

From F5 to F10, we couple features. When |di
t | is used (F5, F8

and F9) a larger overlap is achieved. In comparison, F7 has the
smallest overlap as it only takes into account the number of
objects and the event score. These features as described earlier,
are either too sparse to be used alone (F4) or misleading as they
would favor the selection of the camera with the maximum
number of objects (Ji

t ). If we include the amount of motion
along with these features as in F12, the overlap for all the
methods is significantly increased as compared to F7 and F2.
However, when they are included with E i

t (F14), the increase
in the overlap percentage is limited. The largest overlap is
achieved when all the features are used together (F15), where
ϒutil has the largest overlap. The percentage overlap for ϒgo f
is the smallest as it has the minimum number of switches

Table 2: Mean error in the number of switches per second of
the automatically generated videos, compared to the ground
truth. Note that ∆ has no effect on ϒgo f as it operates on a
temporal window and therefore the mean error 0.024 remains
unaffected.

∆
Method

ϒmax ϒdbn ϒgo f ϒutil

1 1.394 0.188 0.024 0.047

5 0.404 0.183 0.024 0.047

10 0.197 0.132 0.024 0.038

15 0.141 0.103 0.024 0.038

20 0.075 0.089 0.024 0.014

25 0.061 0.066 0.024 0.009

but does not always select the best-view (see Fig. 8, black).
In comparison ϒmax, although presents more switches, still
operates around the best view (see Fig. 8, brown).

Figure 9 shows sample results of the proposed method ϒutil , the
ground truth ϒgt , the state-of-the art methods ϒgo f and ϒdbn,
and the baseline method ϒmax. The three frames (from each
camera) are indicated by an arrow in the graph shown in Fig. 8
as (a), (b) and (c). Starting from Fig. 9 (a), most of the players
are seen by C2, C3 and C4, whereas C1 sees only one player
and the view from C5 is empty. However as most of the objects
are on the right hand side of the court and when viewed from
C2 and C3 have relatively smaller sizes, C4 is selected by all the
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C1 C2 C3 C4 C5

ϒgt ϒmax ϒgo f ϒdbn ϒutil
X X X X X

ϒgt ϒmax ϒgo f ϒdbn ϒutil
X X X X X

ϒgt ϒmax ϒgo f ϒdbn ϒutil
X X X X X

ϒgt ϒmax ϒgo f ϒdbn ϒutil
X X X X X

ϒgt ϒmax ϒgo f ϒdbn ϒutil
X X X X X

(a)
C1 C2 C3 C4 C5

ϒgt ϒmax ϒgo f ϒdbn ϒutil
X X X X X

ϒgt ϒmax ϒgo f ϒdbn ϒutil
X X X X X

ϒgt ϒmax ϒgo f ϒdbn ϒutil
X X X X X

ϒgt ϒmax ϒgo f ϒdbn ϒutil
X X X X X

ϒgt ϒmax ϒgo f ϒdbn ϒutil
X X X X X

(b)
C1 C2 C3 C4 C5

ϒgt ϒmax ϒgo f ϒdbn ϒutil
X X X X X

ϒgt ϒmax ϒgo f ϒdbn ϒutil
X X X X X

ϒgt ϒmax ϒgo f ϒdbn ϒutil
X X X X X

ϒgt ϒmax ϒgo f ϒdbn ϒutil
X X X X X

ϒgt ϒmax ϒgo f ϒdbn ϒutil
X X X X X

(c)

Figure 9: Comparison of selected cameras from different methods for the three time instances annotated as (a), (b) and, (c)
in Fig. 8. The same color coding as Fig. 8 is used to highlight the selected camera.

selection methods and ϒgt . When the players start moving from
the left to right in Fig. 9 (b), C1 is selected by ϒgt for it shows
a zoomed out version of the left side of the court allowing to
see the placement of the players as they move in its field of
view. Based on ϒmax, C1 is indeed the best camera as it sees the
maximum number of objects at a reasonable size (as compared
to C2). ϒutil is able to correctly select this camera, while
ϒdbn, bound by the transitions allowed in the adjacency matrix
(see [6]) has to switch from C4 to C2 and then to C1, selects C2.
ϒgo f selects C2 as well, as it sees the entire basketball court
from the side and has higher accumulation of the object score
over time. Finally, in Fig. 9 (c), players have taken up positions
in the left hand side of the court leaving C4 empty. According
to the ϒgt the best camera is C2, which is also selected by ϒdbn.
The best camera based on the QoV as selected by ϒmax is C5.
Our proposed method selects the best-camera C5 while ϒgo f
remains on the same camera C2.

3.3 Comparison

To evaluate the effectiveness of smoothing introduced by the
proposed approach we compare it with the other methods in

terms of mean error in the average number of switches per
second. In this experiment we introduce the selection interval
∆ such that the decision is taken every ∆ frames. This results
in reducing the number of switches.

Table 2 shows the obtained result where the mean error in the
average switches per second for ϒmax reduces from 1.394 to
0.061 as τ increases from 1 to 25. In the case of ϒutil the
error decreases from 0.047 to 0.009 only. For ϒdbn this mean
error decreases from 0.188 to 0.066. The scheduling interval
has no effect on ϒgo f as it operates on a temporal window and
the mean error 0.024 remains unaffected. This shows that the
proposed approach reduces the number of switches without the
need of introducing an additional parameter which may need to
be adjusted based on the dynamics of the scene.

Figure 10 shows the improvement achieved via temporal
smoothing using the proposed approach from frame 517 to
frame 560. Figure 10 (a-e) shows 6 switches between C1 and
C5 for ϒmax. Using ϒdbn and ϒutil there is only one switch.
However in ϒdbn this switch occurs after 59 frames, whereas in
ϒutil this switch occurs at the 48th frame. This is due to the fact
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Figure 10: Camera selection comparison of the three approaches under analysis for 2 seconds of video. Row 1: ϒmax. Row 2:
ϒdbn. Row 3: ϒutil . (Frame numbers: (a) 517, (b) 521, (c) 530, (d) 548, and (e) 560).

that ϒutil is able to predict the next state and is able to switch
to show the best view before any information is lost. However
the ball is passed outside the view of the camera (Fig. 10(d)
row 2) when using ϒdbn.

3.4 Subjective testing

To evaluate the goodness of the automatically generated videos
we performed a subjective test (a Turing test) using 7 videos
of 5000 frames at 25 frames per seconds and 31 subjects.
Out of these 7 videos, 3 videos (M1 - M3) were generated
manually by different (non-professional) users, 4 videos were
generated by using ϒmax, ϒgo f , ϒdbn and the proposed method
ϒutil . The manually generated videos were ranked such that the
total number of switches in the end video were increasing (M1
(58), M2 (63), M3 (109)).

Each subject was asked to decide, for each video, whether it
was generated manually (by a human) or automatically (by
an algorithm). The results of this subjective evaluation are
shown in Tab. 3. It is possible to notice that 83.87% of the
subjects misidentified the video automatically generated by
ϒutil as manually generated. None of the subjects selected the
video generated by ϒmax as manual, whereas 93.55%, 80.65%
and 61.29% of the subjects were able to correctly identify M1,
M2 and M3, respectively as manually generated video.

3.5 Computational cost

Figure 11 shows the computational cost of the proposed
algorithm, broken down for each block outlined in Fig. 1, in
terms of relative execution time. The time for each block was
calculated on an Intel core i5 3.33 GHz Pentium dual core
using a non-optimized serial Matlab implementation. The

entire process took on average 0.937 seconds per frame. Multi-
layer projections and object detection took 0.567 seconds in
total with 44% of the time taken for multi-layer projections
and 17% for the object detection module. Change detection
(18%) and event detection using motion information (4%) cost
on average 0.167 and 0.037 seconds per frame, respectively.
The object- and frame-ranking (8% and 2%, respectively) and
the camera selection (7%) takes only 0.159 seconds per frame.

4 Conclusions

We presented a technique for automated video production from
multiple cameras, which is based on object- and frame-level
feature ranking. The proposed approach estimates object
visibility scores using a multivariate Gaussian distribution
model and employs an optimal control policy for maximizing
visibility over time, while minimizing the number of camera
switches. The performance of the proposed approach
was demonstrated on a multi-camera network with semi-
overlapping fields of view from a real basketball match. An
overlap of 95.42% with a manually generated ground truth
is achieved for the best selected view at any given time. The
effectiveness of the proposed approach was also validated
through subjective testing with 31 people, of which 26
considered the automatically generated video via the proposed
approach as good as a manually generated one.

The proposed camera selection framework can be adapted to
work with other feature sets and it is therefore adaptable to
different application scenarios. In the future we plan to use
automatic ball detection [13] and to use multiple modalities,
including audio, for automated video production.
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Table 3: Summary of the subjective evaluation results based
on the Turing test. “Turing %” represents the percentage of
subjects who classifed the video as manually generated.

Method
Classified as Classified as

Turing %manual automatic

M1 29 2 93.55

M2 25 6 80.65

M3 19 12 61.29

ϒmax 0 31 0.00

ϒgo f 16 15 51.61

ϒdbn 24 7 77.42

ϒutil 26 5 83.87
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