LONG-RANGE SPATIOTEMPORAL
MOTION UNDERSTANDING |
USING SPATIOTEMPORAL FLOW CURVES 7

by

Mark Allmen
and
Charles R. Dyer

Computer Sciences Technical Report #985
December 1990

Long-Range Spatiotemporal Motion Understanding Using
Spatiotemporal Flow Curves

Mark Allmen Charles R. Dyer

allmen@cs.wisc.edu dyer@cs.wisc.edu

Computer Sciences Department
University of Wisconsin
Madison, Wisconsin 53706

Abstract

A spatiotemporal (ST) cube, created by “stacking” a temporally-dense sequence of images
together, is a temporally-coherent data representation. Using ST surface flow, the extension
of optical flow to ST surfaces, ST flow curves are recovered and used to group coherent
regions of the ST cube such that each group represents an object or surface in the scene
undergoing motion. ST flow curves are defined such that the tangent at a point on the
curve equals the ST surface flow at that point. Our algorithm forms clusters of similar flow
curves and is based the following two intuitive, yet powerful constraints called the temporal
uniqueness constraints. First, a point in an image can only move to at most one point in the
next image. Second, a point in an image can come from at most one point in the previous
image. When these constraints are violated, or it appears that they are violated, occlusion
or disocclusion has occurred. Successful grouping of coherent regions of the ST cube for five
gray level image sequences is shown.

The support of the University of Wisconsin Graduate School under Project No. 910288
and the National Science Foundation under Grant Nos. IRI-8802436 and DCR-8521228 is
gratefully acknowledged.

1 Introduction

Temporal coherence is a powerful constraint for understanding visual motion. Just as the
gray levels of pixels around a point in an image are not independent, i.e., spatial coherence
exists, the temporal neighbors of a point are not independent. If a sequence of images is
taken with a short enough time interval between the images, the between-frame motion will
be relatively small. This results in little change in the gray level at a point between frames,
i.e., there is temporal coherence. Spatial coherence has been used innumerable times for
image understanding. For example, edge points in a gray level image are defined as points
where there exists a sudden change in gray level. Points where the gray level varies smoothly,
i.e., there exists spatial coherence, are not edge points. Edge operators detect edge points
based on this definition, recovering edge points only where spatial coherence does not exist
[8]. Temporal coherence, while used in short image sequences for the computation of optical
flow [1], spatiotemporal (ST) surface flow [3] and simplifying the correspondence problem
[14], has not been used as a constraint for motion understanding over long image sequences.

In addition to temporal and spatial coherence of intensity values, there is temporal and
spatial coherence of motion. Except at depth discontinuities, optical flow of an image does
not vary randomly between pixels, i.e., there is spatial motion coherence. Also, the ST surface
flow at a point does not change significantly between frames, i.e., there is temporal motion
coherence. This paper shows how temporal motion coherence over long image sequences can
be used for motion understanding.

An ST cube, constructed by stacking a sequence of temporally-close images together,
has temporal motion coherence (as well as temporal gray level coherence) and is therefore
an ideal structure for studying image sequences using temporal coherence (3, 18, 5]. A first
step in understanding the motion in an ST cube is to determine the instantaneous motion
of each point in the cube, called the ST surface flow (3]. The next step is to compute the
motion of each point through the entire ST cube, or until the point vanishes. An ST curve

through an ST cube such that the tangent at a point on the curve equals the ST surface flow

2

T A AT
b AN 1 T
44 ?’Q “ 4
Time i ime
[aa TRy T
< Space
(a) (b)

Figure 1: (a) A spatiotemporal image with two objects, one accelerating right and one
translating left. (b) The ST surface flow. (c) ST flow curves.

at that point is called an ST flow curve. ST flow curves are recovered from the ST surface
flow and then curves with similar shape can be clustered together. Each cluster represents a
temporally-coherent structure in the ST cube, i.e., structures that result from an object or
surface in the scene undergoing motion.

By using ST flow curves, the ST motion over an arbitrarily long image sequence is
represented in a concise, well-defined form. Therefore, straightforward methods can be used
to study them. For example, using clusters of ST flow curves, separate moving objects in the
scene can be hypothesized, and occlusion and disocclusion between them can be identified
by examining how clusters merge and split.

Figure 1 shows an example of how temporal motion coherence can be used for the in-
terpretation of a long image sequence. Figure 1(a) shows a slice from an ST cube with one
spatial and one temporal dimension. There are two objects, one accelerating to the right and
one translating to the left. The ST surface flow is shown in Figure 1(b). As expected, the
flow for the left object points toward the right, the flow for the right object points toward the
left, and the flow for background points straight into time. Figure 1(c) shows the resulting
ST flow curves.

The flow curves for the left object all have similar shape, as do the flow curves for the
right object. These curves can be clustered using properties of curves that measure the shape
of the curve, e.g., curvature and torsion. However, the flow curves for the right object and
the background have identical shape, i.e., they are straight. So in addition to examining

the shape, for straight flow curves, the slope of the curve is also required. A space curve is

3

completely defined, up to a rigid translation and rotation, by its curvature and torsion [10].
By applying standard clustering techniques using curvature, torsion and slope, three distinct
clusters are formed. Each cluster represents the motion of a single object or the background
over a long period of time.

As shown in Figure 1(c), by definition the flow curves associated with the right object
merge into the flow curves associated with the left object as the right object becomes oc-
cluded. Over time the clusters associated with the two objects merge to form one cluster.
This results because the temporal coherence assumption is violated. Where occlusion events
such as this occur, temporal motion coherence does not exist. Temporal motion coherence
can be interpreted by the following two intuitive yet powerful constraints that we call the
temporal uniqueness constraints. First, a point in an image can only move to at most one
point in the next image. Second, a point in an image can come from at most one point in
the previous image. In areas where these constraints are not violated, i.e., temporal mo-
tion coherence exists, the flow curves will correspond to the motion of a single point, and
therefore they can be clustered together to identify surfaces in motion in the scene. Where
these constraints are violated, or it appears that they are violated, occlusi;m or disocclusion
between surfaces has occurred resulting in clusters of flow curves splitting and merging (see
Figure 1(c)).

The temporal uniqueness constraints can be interpreted formally as a mapping from one
image to a subsequent image. Let f map a pixel from one frame to a subsequent frame.
That is, f : ®2 — R2, f(p;) = py, where p; and p; are pixels in a frame and a subsequent
frame respectively, and projections of the same point in the scene. The temporal uniqueness

constraints say that f is a bijection, i.e., 1-1 and onto.

1.1 Recovering a Qualitative Description

Interpretation of motion in an image, e.g., locating separate objects, can be done prior to

recovery of 3D scene motion or 3D scene structure. A common paradigm when examining

image sequences is to recover 3D structure or 3D motion immediately after optical flow is
computed [1]. Recently, some work has even completely skipped the flow recovery step and
computed structure and motion directly [16, 30, 11]. However, a great deal of information
exists in the flow field and therefore our approach is to recover a qualitative description of
image motion from ST surface flow. Qualitative analysis of image motion is not new. In
the past, this usually meant a qualitative study of optical flow or short image sequences
[12, 9, 32, 20]. Our work can be viewed as an extension of that problem into the temporal
dimension, taking advantage of temporal motion coherence over long image sequences. This
allows the recognition of higher-level motions, e.g., cyclic motion [4], which occur over long
image sequences.

By clustering flow curves, a qualitative grouping of regions in the ST cube is recovered
as opposed to a segmentation of the ST cube. Segmentation requires that every pixel in the
cube be classified into some set. Our results are more qualitative, classifying pixels only in
coherent areas. This approach is desirable for two reasons: first, all gradient-based methods
for computing optical flow and ST surface flow are undefined at occlusion boundaries; second,
only a qualitative result is needed in many situations.

In practice, optical flow and ST surface flow are not only undefined at occlusion bound-
aries, but also within a neighborhood around these boundaries. Gradient-based methods for
computing flow assume motion and intensity values vary smoothly, an assumption that is
violated at occlusion boundaries. To compute the flow, a window around each pixel is used.
If any part of the window overlaps an occlusion boundary, the intensity values do not vary
smoothly within the window and the computed flow is likely to be incorrect. To segment
an ST cube, even these unstable pixels must be classified when, in fact, their values are
incorrect.

Since the ST surface flow cannot be computed reliably near occlusion boundaries, our
approach recovers a qualitative description of motion. However, in many visual motion tasks,

exact localization of motion boundaries is not required. For example, if one is interested in

tracking an object, the exact location of the object boundary is not necessarily as important
as, say, where the centroid of the object moves [2]. An automated surveillance system may
need to detect only that motion occurred, and track the centroid of the motion [7]. In
obstacle avoidance, unless the margin for error is small, the exact boundaries of objects
in relative motion are not needed [24]. So rather than attempt to classify pixels based on
inaccurate data, exact localization of motion boundaries is sacrificed.

Related work in psychology supports the view that localization of occlusion boundaries is
not required in order to recover a useful description of motion. Johansson [19] attached lights
to the joints of a person and then filmed the person undergoing motion, such as walking, in
the dark. Only the motion of the lights was visible in these moving light displays (MLD).
When people observed these MLD’s they almost immediately recognize the motion. Clearly,
localization of boundaries is not required for recognition of motion since no boundaries exist
in an MLD, only the path of the lights through time and space exists. Note that these paths
are precisely ST flow curves. This suggests that ST flow curves represent salient properties
of the image sequence and are useful for motion description and recognition.

Related work in computer vision falls into two categories, that dealing with segmenting
an ST cube and that dealing with segmenting an optical flow field. The latter can be viewed
as a 2D version of our problem. However, while the problem appears similar, approaches
must differ since temporal coherence is the dominate constraint in our method and optical
flow segmentation deals with flow at a single instant in time. In addition to working with an
instant in time, most optical flow segmentation approaches attempt to localize discontinuities
in the flow [22, 31, 27] even though the image flow is in error in these areas [29]. As stated
earlier, our approach does not deal with these areas, but rather uses areas where the flow is
well defined.

Jain segmented an ST cube by examining the signs of three principle curvatures of an
ST 3-surface [18]. These signs were determined by the type of the motion that generated the

surface, translational for example. As such, only the type of motion was used and not the

direction of motion, as we do when using ST surface flow. Later, Liou and Jain presented a
volume-growing algorithm based on gray level [21]. While both of these approaches address
the problem of ST cube segmentation, they used temporal and spatial gray-level coherence
as opposed to temporal and spatial motion coherence.

Peng and Medioni presented an algorithm that analyzed oriented slices of an ST cube
[25]. An edge operator was applied to each slice and the resulting edge slices were then
examined to recover the normal componént of motion. A and Y junctions, indicators of
occlusion and disocclusion respectively, were located in each slice. The problem with their
approach is that edge detectors model an edge as a sudden intensity change, a model not
satisfied near X and Y junctions. Since our method need not localize boundaries of occlusion
and disocclusion, this is not a problem. Our method will identify occlusion and disocclusion
but there is no reliance on detecting boundaries such as A or Y junctions.

In the next section, it is shown how flow curves are recovered from ST surface flow.
Section 3 describes the type of flow curves that are generated and how they are clustered
such that each cluster represents the motion of one coherent object in the scene. Finally,
Section 4 shows how to detect occlusion and disocclusion from flow curve clusters. Results
are presented in Section 5. We assume that the ST cube is composed of gray level images.
Hdwever, our methods are easily modified to also work with edge images. But, as reported
by Allmen and Dyer [3], the additional problem of recovering coherent ST surfaces must be

solved when using edge images rather than gray level images.

2 Recovering Flow Curves

In this section we show, given a sequence of images forming an ST cube, how the motion of
points through the cube are recovered. The first step is the computation of the spatiotemporal
surface flow, i.e., the instantaneous motion of each point in the ST cube. The spatiotemporal

surface flow is computed as described by Allmen and Dyer [3] and gives a vector for each

pixel in an ST cube indicating the motion of that pixel. Given the ST surface flow over
many frames, flow curves through the ST cube are then recovered. Loosely, flow curves are
started in the first frame and flow through the cube to the most recent frame. In theory,
a flow curve could be started at every pixel in the first frame. For practical reasons, flow
curves are started at uniformly-spaced intervals in the first frame, e.g., one curve for each
non-overlapping 16x16 block of pixels. Nothing other than computation time prevents a
more dense placement of flow curves.

An ST flow curve can be represented as a parameterized space curve. A parameterized
ST 3D curve, a(t), is a map a : I — R of an open interval I = (a, b) of the real line R into
R3. « defines a correspondence which maps each ¢ € Iinto a point a(t) = (z(t),y(t),?) € R3.

Using prime to denote the partial derivative with respect to ¢, the vector (z'(t),y'(t),1) =
o (t) € R3 is called the tangent or velocity vector of the curve a at &.

Assume for the moment that the ST surface flow is smooth. Given a smooth ST surface
flow, an ST flow curve « is defined such that the velocity vector of « at each point equals

the ST surface flow at that point. (See Figure 1.) Let the ST surface flow be defined by
F: R - R F(x) = (Az, Ay, 1)

Requiring the velocity of a to equal F is equivalent to

A given flow curve has the initial condition «;(0) = (xo,%0,0), where (zo,yo) are the co-
ordinates of the pixel in the first frame. Using coordinates (z, y, t) for the ST cube, the

preceding equation can be rewritten as the simultaneous equations

8
-
—~—~
O
~—
H

Fi(z(t),y(t), 1)
FZ(m(t)’ y(t)vt)
t(t) = F3((B(t),y(t),t) = 1

<
-
~—~
L
S’
i

with initial conditions
("E(O)v y(O), t) = (3707 Yo, O)

8

where F = (F}, F3, F3).

Many methods can be used to solve this system of equations given the starting points in
the first frame and the ST surface flow, F, defined at every pixel in the ST cube. However,
since F is only defined at coordinate points and must be interpolated at intermediate pixels,
the relatively simple Runge-Kutta method [26, 13] is appropriate. More sophisticated meth-
ods where the increment in t varies depending upon the complexity of F are not used since
there is no reason not to use the smallest increment in ¢ available, namely 1.

Two issues remain regarding the recovery of flow curves: when do they terminate and
when are they created? That is, how is the interval associated with a flow curve determined?
Clearly, flow curves must be created in the first frame and terminated in the most recent
frame. But this is not sufficient. For example, Figure 1(c) shows flow curves starting where
the background becomes disoccluded. These issues will be addressed in Section 4.

The results of the Runge-Kutta method give a sequence of points that define each flow
curve. In order to compute shape-description properties of flow curves such as curvature, a
quadratic curve is fit to each set of points. A separate curve segment, centered at each point,
is fit for every point making up a flow curve. This is done using a 1D version of the quadratic
surface fitting procedure described by Besl and Jain [6]. Once the quadratic curve segment
is fit, the partial derivatives at a point can be recovered and the curvature computed using

the following equation:

VATF BI+C?
T (@r)+)7
where
Ao y ot B t o z v
y" ot t" " " y"

The velocity vector at a point of a flow curve, (z'(t),y'(t), 1), will also be a useful curve
descriptor since it gives the instantaneous direction and speed of motion through the ST
cube. Also, the difference between two velocity vectors of two flow curves at time ¢ measures

the instantaneous difference in speed and direction of the two flow curves.

In summary, flow curves are recovered from the ST surface flow using the Runge-Kutta
method. For each curve the Runge-Kutta method gives a sequence of points that define the
curve. After fitting a quadratic curve segment to each point of each curve, the curvature

and velocity vector at each point can be computed as shape descriptors of the curve.

3 Clustering Flow Curves

Once flow curves are recovered from an ST cube they must be grouped, or clustered, so that
all the flow curves that make up a cluster are “similar.” Ideally, similarity should be defined
so that two flow curves are similar if they both are generated by the motion of a single rigid
object. Torsion, curvature and velocity are three flow curve descriptors that can be used to
measure similarity. How and why these measures will correctly group curves as similar will

be discussed below. How to cluster flow curves using these measures will then be described.

3.1 Describing Flow Curves

Any space curve, and hence any flow curve, is completely defined, up to rigid rotation and
translation, by its curvature and torsion. Intuitively, the curvature at a point on a curve
measures how fast the curve pulls away from the velocity or tangent vector at the point. The
normal vector at a point is defined as the instantaneous change of the velocity vector at that
point. The plane formed by the velocity vector and the normal vector is called the osculating
plane. The torsion at a point measures how fast the curve pulls away from the osculating
plane. So the curvature is a measure of curving in the plane and the torsion is a measure
of twisting out of the plane. Given a starting point, an orientation, and the curvature and
torsion values at every point on a curve, that curve is uniquely defined [10]. Therefore, the
torsion and curvature are good measures of the shape of curves [3, 23, 17]. By classifying the
different types of motion that can occur in the scene, and the resulting projected motion,

one can gain an understanding of the types of flow curves that can be produced. Then it

10

Time

Time

Time

(a)

Figure 2: (a) Flow curves from a slice of the ST cube where an object is moving toward the
camera. The focus of expansion is in the center of the slice. (b) The lower-left view shows
the ST surface flow of a rotating cube. Time is into the page. The top and right views show
the flow curves for the top surface of the box.

can be shown how torsion, curvature, and velocity can be used so that two curves generated
by the same object will be considered similar.

Objects in a scene can move in only two ways — they can translate and rotate. These
motions can be further classified as parallel to the image plane or in depth, resulting in five
separate categories of motion: translation parallel to the image plane, translation in depth,
rotation parallel to the image plane, rotation in depth, and no motion. The resulting flow
curves for each type of motion can be studied by examining how the curvature, torsion and
velocity change in each case.

When an object is not moving or is translating at constant speed parallel to the image
plane, the flow curves generated are straight lines as shown by the right object in Figure 1.
Curvature in this case is zero and torsion is undefined. The velocity vector indicates the
direction and speed of motion.

If orthographic projection is used, there is no apparent motion when an object translates
in depth. In the case of perspective projection, flow curves will curve away from the focus
of expansion (foe). See Figure 2(a). Because the flow curves are planar, torsion is always

equal to zero and curvature varies along the curve. Curvature is larger the farther the flow

11

curves are from the foe. Since the flow curves form a symmetric pattern around the foe, the
velocity vector varies between flow curves.

An object rotating parallel to the image plane results in cork-screw-like flow curves. The
curvature increases from the center of rotation where it equals zero to the curvature of the
flow curve farthest from the center of rotation. Torsion is undefined at the center of rotation
and decreases with distance from the center. The velocity vectors are cyclic along the curve
and increase with distance from the center of rotation.

To illustrate the types of motion that can be produced when an object rotates in depth,
Figure 2(b) shows flow curves resulting from a cube rotating in depth. The flow curves
resulting from the top face have an oval, cork-screw shape. Curvature, torsion and velocity
behave the same as for rotation parallel to the image plane except the values along the curve
are cyclic. The flow curves generated by the side faces of the cube are also oval shaped but
since these faces turn away from the viewer, the flow curves merge with the background after
each face becomes occluded.

The torsion values produced by these four types of motion are of limited usefulness for
distinguishing between these cases. This does not mean that torsion is a poor measure for
distinguishing between space curves in general, only that it is poor for the types of space
curves produced in an ST cube. Here, since curvature varies as torsion does, or inversely
to it, torsion will not help in distinguishing flow curves. Hence, using only curvature and
velocity, all flow curves of one type can be distinguished from the other types.

Table 1 summarizes the above analysis by showing how curvature, torsion and velocity
change along a flow curve (temporally) and between flow curves (spatially) of the same type.
For example, consider the flow curves associated with an object rotating parallel to the image
plane. The curvature and torsion along a flow curve is constant and the velocity is cyclic.

Using Table 1 it can be shown that curvature is sufficient to distinguish between the
four motion types. Given two different types of curves from Table 1, it must be shown that

the curvature values along the curves differ. This will show that curvature is sufficient to

12

4

Spatial Temporal
Motion Curvature | Torsion [Velocity | Curvature | Torsion | Velocity
No Motion Zero Undefined Zero Zero Undefined Zero

Translate Parallel

To Image Plane Zero Undefined | Constant Zero Undefined | Constant
Translate In Depth || Increases Zero Increases | Increases Zero Increases

Rotate Parallel

To Image Plane Increases | Decreases | Increases | Constant | Constant Cyclic
Rotate In Depth Increases | Decreases | Increases | Cyclic Cyclic Cyclic

Table 1: Curvature, torsion and velocity changes between curves (spatial) and along curves
(temporal). “Increases” and “Decreases” is with respect to distance from the center of
rotation or foe.

distinguish the different types of flow curves.

Consider the Temporal, Curvature column of Table 1. Ignoring for the moment the No
Motion row, curvature along a curve varies differently for the four types of flow curves. So
given two different types of flow curves, the difference between these curves must be large
since the curvature values along the curves are different most everywhere. One exception is
a flow curve with zero curvature, generated by an object translating parallel to the image
plane, and a flow curve at the center of rotation or foe. Since these two curves are similarly
shaped, no measure can distinguish them based on shape alone. See Section 5 for how
position can be used in this case.

The only types of flow curves that curvature cannot distinguish are the ones resulting from
translation parallel to the image plane and no motion because in both cases the curvature is
zero. Therefore velocity is also required in general to classify flow curves uniquely according
to the type of motion that generated them.

Torsion could be used to differentiate between most of the motion types, but nothing is
gained by using torsion as well as curvature. Therefore, because torsion adds nothing and is

a third derivative operation making it very susceptible to noise, only curvature and velocity

13

are used. Other work has also used only curvature for similar reasons [4].

From these five primitive cases of 3D motion, we have shown how curvature and velocity
are sufficient for describing and classifying flow curves. When objects undergo a combination
of these types of motion, accelerate, or there is camera motion, the flow curves become more
complicated of course. In these cases, velocity becomes less useful for clustering and therefore

curvature must be used as the primary description of a curve.

3.2 Flow Curve Difference Measures

Given a set of flow curves, we would like to be able to cluster those curves so that all
the curves in each cluster were generated by a single rigid object. Typically, a clustering
algorithm is given a set of items and a way of measuring the “difference” between objects. For
a given number of clusters there is an optimal clustering of the items that minimizes the total
difference. However, finding this optimal clustering requires exponential time. Therefore,
most clustering algorithms attempt to find a clustering that is close to the optimal but
requires considerably less time to compute.

All clustering algorithms suffer from the fact that the algorithm does not know how many
clusters exist a priori. In many applications it is reasonable to expect that this information
is supplied. However, in our case this would amount to specifying how many objects are
moving in the scene. Clearly this is an undesirable assumption. Therefore we will use
heuristic techniques for automatically determining how many clusters exist [15, 28].

A clustering algorithm needs a function that measures the difference between two items.
It has already been shown why curvature and velocity are sufficient to distinguish between ST
flow curves, but it has not been shown how, using these measures, to compute the difference
between a pair of curves. We will first show how this is done in the continuous case. After
converting this result to the discrete case, a very intuitive difference measure is obtained.

The curvature and velocity of a curve can be thought of as functions, « and o:

k(a(t)) — R o (t) = R?

14

« and o can be considered as points in Hilbert space. Hilbert space is an infinite dimensional

vector space such that the vectors have finite length. For example, the vector (1,) 5 o)

has finite length \/(1)2 +(3)2+(3)? + -+ so it is a vector in Hilbert space.
Consider the function x(a(t)) on the interval t; <t < ¢;. £((t)) can be considered as a
vector with a continuum of components along the interval. Intuitively, the squared length of

such a vector is the summation of all the squared components, which becomes the integral

of x(a(t)). Le., |
In(@E)I? = [In(a(e)Pde

Since the length of x and o (or the distance to the point in Hilbert space) can be
computed, the distance between two functions in Hilbert space can also be found. The
direction from one function to another is the component by component difference of the two
functions. The squared distance then is just the squared length of this difference vector.
Since the length of each function is finite, the length of the difference vector, or the distance
between the functions, will also be finite.

The discussion above assumes that the functions x and o' have finite length. For every
point in some bounded interval, x and o' each have a finite value. The values can be
arbitrarily large, but they are still finite. Therefore over the bounded interval the length of
the function is bounded. Again, the length of each function can be arbitrarily large, but it
will be finite.

In the discrete case the integral is replaced with a summation and we arrive at the

following distance or difference measure between functions:

() = r(a)|* = z k(e (1)) — r(aa(t))]

> [eh(1) — a5 (1))

t==i;

llog — |’

I

= 3 [Viet() = =)+ (00 =) + (¢) |

= 3 [(@50) - 5(0) + (O - 1)

t=1i;

15

Note this summation is over a fixed segment of the two curves. This segment can be the
entire curve from time 0 to the current time or say, the most current T steps. In any case,
for each time, the difference is computed, squared and summed. A weighted average of these
two difference measures is used to compute the difference between flow curves. See Section 5

for how these weights are set.

3.3 Clustering Algorithms

Given a difference measure, many possible clustering algorithms could be used. As stated
earlier, most clustering algorithms require the number of clusters be given a priori. In order
to determine the number of clusters, we chose to use a hierarchical clustering method. This
algorithm uses the first n frames to initially determine the number of clusters at time n.
Next, K-Means clustering clustering is used to update the clusters at each subsequent time
step. K-Means works in an iterative manner, updating the clustering as each flow curve is
extended into the current frame.

The hierarchical clustering method used for initially determining the number of clusters
begins by forming singleton clusters with each flow curve calculated over the interval [0,...,7].
The two closest clusters are then combined. At each step, the curvature and velocity values
of the merged clusters are averaged and become the curvature and velocity values of the
new cluster. The iterative combination of pairs of clusters with the smallest inter-cluster
difference continues until only one cluster remains. This clustering process forms a binary
tree, with the singleton clusters at the leaves and the final cluster at the root. The difference
between two adjacent nodes in the tree is defined by the difference between the two associated
clusters. See Figure 3.

Clearly, in most cases, clustering should stop before only one cluster remains. One
heuristic, suggested by Romesburg [28], determines the number of clusters such that the
decision is least sensitive to error in the difference measure. Figure 3(b) shows the number

of clusters obtained for different widths of the ranges of difference between the clusters in

16

Diffe‘:{ence

[# Clusters | Range of difference | Width of range |

.0
(1).8 L 8 0.0 < dif ference < 0.35 0.35
06 2 0.78 < dif ference < 1.04 0.26
’ 3 0.56 < dif ference < 0.78 0.22
04 5 0.35. < di f ference < 0.54 0.19
0.2 4 0.54 < dif ference < 0.56 0.02
1 1.04 < dif ference < o0 -

12345678 liem
a

(b)

Figure 3: (a) The leaves show the initial singleton clusters. The vertical axis indicates the
difference between the two clusters being merged. For example, the difference between items
1 and 2 is 0.35. The difference between items 3 and 4 is also 0.35. The difference between
these two merged clusters is 0.54. (b) Number of clusters obtained for different widths of
the ranges of difference for the tree shown in (a).

Figure 3(a). Romesburg suggests that the decision to terminate merging pairs of clusters is
least sensitive to error when the width of the range is the largest. For Figure 3 this results
in deciding that two clusters exist in the data.

We use a heuristic similar to Romesburg to identify the number of clusters and hence
number of moving objects. Ideally, there should be a “clear” point, indicated by a large
difference, where, by combining clusters, flow curves from different objects are merged. When
the minimum difference between clusters is greater than a threshold times the minimum
difference in the previous iteration, hierarchical clustering terminates. The number of clusters
at this point is the number used for further processing.

Romesburg’s heuristic is desirabie since it does not require a threshold. But consider
the situation where there are three moving objects and a static background. The number of
clusters in this case should be four. Our method will terminate when there are four clusters
remaining since the difference between all pairs of remaining clusters is high. But there is no
reason to believe that the minimum difference with four clusters remaining will be greater
than with three clusters remaining, or two clusters, etc., as required using Romesburg’s

heuristic.

17

Once the initial number of clusters has been determined and the flow curves have been
clustered, a different, more incremental-type clustering is performed. For each new frame,
the curvature and velocity of each flow curve’s next point is computed. Then, for each flow
curve, using a fixed width interval ending at the current time, the difference of the flow curve
and its cluster’s mean is computed. If this difference is greater than the difference of the
flow curve and another cluster’s mean, the flow curve is moved into the other cluster. This
is called the K-Means clustering method [15, 28]. Note that the number of clusters does not
change, but it allows flow curves to move between existing clusters. This is important in

areas of occlusion and disocclusion.

4 Occlusion and Disocclusion Detection

Detection of areas of occlusion and disocclusion is straightforward once the initial clusters
have been computed. Occlusion is characterized by a cluster associated with an occluded
surface merging into a cluster associated with an occluding surface. Occlusion areas are areas
where this merging occurs. Disocclusion areas exist where flow curves split from one cluster
to another. In practice, clusters do not actually split since once a flow curve is following the
ST surface flow associated with an object, it cannot flow out of this area into the ST surface
flow area associated with the object being disoccluded. Consequently, disocclusion results
in areas where no flow curves exists. So rather than using splitting clusters, disocclusion is
detected by noting areas where flow curves do not exist.

The temporal uniqueness constraints were defined earlier as: a point in an image can
only move to at most one point in the next image, and a point in an image can come from at
most one point in the previous image. Figure 1(b) shows the ST surface flow for a scene with
two objects. In regions away from occlusion boundaries, these constraints are not violated.
However, at occlusion boundaries two points flow to one point in the next frame.

Figure 1 shows the ideal case where an occlusion discontinuity occurs. In practice this

18

discontinuity appears as a strip of random flow with the width of the strip dependent upon the
neighborhood size used to compute the ST surface flow. This occurs because gradient-based
methods to compute ST surface flow are undefined at occlusion and disocclusion boundaries.
A method that tries to find these occlusion and disocclusion boundaries by looking locally
for this discontinuity will have to actually look for a strip of random-like flow.

If we ignore these unstable boundary areas by simply extending the flow curves, they
will eventually leave the unstable strip and enter a more stable area, an area away from an
occlusion or disocclusion boundary. Figure 10 shows the flow curves for an image sequence
where one object is moving in front of another object. The flow curves generated by the
occluded surface quickly move though the area where the flow is undefined and merge with
the flow curves generated by the occluding surface.

The temporal uniqueness constraints can be viewed on two different levels. Viewed locally,
the temporal uniqueness constraints are violated when two points flow to one point in the
next frame or a single point flows to more than one point in the next frame. Viewed globally,
the temporal uniqueness constraints are violated when flow curves from one cluster merge
with another cluster or flow curves split from a cluster. By using the temporal uniqueness
constraints at the global level, we avoid having to rely on areas where the ST surface flow is
undefined.

Given the neighborhood size used to compute the ST surface flow, the width of the
random-like strip can be estimated. The temporal neighborhood used to compute the dif-
ference between flow curves can be chosen large enough so that any noise in the curve due
to the occlusion region will be minimal. Therefore it is expected that a flow curve will stay
in the cluster representing the occluded object and then switch into the cluster representing
the occluding object.

Once a flow curve has merged into another cluster and has remained there for some period
of time, it could be deleted. Other than computation time, there is no reason for this step,

however.

19

— bty & BT g

..............

Time out of page Time out of page

7

— v
4%
z
7
2
=

iz

2/
7z
g7

2

7
/////////

~
o
7

N\ \%\.
\ N\

o7
2277

7

(

NN

Ti-\g u-\i

Figure 4: ST flow curves from a 115 frame sequence of a phone book page rotating against a
static background about a vertical line through the middle of the page at 0.02 radians/frame.
One frame of the sequence is shown on the left. The center and right columns show the
top, front and oblique views of the two clusters. Note that some flow curves far from the
center of rotation failed to follow the rotating page. Most of these curves then followed the
background and became part of the background cluster as shown by the top view of the
background cluster.

20

Time out of page Time out of page

Figure 5: ST flow curves from a 115 frame sequence of a phone book page rotating about
its center at 0.008 radians/frame against a static backgound. One frame of the sequence is
shown on the left. The shape of the flow curves resulting from the background (center) and
the phone book page (right) are straight and cork-screw shaped, respectively.

The situation is similar at disocclusion boundaries. Flow curves must be created in regions
where the density of flow curves drops below some threshold. Note there is no problem if
too many curves exist. Near boundaries of disocclusion it is expected that the density of
flow curves will decrease because all curves will follow the disoccluding object and no flow

curves will follow the disoccluded object. :

5 Results

In this section results of the algorithm on five image sequences are presented. Also, while not
necessary from a theoretical standpoint, an additional flow curve descriptor is presented that
helps to correctly cluster flow curves. We also show why it is desirable to use the position
of flow curves when computing the difference between them.

Figures 4 to 8 show the flow curves and resulting clusters for five image sequences. The
set of clusters are the result of the initial hierarchical clustering algorithm. The results of
the subsequent cluster updating procedure using K-Means is shown in Figures 9 and 10. All
image sequences were synthetically generated by transforming a planar region of a phone

book page over a larger image of a table top. Each image sequence was smoothed using a 3D

21

S :"\
&

3

....... - . U
. - - R g s
...... . v el T s
----- — A g S
. 0 -) . st Pﬁ—/
e e e e e - I
Time out of page Time out of page Time out of page

Figure 6: ST flow curves from a 115 frame sequence of a phone book page rotating about a
vertical line through the middle of the page at 0.02 radians/frame and a phone book page
rotating about its center at 0.01 radians/frames. One frame of the sequence is shown at
the top. The front view of the resulting clusters is shown below. The flow curves near the
vertical line of rotation are almost straight and therefore clustered with the background.
The position of the flow curves did not force their clustering with the page rotating in depth
because the nearest neighbor measure was used to compute distance.

Gaussian-weighted kernel with standard deviation of 2 pixels. ST surface flow was computed
at every fourth pixel in every frame. See [3] for details on computing ST surface flow. The
resulting flow for each sequence was convolved with a 3x3x3 median filter and smoothed
using a 3D Gaussian-weighted kernel with standard deviation 0.66. Flow curves started in
the first frame are spaced 16 pixels apart resulting in 196 flow curves.

Figure 5 shows cork-screw shaped flow curves resulting from a circular region rotating
parallel to the image plane. The curvature of flow curves near the center is close to zero and
increases for curves farther away from the center. Since the curvature values are similar, the

curves were clustered together. The velocity vectors are in all directions so they do little

22

Tim Tim

7

Time out of page Time out of page

Figure 7: ST flow curves from a 115 frame sequence of a phone book page translating down
and right at 0.4 pixels/frame. One frame of the sequence is shown on the left. The center
and right columns show the top and front views of the two clusters. The flow curves angled
down and right near the occlusion boundary in the background cluster are about to move
into the other cluster.

to help the curves form a cluster. However, the speed of the vectors are similar. Speed is
defined as the length of the spatial component of the velocity vector. Because it does not
measure direction, it is unaffected by velocity vectors that are oriented in different directions.
Using speed when measuring the difference between curves and clusters amounts to using
the heuristic that flow curves associated with a single object move with similar speed in the
ST cube. Note that speed could not be used instead of velocity since two objects translating
with the same speed but in different directions would then be clustered as one object.

In general, using both speed and curvature may still not be enough to cause the flow
curves near the center of rotation to be clustered with flow curves farther from the center.
This is because the curves near the center are shaped like the curves associated with a static
background; therefore, no matter what difference measure is used there may be problems
computing the correct clusters if only motion is used. To alleviate this problem, the position

of flow curves can also be used. By including position information, flow curves near the

23

Tim

Time out of page

g itV —
e gy LN — S
[- VRIS =
PUNI S — e ——————— oo X
PSS Y —~——
o P T ———— ——
Time out of page Time out of page Time out of page

Figure 8: ST flow curves from a 115 frame sequence of two phone book pages, one translating
left at 0.4 pixels/frame and partially occluding the other, which is translating right at 0.4
pixels/frame. One frame of the sequence is shown on the left. The front and top views of the
resulting four clusters are shown. A fourth cluster results in the area where the two pages
overlap because the flow curves in this area are shaped like flow curves generated by the left
page for a while then shaped like the flow curves generated by the right object. This results
in the flow curves shaped like no other flow curves so a fourth cluster remains. As the flow
curves were extended into subsequent frames, the flow curves in the extra cluster became
shaped more like the flow curves following the occluding object. K-Means then moved the
flow curves into the cluster associated with the occluding object. This is shown in Figure 10.

24

Tim Tim

.........

..............

Time out of page Tine out of page

Figure 9: ST flow curves from Figure 7 extended to 170 frames. The top and front views
of the two clusters resulting from K-Means are shown. The top view of the cluster for the
translating object shows flow curves originally following the background and then following
the page as the page occludes the background. Flow curves generated from the background
near the leading edge of the page have merged into the cluster associated with the page.

center will cluster with those curves nearby it rather than with areas farther away. To
compute the spatial distance between two clusters, the minimum spatial distance between
all pairs of curves is used. Using distance when measuring the difference between curves and
clusters amounts to using the heuristic that flow curves associated with an object are near
each other. Since the nearest neighbor measure is used to compute the distance between
clusters, this heuristic does not imply that a cluster cannot extend across large areas.

In the current algorithm, when computing the difference between curves and clusters, all
components used to compute the difference are weighted equally. With the exception of the
weight for the position of flow curves, similar results were obtained for other combinations
of weights. When the weighting for position was low, flow curves near the center of rota-
tion were clustered with the background. The fixed interval used to compute the difference

between curves and clusters, was 33 frames. However, similar results were obtained when

25

. B~

B e T S

- S — '

-~ I e
Time out of page Time out of psge Timwe out of page

Figure 10: ST flow curves from Figure 8 extended to 170 frames. The top and front views
of the three clusters resulting from K-Means are shown. The number of flow curves in the
fourth cluster was low enough that it was deleted. All of the flow curves that were generated
by the lower part of the object translating right have merged into the cluster associated with
the object translating left. Also, flow curves generated from the background have merged
into the clusters for the translating objects. There are two flow curves in the right cluster
that should be in the center cluster. These errors are corrected by K-Means after the flow
curves are extended a few more frames.

23 frames were used. Based on empirical results, when the minimum distance between clus-
ters is greater than 3.5 times the minimum difference in the previous iteration, hierarchical
clustering was terminated and the remaining clusters were then used by K-Means.

It is possible for an entire object to become occluded by another object. In this case the
cluster associated with the occluded object should be deleted when the number of flow curves
in the cluster becomes small. Based on the initial spacing of flow curves, this threshold was
chosen to be 9. This threshold was also used for deleting clusters of erratic flow curves
resulting from occlusion. For example, Figure 8 shows a cluster which resulted because
flow curves followed one object for a while then followed another after the object became
occluded. During K-Means the flow curves merged into the cluster for the occluding object

and the cluster for the occluded object was deleted because its size fell below the threshold.

26

x%
xX
L3

x x x#&

x* x§

x X (%MW

*® x X
x
£

X x

Figure 11: Occlusion boundaries from Figure 9 where the region translates down and right
(left), and from Figure 10 where two regions translate (right). The position of each “x”
indicates the position where a flow curve changed clusters. The occlusion boundaries for
the left image show the background flow curves merging into the phone book page. The
occlusion boundaries for the right image also show the background flow curves merging into
the phone book pages and the flow curves associated with the left page merging into the
right page.

6 Concluding Remarks

We have presented a method that takes advantage of temporal coherence over very long
image sequences. Flow curves are recovered from the ST surface flow. Flow curves are then
clustered such that each cluster represents the motion of a single surface or object through
the ST cube. By analyzing the merging and splitting of clusters, occlusion and disocclusion
boundaries are identified.

With coherent areas of the ST cube identified, we have a good starting point for higher-
level understanding of the motion in an image sequence. For example, each area can be
reduced to a single representative flow curve. This results in a significant reduction in the
amount of data used in further processing. This is an important property in spatiotemporal
image analysis since the amount of data is very large. With these representative flow curves,
motion recognition can be performed without prior knowledge of the objects undergoing
motion. Johansson’s results with MLD’s suggests that this is possible and that using flow

curves is a promising approach [19].

27

References

[1] Aggarwal, J. K. and N. Nandhakumar. On the computation of motion from sequences
of image - A review. Proc. [EEF, 76:917-935, 1988.

[2] Allen, P. K. Real-time motion tracking using spatio-temporal filters. In Proc. Image
Understanding Workshop, pages 695-701, 1989.

[3] Allmen, M. and C. R. Dyer. Computing spatiotemporal surface flow. In Proc. Int. Conf.
on Computer Vision, 1990. (to appear).

[4] Allmen, M. and C. R. Dyer. Cyclic motion detection using spatiotemporal surfaces and
curves. In Proc. 10th Int. Conf. on Pattern Recognition, pages 365-370, 1990.

[5] Baker, H. H. and R. C. Bolles. Generalizing epipolar-plane image analysis on the spa-
tiotemporal surface. Int. J. of Computer Vision, 3:33-49, 1989.

[6] Besl, P. J. and R. C. Jain. Invariant surface characteristics for 3D object recognition in
range images. Computer Vision, Graphics, and Image Processing, 33:33-80, 1986.

[7] Burt, P. J. Smart sensing within a pyramid vision machine. Proc. IEEE, 76:1006-1015,
1988.

[8] Canny, J. A computational approach to edge detection. IEEE Trans. on Pattern
Analysis and Machine Intelligence, 8:679-698, 1936.

[9] Carlsson, S. Information in the geometric structure of retinal flow field. In Proc. 2nd
Int. Conf. on Computer Vision, pages 629-633, 1988.

[10] DoCarmo, M. Differential Geometry of Curves and Surfaces. Prentice-Hall, 1976.

[11] Faugeras, O. On the motion of 3D curves and its relationship to optical flow. In Proc.
1st European Conf. on Computer Vision, pages 107-117. Springer-Verlag, 1990.

(12] Francois, E. and P. Bouthemy. The derivation of qualitative information in motion
analysis. In Proc. 1st European Conf. on Computer Vision, pages 226-230. Springer-
Verlag, 1990.

[13] Gear, C. W. Numerical Initial Value Problems in Ordinary Differential Equations.
Prentice-Hall, 1971.

[14] Grzywacz, N. M., J. A. Smith, and A. L. Yuille. A common theoretical framework for
visual motion’s spatial and temporal coherence. In Proc. Workshop on Visual Motion,
pages 148-155, 1989.

[15] Hartigan, J. A. Clustering Algorithms. Wiley, 1975.

[16] Heel, J. Direct estimation of structure and motion from multiple frames. A.l. Memo
1190, MIT, 1990.

28

[17] Hoffman, D. D. and W. Richards. Representing smooth plane curves for recognition:
Implications for figure-ground reversal. In Richards, W., editor, Natural Computation,
pages 76-82. MIT Press, 1988.

(18] Jain, R. Dynamic vision. In Proc. 9th Int. Conf. on Pattern Recognition, pages 226-235,
1988.

[19] Johansson, G. Visual perception of biological motion and a model for its analysis.
Perception and Psychophysics, 14:201-211, 1973.

[20] Koenderink, J. J. and J. J. Van Doorn. Invariant properties of the motion parallax field
due to the movement of rigid bodies relative to an observer. Optica Acta, 22:773-791,
1975.

[21] Liou, S. P. and R. C. Jain. A parallel technique for three-dimensional image segmenta-
tion. In Proc. 10th Int. Conf. on Pattern Recognition, pages 201-203, 1990.

[22] Little, J. J., G. Blelloch, and T. Cass. Parallel algorithms for computer vision on the
connection machine. In Proc. Ist Int. Conf. on Computer Vision, pages 587-591, 1987.

(23] Mokhtarian, F. Multi-scale description of space curves and three-dimensional objects.
In Proc. Computer Vision and Pattern Recognition Conf., pages 298-303, 1988.

[24] Nelson, R. C. and J. Y. Aloimonos. Using flow field divergence for obstacle avoidance:
Towards qualitative vision. In Proc. 2nd Int. Conf. on Computer Vision, pages 188-196,
1988.

[25] Peng, S. L. and G. Medioni. Interpretation of image sequences by spatio-temporal
analysis. In Proc. Workshop on Visual Motion, pages 344-351, 1939.

[26] Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical Recipes
in C. Cambridge University Press, 1988.

[27] Reichardt, W., T. Poggio, and K. Hausen. Figure-ground discrimination by relative
movements in the visual system of the fly. Part ii: Towards the neural circuitry. Bio-
logical Cybernetics, 46:1--30, 1983.

[28] Romesburg, H. C. Cluster Analysis for Researchers. Lifetime Learning, 1984.

[29] Schunck, B. G. The image flow constraint equation. Computer Vision, Graphics, and
Image Processing, 35:20-46, 1986.

[30] Taalebinezhaad, M. A. Direct recovery of motion and shape in the general case by
fixation. In Proc. Int. Conf. on Computer Vision, 1990. (to appear).

[31] Thompson, W. B., K. M. Mutch, and V. A. Berzins. Dynamic occlusion analysis in
optical flow fields. IEEE Trans. on Pattern Analysis and Machine Intelligence, 7:374~
383, 1985.

(32] Verri, A. and T. Poggio. Against quantitative optical flow. In Proc. First Int. Conf. on
Computer Vision, pages 171-180, 1987.

29

