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Abstract 
This paper describes a new method based on the Extended 
Gaussian Image @GI) which can be used to determine the 
pose of a 3-D object. In this scheme, the weight associated 
with each outward surface normal is a complex weight. The 
normal distance of the surface from the predefined origin is 
encoded as the phase of the weight while the magnitude of 
the weight is the visible area of the surface. This approach 
decouples the orientation and translation determination into 
two distinct least-squares problems. Experiments involving 
synthetic data of two polyhedral and two smooth objects as 
well as real range data of the same smooth objects indicate 
the feasibility of this method. 
Index Terms: Extended Gaussian Image, gaussian image, 
pose determination, object representation. 

1 Introduction 
A fundamental task in most 3-D computer vision and robotic 
systems is the determination of object pose in space. The pose 
of an object specifies completely its orientation and position 
with respect to a predefined frame or coordinate system. 

The Extended Gaussian Image @GI) representation pro- 
vides a global method of extracting 3-D object orientation. 
The primary drawback of the EGI is the inability to determine 
the translation of a recognized 3-D object. This is because the 
weights in the EGI representation contain only area informa- 
tion and no positional data. One way to encode the positional 
information is to express the equation of the object face in 
dual space. This is the approach taken by Roach et al [I31 
who call the resulting encoded representation the spherical 
dual image. The dual space represents both the orientation 
and position of the planes or faces of the 3-D object; edges 
are explicitly described as connections between dual points. 
However, this scheme is primarily for object representation. 
Furthermore, planes passing near or through the designated 
origin cannot be dualized properly; they map to infinity or 
very large values. 

This paper describes a new representation called the Com- 
plex Extended Gaussian Image (CEGI) from which both the 
orientation and translation of a given 3-D object can be de- 
termined. In addition, the CEGI has the desirable property of 
being able to differentiate larger classes of objects than the 
conventional EGI [81. 

1.1 Organization of Paper 
Section 2 gives a brief description of the Extended Gaussian 
Image @GI) and presents the proposed variant of the EGI, 
namely the Complex EGI or CEGI. It shows how the distance 
information can be encoded in the CEGI represetation. 

The pose recovery strategy of a given object is subse- 
quently presented in Section 3. Emphasis is especially made 
on how the translation parameters are determined, since this 
is the main advantage of CEGI over the conventional EGI 
representation. 

Section 4 focuses on the simulations and results on the 
simulations. A set of simulations is made for both polyhedral 
and smooth objects to verify the feasibility of the CEGI as a 
means of extracting the displacement of the object. 

Section 5 describes the experiments conducted using real 
range data and results obtained using the smooth models; 
final comments and conclusions are presented in Section 6. 

1.2 Past Research on the EGI 
The EGI has been applied l6.41 to determine the object atti- 
tude, where the rotation in 3-D space brings a sample object 
into correspondence with a prototype. It has also been used 
as a means of object recognition [5] in an industrial environ- 
ment. The EGI of the visible portion of an unknown object 
is formed by a constrained optimization method applied to 
data from photometric stereo [7]. The prototype EGI which 
best matches the partial EGI identifies the object. Little [lo] 
uses a variant of the EGI method which employs the mixed 
volume as a basis of attitude determination of the sensed ob- 
ject. The mixed volume is a geometric construction used 
in Minkowski’s [111 proof of existence of a convex object 
given a valid EGI. This paper addresses the deficiency faced 
by the normal EGI method, namely the inability to recover 
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Figure 1: Illustration of the Complex Extended Gaussian 
Image 

translation of objects. 
In addition to recognizing objects and determining object 

attitude, the EGI has also been used to reconstruct convex 
polyhedra. Ikeuchi [7] has proposed a reconstruction pre- 
cedure which minimizes the sum of the square differences 
between the calculated areas of the polyhedron and the given 
area in the EGI. Little's iterative scheme [9] minimizes the 
error in the area of the faces as well as in the location of 
the centroid of the reconstructed figure. More recently. Moni 
[12] has proposed a reconstruction method which involves 
determining the adjacency of faces and the length of edges of 
the polyhedron from the EGI. 

Dane and Bajcsy [2] make use of the Gaussian Image to 
spatially segment a group of range points lying on a sur- 
face of a 3-D object into planar and quatric surfaces. The 
method proposed by Hebert and Ponce [3] segments depth 
maps into plane, cylindrical and conical primitives. This is 
done by mapping the estimated surface normals to the EGI 
and subsequently using the Hough transform to characterize 
the surfaces. 

2 The Complex EGI (CEGI) 
2.1 Introduction to the EGI 
The EGI of a 3-D object is a histogram which records the vari- 
ation of surface area with surface orientation. The weights 
in the EGI representation do not contain any direct distance 
information. As such, it is translation invariant, and it is easy 
to see that the EGI representation rotates in the exact manner 
as the object in space. 

2.2 Description of the CEGI 
In the conventional EGI representation, each weight asso- 
ciated with the normal of the object face is a scalar which 
represent the associated visible face area. The CEGI (com- 
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Figure 2: Effect of translating object on the complex weight 
for particularly oriented faces 

plex EGI) concept extends such a representation by adding 
the normal distance of that face to the origin (in the direction 
of the normal) as thephare component. This is illustrated in 
Fig. 1. In other words, the weight associated with a particular 
normal in the CEGI is a complex number whose magnitude 
is the corresponding visible face area and whose (signed) 
phase is the normal distance of the face from the designated 
origin in the direction of the normal. To illustrate further, the 
complex weight associated with face A is Ah,d4, where Ah, 
is the area of the plane k with the outward normal n k ,  and 
dk is the normal distance of the plane (within which Ah, 
lies) to an assigned origin. dk is positive if the perpendicular 
vector from the origin to the face is in the same direction as 
the outward facing normal of the face. 

For any given point in the CEGI corresponding to normal 
nk, the magnitude of the point's weight is IAh,d4 I = Ah,, 
and thus is independent of the normal distance. If the object 
is convex, the distribution of Ah, corresponds to the conven- 
tional EGI representation. If the object is not convex, the 
magnitude of each weight will not necessarily be equal to 
those of the corresponding conventional EGI. The translation 
invariance property of the weight magnitude applies even if 
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there are more than one contiguous surface patches with the 
same outward normal. Consider surfaces whose normals are 
n k  (Fig. 2). Before translation, the corresponding complex 
weight is 

N. 

1=1 

After a translation along a vector T, the complex weight 
becomes 

1=1 

For each point in the CEGI, the magnitude of the weight is 
thus independent of the translation. However, there exists an 
ambiguity range (-a, a] beyond which errors would occur. 
In our method, all distances are normalized such that the 
greatest expected change in distance is x .  

In short, a translational change in object position does not 
affect the weight magnitude distribution of its CEGI. Hence 
by comparing the magnitudes, we can then recognize objects 
and determine their orientations as we would for a conven- 
tional EGI. Subsequently, by comparing the differences in 
the complex weight phases, we can proceed to calculate the 
distance change along the normals. 

3 Pose Determination Strategy 
3.1 Methodology 
Given a prototype CEGI and a partial CEGI of an unknown 
object, we can recognize the object and determine its orien- 
tation by the following: first, calculate the magnitude distri- 
butions of both CEGI's and second, proceed as one would 
for the conventional EGI's. Once both the object and its 
orientation with respect to the stored model are recognized, 
the object translation can be calculated by using the suitably 
oriented CEGI's. 

The translation parameters can be determined by applying 
a least-squares technique as follows: Suppose the object has 
been translated by 6x, 6y and 62 in the x-, y- and z- direc- 
tions respectively (in model world coordinates). Then for 
each surface whose surface normal is n k ,  and whose complex 
weight is originally Ad,d4, after undergoing vanslation 6d, 
the complex weight becomes Aad(4+6d.nk), where 

6d = 6xi+6yj+6zk 

n k  = nbi+nb j+n& (3) 
Then for each matched weight, let 

PX A -  d(icdt+ad.h) 

pn, Ah, eJ4 wi = a r g ( 2 )  = arg( ) 

= 6xnk + 6yniy + h i ,  (4) 
for i = 1 , . . . , Nvkiblc 

Figure 3: Left: First composite object used for testing; Right: 
Second composite object used for testing 

where Nykib~ is the total number of visible faces on the 
object. We try to minimize the total squared error given by 

k b l .  

( 5 )  c = (wi - nk6x - niy6y - ni,6z)2 
i=l 

The optimal values of 6x, 6y and 62 are 

1 
D by = - 

1 
6 2 =  - D 

where 

In order for this scheme to work, the magnitude of the 
translation (i.e the normalized translation) must be less than 
a as given in (10). 

(10) A = \ / ( 6 ~ ) ~  + (Sy)2 + (6z)* < a 

This is because the complex weight is unique as long as 
the change in phase (and hence the change in surface normal 
distance from the origin) lies within the principal interval 
(-7 TI. 
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- - 
M# T;I; r e d x  €4 r e +  €4 0th fdT 

1 1.6 1.2 3.4 3.8 12.2 15.9 14.1 16.3 
2 2.5 1.8 2.6 1.8 2.1 1.7 4.7 2.3 E 

Table 1: Results for Simulations using Polyhedral Objects 

4 Simulations 
4.1 Experiments with Polyhedral Objects 
Two models are used to test the concept of translation pa- 
rameter extraction using the CEGI representation; they are 
shown in Fig. 3. 
4.1.1 Implementational Issues 
The scheme was implemented in Lisp, with the models gen- 
erated using VANTAGE. VANTAGE is a geometric/sensor 
modeler developed at Carnegie Mellon University [l]. The 
CEGI viewing sphere is discretized into 240 sampling view 
directions located at the center of each face of the tesselated 
pentakis dodecahedron. The normal direction space is dis- 
cretized into 240 cells as well. The CEGI weights are recom- 
puted for each discrete view direction. This is to compensate 
for the varying degrees of self-occlusion which causes non- 
convex objects to register different weights at different view 
directions for the same surface normal. 
4.1.2 Results 
Table 1 summarizes the simulation results for the two poly- 
hedral objects. All the errors are expressed in percentages of 
the maximum displacement. (Note: denotes the average 
error in K while r fK is the standard deviation of the error 
distribution.) 

It can be readily seen from Table 1 that Model 1 yields 
significantly higher predicted distance errors than Model 2. 
For Model 1, if the viewpoint subtends a very small angle to 
the either the z-axis or the x-y plane, the errors incurred in the 
recovery will be very high; this is attributed to the sparse and 
uneven distribution of Model 1’s normals. The lower errors 
for Model 2 are attributed to its higher number of different 
surface normals and their more even distribution. 

4.2 Experiments with Smooth Objects 
In addition to the two polyhedral objects, two smooth objects 
were also used in simulations and experiments involvingreal 
range data. The two chosen smooth objects are the torus and 
the ellipsoid (Fig. 4). 
4.2.1 Simulation 
Implementational Issues 
The torus is modeled parametrically as [(R+r cos 6) cos 4, (R+ 
 COS 6) sin 6, r sin elT while the ellipsoid is represented para- 
metrically as [a sin 6 cos 6, a sin 6 sin 4 , b  cos elT. The para- 
metric values used are: r=20, R40, a=20, b=40,10~01=100, 

Figure 4: Models used in experiments: torus (left) and ellip- 
soid (right) 

and ~V,O~=lOoO. 0 ,Or  and V,  are the object, image and focal 
centers respectively. These centers are colinear. Simulations 
are performed for image resolutions n xn for n = 32,64 and 
128. To achieve a certain degree of realism, a simple ray- 
tracing technique is employed to estimate the object surface 
area projected onto each pixel as well as the surface normal 
to be attributed to that surface. 
Results 
The simulation results are graphically depicted in Fig. 5 and 
listed in Table 2. The number of runs for each resolution per 
object is 250. For both of these models, it is apparent that the 
errors in the predicted displacement decreases monotonically 
as the resolution increases. 

We also observe that the displacement errors incurred for 
the torus are significantly higher (a factor of about 2-3) than 
those incurred for the ellipsoid. This is because, for the ellip- 
soid, the resultant complex weight in each CEGI cell is the 
sum of those weights corresponding to surface patches which 
are either contiguous or spatially close to each other. On the 
other hand, for the non-convex torus, this is not true. n o  
spatially distinct groups of surface patches, whose normal 
distances differ greatly, may contribute to a cell in the CEGI. 
The phase of the resultant complex weight is thus expected 
to have higher variability than that for the ellipsoid, for the 
same amount of phase error per surface patch. 

5 Experiments Using Range Data 
To confirm the validity of the simulations, experiments in- 
volving real range data of the torus and ellipsoid were con- 
ducted. 

5.1 Implementational Issues 
A torus and an ellipsoid were crafted out of clay to resem- 
ble the models whose databases were created. A light-stripe 
range finder was used to produce a range image of these two 
objects, each in three different poses at two different resolu- 
tions (a total of 12 images). The lower resolution images (Set 
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Res. 
32’ 
64’ 
128’ 
32’ 
64’ 
128’ 

Table 2: Simulation Results (Top three lines - torus; Bottom 
three lines - ellipsoid) 

- - - 
f l ~ . , ~  Gi, €4 a,, Gi,,, a~~~ ‘ 

5.0 5.5 5.6 6.1 3.9 3.3 9.9 7.3 
3.2 3.2 3.5 3.7 2.5 2.0 6.3 4.1 
1.4 1.5 1.3 1.2 1.3 1.1 2.7 1.7 
1.1 1.1 1.0 0.8 1.8 1.5 2.7 1.5 
0.8 0.8 0.8 0.7 1.5 1.1 2.1 1.1 
0.5 0.4 0.5 0.3 1.2 1.0 1.5 0.9 

Figure 5: Simulation Results for Torus and Ellipsoid 

1) have spacings of about 3mm in the x- and y- directions. 
The resolution of Set 2 range images is twice that of Set 1 
images. The accuracy in the z-direction is O.lmm. 

5.2 Results 
The experimental results are summarized in Table 3. The 
figures are quoted in percentages of the maximum allowable 
displacement. In this case, all the numbers are in millimeters. 

Again, as for the simulation results, the displacement er- 
rors are smaller for Set 2 experiments (which feature higher 
resolution range images) for both objects. The errors in the 
translation parameters are significantly higher (this time by a 
smaller factor of 1.5-2) for the torus than those for the ellip- 
soid. Despite the fact that the clay models are not exactly the 
same as the models created in the database, reasonable accu- 
racy could still be attained. Figs. 6 and 7 depict calculated 
model positions superimposed on actual object positions for 
the torus and ellipsoid respectively. 

6 Conclusions 
A new variant of the EGI representation which encodes object 
face position has been described. Known as the Complex 
Extended Gaussian Image (CEGI), it is a histogram of spatial 
orientation in which each weight associated with a normal is 
a complex number. The normal distance of the face from the 
predefined origin is encoded as thephse of the weight while 

Table 3: Experimental Results (Tl-T3, E1-E3 - cases involv- 
ing the torus and ellipsoid respectively) 

the magnitude of the weight is the visible area of the face. 
The CEGI provides a global method of extracting the pose 

of a detected object with respect to a stored model. It effec- 
tively decouples the orientation and banslation determination 
into two separate problems. The orientation of the object can 
be determined by first calculating the magnitude distribution 
of its CEGI before matching the resulting distribution with 
those in the database. This operation is exactly the same as 
that using the conventional EGI. The translation parameters 
can subsequently be estimated by comparing the complex 
weight phases. 

A significant advantage of this scheme is that it works for 
both polyhedral and smooth objects. It can be used without 
the need to know the type of object a priori. In addition, it 
is capable of distinguishing between the convex object and 
most other concave objects whose EGI’s are identical to that 
of the convex object [81 (not shown in this paper due to lack 
of space). 
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Figure 6: Top: Superimposed model (Set 2, Case 1); Bottom: 
Superimposed model (Set 2, Case 2) 
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