RECOVERING SHAPE BY
PURPOSIVE VIEWPOINT ADJUSTMENT

by

Kiriakos N. Kutulakos and Charles R. Dyer

Computer Sciences Technical Report #1035

August 1991



Recovering Shape by Purposive Viewpoint
Adjustment

Kiriakos N. Kutulakos Charles R. Dyer

Computer Sciences Department

University of Wisconsin
Madison, Wisconsin 53706

Abstract

We present an approach for recovering surface shape from the occluding contour us-
ing an active (i.e., moving) observer. It is based on a relation between the geometries of
a surface in a scene and its occluding contour: If the viewing direction of the observer
is along a principal direction for a surface point whose pro jection is on the contour,
surface shape (i.e., curvature) at the surface point can be recovered from the contour.
Unlike previous approaches for recovering shape from the occluding contour, we use an
observer that purposefully changes viewpoint in order to achieve a well-defined geomet-
ric relationship with respect to a 3D shape prior to its recognition. We show that there
is a simple and efficient viewing strategy that allows the observer to align their viewing
direction with one of the two principal directions for a point on the surface. This strat-
egy depends on only curvature measurements on the occluding contour and therefore
demonstrates that recovering quantitative shape information from the contour does not
require knowledge of the velocities or accelerations of the observer. Experimental results
demonstrate that our method can be easily implemented and can provide reliable shape
information from the occluding contour.

The support of the National Science Foundation under Grant No. IRI-9002582 is gratefully acknowledged.




1 Introduction

There has been considerable interest in recovering information about the structure of a scene
from sequences of images, assuming an observer in motion (e.g., work on optical flow [1] and
shape-from-motion [2]). One common feature of these approaches is the use of known viewer
motion in order to recover quantitative properties of the scene such as surface curvature
[3]. Recently, however, there has been considerable interest in employing simple observer
behaviors that either make the recovery of scene properties easier [4, 5, 6], or combine simple
behaviors in order to perform complex tasks such as navigation and obstacle avoidance [7,
8, 9, 10]. These approaches rely on maintaining specific geometric relationships between
the observer and the environment. However, without knowledge of viewer motion they only
recover qualitative information about the viewed scene (e.g., relative depth ordering with
respect to the fixated scene point [11}).

This paper presents a new approach that combines the above two paradigms in order to
recover surface curvature from the occluding contour. We show that shape for a selected
point on the viewed surface can be recovered from the occluding contour of two views. The
only requirements are that (1) the surface point is projected on the occluding contour in
both views, and (2) the viewing direction of the observer for one of the views has a specific
relationship with the surface geometry at the selected point. The main idea of our approach is
to use an active (i.e., mobile) observer that purposefully changes viewpoint in order to achieve
such a well-defined geometric relationship with respect to a 3D shape prior to its recognition.
We show that this relationship is characterized by specific image-computable quantities and
enables an analysis similar to the one of Krotkov [12]. In addition, our approach does not
require any knowledge of observer velocities or object models and assumes the use of a world-

centered coordinate frame [4].



It is a well-known fact that the occluding contour is a valuable source of information about
surface shape [13, 14, 15, 16, 17, 18]. The occluding contour is the projection of the visible
rim, the one-dimensional set of points that separates the visible from the hidden parts of a
surface. There have been several approaches to deriving information about surface geometry
from the occluding contour. These approaches are based on three important properties of the

contour’s geometry:
e The geometry of the occluding contour is surface-dependent
o The occluding contour is the projection of a limited set of surface points
e The geometry of the occluding contour is viewpoint-dependent

The dependency of the occluding contour’s geometry on the surface has been investigated
by several researchers. In fact, it has been shown that the geometry of the occluding contour
severely constrains that of the underlying surface [13, 14, 16, 19]. The major problem, though,
is that the occluding contour is created through a projection process and in general the
information it provides is ambiguous, i.e., several different surface rims can project to the same
occluding contour. This has been the major motivation for using the occluding contour to
derive qualitative rather than quantitative information about the surface shape [16, 20, 21, 19].
On the other hand, approaches that derive quantitative shape descriptions from the occluding
contour assume that additional information is available in order to adequately constrain the
shape recovery process [22, 3, 14]. Such approaches require other means for deriving the
additional shape information. For example, Cippola and Blake [3] use a moving observer to
change viewpoint and measure the relative accelerations of image features near the occluding
contour in order to measure surface curvature. Even though their approach is not very
sensitive to errors in viewer motion, they assumed the existence of image features near the

occluding contour and knowledge of the viewer’s translational velocity.
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The second property of the occluding contour suggests that it can provide only a limited
amount of information about the complete shape of the surface. Indeed, the vast majority
of visible surface points does not project to the occluding contour. If the only information
available is the occluding contour of the surface from a particular viewpoint, then we can
only hope to derive a qualitative description for the shape of the entire surface. For example,
Barrow and Tenenbaum [13] attempted to constrain the recovery problem using additional
smoothness assumptions about the surface but these assumptions do not hold in general.

The dependency of the occluding contour on viewpoint has been used to resolve both of
the above ambiguities. A slight change in viewpoint will affect the geometry (i.e., curvature)
and possibly the topology of the rim, and hence the occluding contour. Moreover, the set
of rim points changes and therefore new constraining information about the surface shape
becomes available. It has been shown that if we know how the occluding contour changes
with viewpoint, we can derive a parameterization of the surface and determine its shape
[14]. The issue here is how to accurately measure such changes in the contour’s geometry
when the viewing direction changes smoothly. For example, we must be able to measure
how quickly surface points enter and leave the rim, a problem that requires the measurement
of accelerations of image features in the vicinity of the rim [3], as well as knowledge of the
viewer’s velocity.

The basic assumption used by all of the above approaches was that the viewing direction
is arbitrary. This means that the viewing direction is not related in any way to the geometry
of the rim or the occluding contour. (For example, there are surfaces for which their rim is
planar when viewed from a particular set of directions [17].) This is a reasonable approach,
however, only if the observer cannot control their direction of gaze. When the observer has
the ability to control their viewing direction, the choice of viewpoint(s) does not have to

be arbitrary. Our approach uses an active observer to obtain a view based on the observed



object’s geometry in order to recover exact shape information from the occluding contour.

1.1 Active Shape Recovery

Our goal is to actively derive a quantitative shape description for surface points in the vicinity
of the rim. We accomplish this goal by using properties of the occluding contour. The basic
step of our approach involves selecting a point on the rim and recovering the surface shape
(i.e., principal curvatures and principal directions) at that point. In addition, we present
a strategy for applying this shape recovery step to neighboring surface points. The surface
description is therefore incrementally extended by successively including new points on the
rim and recovering the surface geometry for those points.

The main step of our approach is based on a relation between the geometries of a surface in
a scene and its occluding contour: If the viewing direction of the observer is along a principal
direction for a selected surface point whose projection is on the contour, the corresponding
principal curvature at the point can be recovered. Hence, even though in general surface cur-
vature calculation from the occluding contour of a single view is an underconstrained problem,
for any given point there do exist viewing directions tha;c make this recovery problem well-
defined. If the observer can move to one of those special viewing directions, the ambiguities
caused by the projection process can be resolved. We show that the observer can in fact
deterministically find these special viewing directions by simply maximizing or minimizing a
geometric quantity of the occluding contour (curvature at a point) while changing viewing
direction in a constrained way. Furthermore, we show that we can recover the shape of the
surface at the selected point (i.e., both principal curvatures) from the occluding contour of
one additional view for which the selected point is projected onto the contour. Thus an ac-
tive observer selects a point on the surface rim and purposefully moves to one of the special

viewpoints in order to make shape recovery a well-defined problem.




The significance of our method lies in the use of purposive observer motion to achieve and
maintain purely geometrical relations between a surface and its occluding contour in order
to recover surface shape. Hence, there is no need to perform any velocity or acceleration
measurements in the vicinity of the rim, a process requiring point-to-point correspondences
in the images and precise knowledge of viewer motion. Furthermore, since there is a well-
defined procedure to reach the desired viewpoint, the observer does not need to perform a
complicated search in order to find it [23, 24].

Even though our approach is limited to the recovery of surface shape in the vicinity of
a single point on the rim, we show that there is an important special case for surfaces of
revolution, for which we can derive shape information for the complete set of rim points. In
this case the observer actively “aligns” themself with the viewed surface in order to find a
viewpoint giving complete surface information (i.e., one perpendicular to the axis of rotation).

We also present an extension to the above approach that recovers the shape of points in
the vicinity of the rim. After the shape of a selected rim point is recovered, the observer
changes viewpoint in 'order to bring a new surface point onto the rim and to recover its shape.
Since our basic shape recovery step involves aligning the observer’s viewing direction with one
of the principal directions at the new point, it is important for this visual alignment process
to require only small viewpoint adjustments. We show that if (1) the new point selected is in
the normal plane of the previously selected point, and (2) the new point is sufficiently close
to the previously selected point, then these adjustments will in fact be small and their extent
will depend entirely on the intrinsic properties of the surface. This is a major difference from
approaches using “passive” motion, where the points selected for reconstruction cannot be
controlled.

The rest of this paper is organized as follows. The next section reviews basic terminology.

Section 3 discusses the relation between the geometries of the occluding contour and the
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Figure 1: Viewing direction v is represented as the point p = (cost cos s, costsins,sint) with
s €[0,27),t € [0,m).

surface, and presents the major result enabling us to actively recover surface geometry from
the occluding contour. Section 4 uses this result to describe the main shape recovery step
of our approach. Our results are then extended in the following two sections. Section 5
discusses shape recovery for the case of surfaces of revolution, and Section 6 describes the
viewing strategy used to select a new point for shape recovery. Finally, Section 7 presents
experimental results on synthetic images to demonstrate the applicability of our theoretical

results.

2 Viewing Geometry

Let S be a smooth, oriented surface in R2, viewed under orthographic projection along a
viewing direction . Viewing directions be can thought as points on the unit sphere S%, with
s and t being the slant and tilt of the camera respectively (Figure 1).

Let x be a parameterization of S and p = x(u,v) be a point on S. The partial derivatives

xu(p), %o(p) of x with respect to u and v define T;,(S), the plane tangent to S at p. The rim




of S is the set of those points p for which T},(S) contains a line parallel to €. The occluding
contour of S is the projection of the visible rim on the image plane (Figure 2). The shape
of the occluding contour depends on S and the viewing direction. Our goal is to use this
contour information to recover a description for the parameterization x at points of S in the
vicinity of the corresponding rim points.

Local surface shape (i.e., curvature) is completely expressed by the first and second fun-
damental forms of S with respect to x [25, 26]. Specifically, let N(p) : S — S? be the Gauss
map of S, assigning a unit normal vector N(p) in the direction of the vector product x, A X,
at every point p € S. The normal section of S along a direction £ in T,(5) is the plane curve
produced by intersecting S with the plane of ¢ and N(p). The second fundamental form,
II(p), gives an expression for the curvature of this curve at p. II(p) has a single maximum
and minimum, k,, and k,,, along the principal directions e, and e, respectively. We can use
these two quantities, called the principal curvatures of S at p, to compute the curvature of

the normal sections along any other direction using Euler’s formula:
Fn($) = kny cos® ¢ + ky, sin® ¢ (1)

where ¢ is the angle between the new direction and e;. Hence, we can recover the local shape
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Figure 2: Point p on the rim of the sphere S is projected to the occluding contour point ¢ on
the image plane.
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Figure 3: Classification of the surface point p based on K: (a) p is elliptic, (b) p is hyperbolic,
(¢) p is parabolic, and (d) p is planar.

of S completely from the principal curvatures of S. A qualitative description of the local
shape of S can be given by looking at the sign of their product K = kn, kn,, the Gaussian
curvature of S at p (Figure 3).

Our goal is to recover the principal directions and principal curvatures at selected points on
S. We will assume that p is not an umbilic point, i.e. a point where all directions are principal
directions. In the vicinity of non-umbilic points there exists a special parameterization x(u, v)
of S such that the tangents to the curves x(u,vo) and x(uo,v) (uo,vo constant) are along
the principal directions. These curves are called lines of curvature and their properties are
intrinsically related to the underlying surface. Therefore they serve as a natural basis for
describing a surface [27, 28]. In the rest of the paper x will refer to such a parameterization.

The geometry of a point on the occluding contour and the information we can derive from
it depends on whether the point is a projection of an elliptic, hyperbolic or parabolic point.
This qualitative classification is therefore especially important in order to evaluate the results

of our approach.




3 Local Surface Geometry from Occluding Contour

The problem of recovering surface geometry from the occluding contour has been mainly
studied under the assumption that the viewing direction is arbitrary. This means that the
viewing direction is not related in any way to the geometry of the rim or the occluding contour.
For example, there are surfaces for which their rim is planar when viewed from a particular
set of directions [17]. The assumption that the direction of gaze is arbitrary immediately
excludes such viewpoints from consideration since the rim is not always planar [26]. This is
a reasonable assumption, however, only if the observer cannot control their direction of gaze.
Unfortunately we can only derive a limited amount of information from the occluding contour
when this assumption is in effect.

Let p be a point on the visible rim of S when viewed from direction ¢ and let ¢ be its
projection on the image plane. There are three main results describing what can be recovered
from the shape of the occluding contour under orthographic projection and from an arbitrary

viewing direction:

e We can recover the surface orientation at p (i.e., Tp(S) or N(p)) from £ and the tangent
to the occluding contour at ¢. This is because, by definition, T5,(S) contains both ¢ and

the tangent to the occluding contour [13].

e Let k, be the curvature of the occluding contour at g. Then k, and the Gaussian

curvature K of S at p have the same sign [16, 27].
e If k, is the normal curvature of S at p along &, then K = k,k, [16, 27, 14].

Similar results hold for perspective projection where the plane of projection is not positioned
at infinity, and for the case where k, = 0 [27]. Because K is defined as the product of two

curvatures on the surface (i.e., kn, , kn, ), these results suggest that if we know k, then we only



need to measure one curvature on the surface instead of two. In fact k, and k, determine
the second fundamental form at p. This was the main idea behind the surface reconstruction
approach of Cipolla and Blake [22, 3].

The above results are important but they also imply that if we have no additional in-
formation about the shape of the viewed surface, the information provided by the occluding
contour is primarily qualitative. However, when the observer can actively control their view-
ing direction, they can exploit the existence of directions that allow the derivation of complete
information about the surface. We show this by presenting three simple corollaries to a result
of Blaschke [26]. Blaschke’s result is analogous to Euler’s formula and relates the curvature

of the occluding contour with the principal curvatures of S at the rim:

Theorem 1. (Blaschke) Let ¢ be the angle between { and e;. Then,
k() = k) sin® 6 + k! cos® ¢ (2)
Corollary 1. If ¢ is along the principal direction e, al p, then ko = kn, 2.

Corollary 2. Let ¢, € be two distinct viewing directions in T,(S) from which p is visible, and
let k,, k! be the curvatures of the occluding contour at the projections of p. If (1) K # 0 at p,
(2) € = e1, and (3) the angle between & and £’ is known, then we can compute kn,, ez, and

K atp.

Corollary 3. Let p be a non-umbilic point on the visible rim of S with K # 0. Let é € [0,2m)
be the angle between £ € To(S) and e1. (1) If p is elliptic, the function ko (§) takes its
minimum and magzimum values only when ¢ coincides with one of the principal directions.

(2) If p is hyperbolic, k.(€) is well-defined only when o] < arctan,/:%;— for ¢ < w, or

1The corollaries also hold for e and ky,.

2This is also mentioned in [26].
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|¢| — 7 < arctan \/:.éi?;l; for ¢ > m. For these directions, ko(€) takes its mazimum value when

¢ coincides with e; and it has no minimum value.

Proof: If ¢ is along €5, ¢ = 0 in Eq. (2). Corollary 1 immediately follows. For Corollary
2, note that ky, is derived using Corollary 1, and the fact that ¢ is known. Since K # 0,
Eq. (2) is well-defined and we can use it with kn, as the unknown. The other principal
direction is also computable since e; must lie on Tp(S) and be perpendicular to £. In fact, 13
is perpendicular to the rim even though this does not hold in general [26].

Finally, the derivative of k,(¢) is

1 1 sin 2¢
ko(9) = <k_— B —];;ﬂm) ~1 gin? 1 cos? ) (3)
n2 n ) (k;lsin® ¢ 4 k7l cos? ¢)

In the case of an elliptic, non-umbilic point, ks, # kn, and therefore k, becomes 0 for ¢ =0
or ¢ = /2, i.e., when ¢ is along a principal direction. If p is hyperbolic, the expression in the

denominator tends to 0 as ¢ approaches arctan ,/ :@flﬂ- which is the angle between e; and the
n2

asymptote of the surface at p. In the interval [arctan :’”—;C—‘i;-, arctan 2%,12— + 7] p becomes
occluded and therefore k,(¢) is undefined. In the interval where ko(¢) is defined, Eq. (3)
shows that k,(¢) has a maximum only for ¢ =0 or ¢ = . O

Corollary 1 suggests that the principal directions at p form a special set of directions
providing explicit information about surface geometry in the vicinity of p. Now assume
that we are viewing p from a particular viewing direction and can measure the curvature of
the occluding contour at p’s projection. If somehow we can adjust our viewing direction to
coincide with a principal direction at p and know what this adjustment is, Corollary 2 shows
that we can derive the second fundamental form of S at p. This solves the shape recovery
problem for p. The most important result is given by Corollary 3. It shows that the problem

of finding the principal directions at a point can be treated as a simple maximization (or

minimization) problem. We describe the implications of this result in the next section and
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show how it can be used by an active observer to find the principal directions at p.

4 Recovering the Local Geometry of a Surface Point

The basic step of our surface reconstruction approach is to select a point on the occluding
contour and recover the local surface geometry for its corresponding rim point. We do not
address the point selection problem directly. The reason for this is that we cannot decide a
priori which point on the occluding contour will prove the most useful. This will depend on
the context in which this approach is used. However, there are specific types of points for
which our reconstruction method may not work. Therefore, our task will be to select a point
on the rim for which we can ensure that our approach is effective. Below we first outline the

main ideas, and in Section 6 present more details.

4.1 The Active Reconstruction Approach

Suppose we have selected a point p on the rim. For simplicity we will assume that p is at the
origin. Corollary 3 says that if p is a non-umbilic elliptic or non-umbilic hyperbolic point,
there are only two viewing directions in T,(S) for which k, obtains a local maximum value
(i.e., those for which the angle with e; is 0 or 7) and two directions for which k, obtains a
local minimum. Our goal is to find one of these directions since they correspond to e; and
e;. We discuss the problem of finding e,; e; is treated similarly.

Viewing directions in the plane Ty(S) can be thought as points on a unit circle C, defined
by the intersection of S? centered at p with Tp(S) (see Figure 4). As the observer changes
viewing direction on T,(S), the corresponding point moves on C. Our goal is to smoothly
move this point on C until the viewpoint with maximum &, is found. To do this we must

answer two questions: (1) Which direction should the observer move on the unit circle, and
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Figure 4: Viewing directions on T,(S). Viewing directions correspond to points on the unit
circle C lying on T,,(S) and centered at p.

(2) how can the observer detect when the viewing direction is equal to e; ?

We only have two possibilities for moving on the unit circle, either clockwise or counter-
clockwise. Obviously, we prefer the minimal motion solution in which the desired extremum
is attained with the smallest possible change in viewing direction. From Corollary 3 we know
that if we move in the direction of increasing k,, the first extremum we reach is a maximum.
It easily follows from the local geometry of elliptic and hyperbolic points that this strategy
will in fact produce the smallest viewing direction change (Figure 5). On the other hand,
parabolic points do not have this property.

The second question, detecting when the viewing direction is equal to ez, is partly answered
by Corollary 3. It says that we can detect this event by detecting a local maximum of ko.
However, in order to detect this local maximum, p must be visible; k, cannot be measured
otherwise. The visibility of p is affected by the local surface geometry at p as well as by the
global geometry of S. Ignoring for a moment the case where p is occluded by some distant
point on S, we arrive at the following two conclusions: (1) If p is elliptic, we can align the
viewing direction with either e; or e;. Furthermore, the maximum possible direction change

before the alignment takes place is 7/2 (Figure 5(a)). (2) If p is hyperbolic, we can align
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Figure 5: Finding the principal directions. Top views of the tangent plane are shown. The
axes represent the principal directions, and the origin corresponds to the point of contact, p,
with the surface. The viewing direction makes an angle r with the first principal direction.
C represents the set of viewing directions on the tangent plane and D is Dupin’s indicatrix
for p. (a) p is an elliptic point. Clockwise change in viewing direction decreases k,. The
viewing direction can change by at most 7 /2 before a local minimum or a local maximum is
reached. (b) p is hyperbolic. The only achievable extremum is a local maximum, obtained in
this case by a counterclockwise rotation. Shaded areas, delimited by the asymptotes of the
point, represent the directions where p is occluded. The maximum viewing direction change
before an extremum is found in this case decreases to the angle between e; and the asymptotic
directions. (Note that the axis labels have been reversed.)

the viewing direction only with e;. The maximum possible direction change in this case is
determined by the point’s asymptotes (Figure 5(b)).

These results suggest a simple algorithm to align the observer’s viewing direction with es:

Step 1: Perform a small change of viewing direction on T,(S) and measure the difference
between the previous and current value of k,. If it increases then continue to change
the viewing direction in the same way so that e; will be reached first. If it decreases,

move the viewing direction in the opposite way.

Step 2: Continue moving in the same direction until k, reaches a maximum. This viewpoint
corresponds to e; and therefore the observer can stop moving and use the current value

of k, for k.
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Step 3: Measure the total change of direction between the initial and final viewing direction.
Corollary 2 says that this angle along with k,, and the initial value of k, can be used

to determine ky,.

4.2 Selecting Surface Points for Reconstruction

Any observer motion minimizing or maximizing k, must take into account the effects of global
surface geometry: Irrespective of its local structure, p may become occluded by distant points
on S. The following proposition shows that (a) there are at least some points on the visible
rim of S that cannot be occluded by S if the observer changes direction as described above,

and (b) these points are easily detected on the occluding contour (Figure 6).

Proposition 1. (1) Let p be a visible, elliptic point on the rim of a smooth surface S when
viewed from direction ¢ under orthographic projection. Let q be the projection of p in the
image plane and let | be the tangent to the occluding contour at g. Then, p 1s visible from
every direction on T,(S) iff | does not intersect the occluding contour and is not tangent to it
at any point other than q.

(2) Let C be the occluding contour of S when viewed from direction ¢. Then there s at

least one point on S projected in C that is visible from every direction in T,(S).

Proof: (1) (Only If) Consider the intersection of S with T,(S). If the intersection contains
only the point p, then the intersection of any line m € T,(S5) with S will either be empty
or equal p. Recall that while changing viewing direction, Tp(S) is viewed “edge-on” and its
projection is the line I. Since ! is the projection of all lines in T,,(S) (except those lines parallel
to £), it follows that [ will only intersect the occluding contour at g.

(If) Assume there is a viewing direction in Tp(S) from which p is not visible. Let ¢’ be

the first such direction while moving clockwise (Figure 7). The viewing direction £’ must
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Figure 6: Determining the complete visibility of rim points. Since the tangent at g does not
intersect the occluding contour elsewhere, ¢ corresponds to a rim point visible from every
direction in its tangent plane.

contact S at p and at least one more point, say s. Now consider the intersection of S with
T,(S). The intersection will consist of a set of closed curves and isolated points. Since p is
elliptic there must exist a small disk in T,(S) centered at p that does not contain any other
points of S. Therefore p and s must be in different components. We distinguish two cases,
namely whether s is an isolated point or a point on a curve. If s is an isolated point then
T,(S) must be tangent to S at s. But then s is also part of the rim when viewed along the
original direction ¢. In addition, s must be on the visible rim because it is the first point that
occludes p when changing viewing direction from ¢ to ¢'. This implies that the projection
of an imaginary line joining s and p will contact the occluding contour at two points, the
projections of s and p.

If s is not an isolated point, let @ € S N T,(S) be the closed curve containing s. Now
consider the family of lines parallel to £. One line of the family will contact Q, say at point
r. This point, by definition, must be on the rim of §. It must also be on the visible rim,
since otherwise the surface points occluding it would have already occluded p. Therefore the

projection of the iméginary line joining s and p must contact the occluding contour at at
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(a) (b)

Figure 7: The effects of global occlusion. (a) A “side” view of T,(S). Viewing direction v’ is
the first direction in which p becomes occluded. s is the point occluding p from that direction.
Q is the component of S NT,(S) containing s. (b) A “top” view of the tangent plane of 5 at
p. v is the original viewing direction.

least two points. O
(2) Consider any point g on C that is also contained in the convex hull of C. Since C cannot
be a straight line, ¢ is by definition the only point in common between C' and the tangent at
g. But then g also satisfies the conditions of (1) above. O

Figure 8 shows the results of applying Proposition 1 to the occluding contour of a candle-
stick. The proposition implies that the only points ensuring the correctness of the algorithm
are elliptic. However, this is a necessary requirement for the presence of occlusion but not a
sufficient one. This means that there are cases where the geometry of hyperbolic points can
be recovered with our approach. In fact, shape recovery for hyperbolic points requires less
observer motion on average since the extent of the visibility of these points is limited by their

asymptotic directions.
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Figure 8: Selecting points for surface recovery. Solid lines on the occluding contour of a
candlestick show the points that cannot become occluded while changing viewing direction
in their tangent planes. The arrow indicates the point having the greatest curvature of all
acceptable points.

5 Surfaces of Revolution

In the last section we presented an algorithm for recovering the shape of a single point on
the surface rim. However, there are surfaces for which the local shape of a single rim point
reveals global properties of the surface. Surfaces of revolution present an ideal example of such
surfaces. The properties and appearance of surfaces of revolution and their generalizations
have been studied extensively [27, 25, 29, 17, 30, 31, 28, 18]. Here, we focus on the specific
relation between their global structure and the local shape of points on the rim.

Surfaces of revolution are formed by rotating a planar curve around a straight axis that
does not meet the curve. Therefore, we can completely describe a surface of revolution by the
axis and the generating curve. Approaches for recovering the axis of a surface of revolution
have been mainly geared towards detecting symmetries in their occluding contour or outline
[17], or utilizing their viewpoint-invariant properties [29, 30, 32]. The problem with detecting
symmetries in the occluding contour is that the existence of such symmetries depends on

viewpoint. On the other hand, the identification, detection and utilization of viewpoint-
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invariant properties is a non-trivial task. For example, in [32] the axis was recovered using a
Hough transform-based technique. However, such a technique largely depends on the number
of rim points actually detected. In addition, the axis is severely foreshortened for near-“top”
views of a surface of revolution (i.e., when the viewing direction is almost parallel to the
axis of rotation), limiting the applicability of methods relying on a single, arbitrary view to
precisely recover the axis. Our active approach neatly lends itself to these problems in order
to make them easier to handle. The idea is that if the viewer can align the viewing direction
with a principal direction of a rim point, then shape and symmetry analysis of the occluding
contour becomes especially simple. This is because one of the principal directions corresponds
to a “side” view of the surface (i.e., a view for which the viewing direction is perpendicular
to the axis of rotation). If the generating curve of the surface can be written in the form
y = f(z), then the recovery of the axis of rotation allows us to recover the generating curve
directly from a side view. Even further, the surface rim from such a view is guaranteed to
be completely visible. In the rest of this section we focus on surfaces of revolution whose
generating curve has this property.

Consider a point p on the rim of a surface of revolution when viewed from an arbitrary
direction (Figure 9(a)). The two principal directions at p correspond to the tangents to the
parallel and the meridian passing through p. Since the parallel is a planar curve, if the
visual ray is tangent to the parallel at p it is contained in the plane of the parallel. Hence,
it is perpendicular to the axis of rotation and the view corresponds to a side view of the
surface. The occluding contour from such a side view is symmetric. Therefore, the axis of
rotation (as well as the generating curve) can be recovered by simply using existing symmetry-
seeking approaches (e.g., [29]) which are well-defined for such a viewpoint. However, the
direction and position of the axis can also be constrained by recovering the principal curvatures

corresponding to the parallels for two points on the rim of a side view (Figure 9(b)). This
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Figure 9: (a) A surface of revolution. The z-axis is the axis of rotation. (b) Constraining
the axis of rotation from the principal curvatures of two rim points from a side view. Let
the principal curvature corresponding to the parallels at p and p’ be k and ¥’ respectively.
The distance of p and p’ from the axis is 1/k and 1/k’. The axis must also be perpendicular
to the lines along pg and p'q’ since they are the projections of the planes of the parallels.
Therefore the axis must be tangent to the circles of radius 1/k and 1 /%', centered at p and
' respectively. There are at most two such lines that do not intersect the occluding contour
C'. The direction of the axis is the normal of the plane defined by the viewing direction and
the line through pq.

approach is similar to one used by Richetin et al. [31] where the geometry of the occluding
contour at two parabolic points was used to hypothesize the pose for surfaces that are straight
homogeneous generalized cylinders.

The observer must choose between moving towards the principal direction of minimum
curvature or moving towards the one of maximum curvature. Although the curvature ex-
tremum corresponding to a side view for a selected point is not known a priori, this choice
is easy if the visible rim contains hyperbolic points. Recall that the only principal direction

from which these points are visible is the direction of maximum curvature and that if the
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generating curve of the surface can be written in the form y = f(z), then these points must
be visible from a side view of the surface. Hence, the observer can select one hyperbolic point
and align the viewing direction with the principal direction of maximum curvature (Corollary
3).

It is also easy to show a more general property of surfaces of revolution with this type of
generating curve: If the viewing direction smoothly changes on the tangent plane of a selected
rim point, this point will not become occluded if the viewing direction is approaching the
direction of a side view. This fact can be used to decide how to change viewing directions on
the tangent plane in order to approach a side view of the surface when no hyperbolic surface
points are visible.

Our discussion above deals with a specific type of surface of revolution. However, it can
be generalized to an arbitrary surface of revolution and to the case of straight homogeneous
generalized cylinders where the axis is perpendicular to the cross-section. Consider the case
where the observer selects a rim point that belongs to a parallel that is also a geodesic. If such
parallels exist on the surface, our approach can be used to obtain both the top and the side
views of the surface as well as its axis. Consider the case where the generating curve of the
surface of revolution cannot be written in the form y = f(z) (e.g., a torus). In this case, we
can still recover the axis of rotation from the side view using occluding contour symmetries,
and find points on the generating curve for which the tangent to the generating curve is
parallel to the axis. These points belong to parallels that are geodesics and their principal
directions correspond to the side and top views of the surface. Therefore, the observer can
align their viewing direction with the top view for any type of surface of revolution.

Points on the rim that belong to geodesic parallels are also important because they can
be used to recover the axis of surfaces of revolution and straight homogeneous generalized

cylinders. The surface normal at these points lies on the plane of the parallels. The viewing
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direction corresponding to a side view also belongs to this plane. Therefore, we can recover
the plane of the parallels. Since the axis of rotation is normal to this plane we can also recover
the direction of the axis of the surface. It is in fact possible to detect such a point on the rim
if it exists (without having already determined the axis).

The next section extends our basic shape recovery step by (1) selecting a new point on the
surface in the vicinity of the previously selected point, and (2) applying the shape recovery
step presented in Section 4 to the new point. We also briefly discuss how this two step

approach can be used to select rim points that belong to geodesic parallels.

6 Extending Surface Recovery to Neighboring Points

Our main objective is to recover the complete shape description for a single rim point. In
this section we consider an extension to this approach—selecting a new point and applying
the shape recovery process to that point. We must consider two important issues in order to

demonstrate the effectiveness of such an extension:

o The extent of the viewing direction adjustments needed to align the viewing direction

with one of the principal directions at the newly selected point.

e The extent of the viewing direction adjustments required by our basic shape recovery
algorithm in order to produce reliable shape information for the newly selected point.
This is because if the viewing direction adjustrﬁent is close to zero, then numerical
problems are introduced in the calculations of the principal curvatures from Corollary

2.

We will discuss the issue of selecting new points for shape recovery based on these two
issues. The process has as a primary goal the removal of the first point from the rim and its

replacement by a new point at which the first step will again be applied.
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Figure 10: Removing p from the rim. The figure shows the intersection of a selected plane P
with the surface. The viewing direction ¢ changes in P and the visual rays graze the surface
along the curve f(s) = SN P.

Let p be the previously selected point. After applying the shape recovery step, the viewing
direction ¢ of the observer is aligned with one of the principal directions at p, say es. We
have seen that if we change directions in Ty,(S), p will not leave the rim. Therefore, we must
change viewing direction in some other plane containing e;. The important issues here are
(1) which plane should be selected for changing the viewing direction, and (2) how much
should the viewing direction change in that plane? The motivation for our approach is to
ensure that the shape recovery step for the new point will need only small viewing direction
adjustments. In other words, we require that the new viewing direction does not form a large
angle with one of the principal directions at the new point.

Suppose we have selected a particular plane P passing through p and containing ey, and
that we continuously change viewing direction in that plane. As the viewing direction changes,

the visual ray contained in P will graze the surface along a curve B(s) also contained in that
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plane (Figure 10). Now suppose that we stop at a new viewing direction ¢'. The visual ray
will now be tangent to B(s) at some new surface point. The shape recovery step will now
be applied to this point, attempting to align the viewing direction with ey at the point. We
must therefore examine how the angle of 8’(s) with e, varies along s. The basic idea is to

examine the properties of 8(s) in light of the following efficiency and reliability requirements:

o The efficiency requirement is that 8(s) should always form an angle with e that is
as close to 0 as possible. This means that we require 3(s) to approximate a line of

curvature.

e The reliability requirement is that 8(s) should form an angle of at least ¢*, for some
predetermined constant ¢* that depends on the reliability of the shape recovery step.
This means that we require 8(s) to form an angle of at least ¢* with the lines of

curvature corresponding to es.

The compromise between these two requirements is to require 4(s) to form an angle of exactly
#* with the corresponding lines of curvature. This means that B(s) is a lozodrome for the
surface, i.e., a line on 5 that forms a constant angle with the lines of curvature. Therefore
we should trace S along such a curve while changing viewing directions.

We show in the Appendix that if the selected plane P is the normal plane (i.e., the plane
defined by the viewing direction and the surface normal at p) and if the viewing direction
change on this plane is small, then the viewing direction adjustments during the shape re-
covery step will in fact be smooth and depend entirely on intrinsic properties of the surface.
Specifically, we show that these adjustments are (to a first approximation) proportional to
the geodesic curvature of the lines of curvature at p and inversely proportional to the norrmal
curvature of the lines of curvature at p. This is an important result because it allows us to

predict the performance of our active viewing strategy based on knowledge of the intrinsic
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properties of the surface.

As an example, consider the case of surfaces of revolution. Suppose that the viewing
direction of the observer is aligned with the principal direction corresponding to the parallels.
Now suppose that the observer changes viewing direction on the normal plane at p and
eventually selects a new point p’ for shape recovery, as outlined above. If p belongs to a
geodesic parallel, no viewing direction adjustments will be necessary during the shape recovery
step at p/, i.e., the viewing direction is also tangent to the parallel through p’. On the other
hand, if the geodesic curvature of the parallel through p is non-zero, some viewing direction
adjustments will be necessary. In fact it can be shown that if the observer repeats this process
and selects points p', p",p", ..., these points will asymptotically approach a geodesic parallel
if such a parallel exists. To illustrate this, let us assume for simplicity that the axis of the
surface of revolution is vertical and the point initially selected is p. Then, it is easy to see
that the new point selected will be below T,(S) if the surface normal is pointing upwards.
This means that the new point will be on a parallel below the parallel through p. Therefore
if there is a geodesic parallel below the parallel through p, the points selected will approach

the geodesic parallel.

7 Experimental Results

In this section we demonstrate the applicability of our active shape recovery approach. We
have implemented a prototype system that (1) automatically selects points on the rim of
an object, (2) tracks these points while changing viewing direction on their tangent plane,
and (3) computes the curvature of the occluding contour at the selected points in order to
detect the viewpoints where it obtains an extremum value. Figure 11 shows the two object

models used in our experiments. Qur experiments were performed by synthetically generating
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Figure 11: Models used for the experiments.

images given a polyhedral object model and an observer constrained to move only in a circle
of viewing directions around the object. The occluding contour of the model for the current
viewing direction was displayed and updated as the viewing direction changed smoothly.

The system allows interactive rotation of an object with a single degree of freedom [33].
Therefore, viewing direction changes were constrained to lie on a predetermined plane II. In
our examples this plane is defined by a horizontal line in the image plane and the viewing
direction (i.e., the projection of this plane to the image plane is a horizontal line). Recall that
the process of aligning the viewing direction with a principal direction at a point requires that
the viewing direction changes on the point’s tangent plane (Figure 4). Hence, the one degree
of freedom in rotation allowed us to detect the principal directions only for points tangent to
II. Our system automatically identified these points by finding the points where the occluding
contour was tangent to a horizontal line. These points were automatically detected, labeled
and subsequently tracked while the viewing direction changed smoothly (Figure 12).

Point tracking was performed using a simple algorithm. Note that since the viewing
direction changes on the plane tangent to the selected points, they will always remain in view

and the occluding contour will always be tangent to a horizontal line at these points. We use
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Figure 12: Snapshots of the occluding contour of the two models as the viewing direction
changes. The numbered points are the points being tracked. Views 1 and 3 correspond to
arbitrary views of the candlestick (left) and the tori (right). View 2 corresponds to the view
where the curvature of the occluding contour at the selected points is maximum (shown next
to each of the points).
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this observation to track points in subsequent frames by searching for points on the occluding
contour having horizontal tangents in the vicinity of the previously selected points. Occlusion
is detected when this simple tracking step fails. Figure 12 shows some of the tracked points
for the two models. The points were initially selected and labeled for the viewing direction
¢ = 0. Note in View 1 of the candlestick, the only remaining unoccluded points are the points
0,1,4,5 and 6. Also, note that after a rotation of 3.93 radians the only unoccluded points are
the points 0 and 6, exactly as predicted by Proposition 1 (i.e., the tangents to the occluding
contour at these points do not intersect the contour).

Computing the curvature of a piecewise linear curve is a non-trivial problem; our goal
however, was only to estimate how the curvature at the selected points varies with view-
point. For this purpose, the occluding contour in the vicinity of the detected points was
'approxima,ted with cubic B-splines [34] and the curvature was measured at the points where
the tangent to the spline was horizontal. Even though splines have the effect of smoothing
high curvature parts of a curve, we found that even with the actual rim curvatures being
underestimated the curvature maxima were very distinct. In the case of polyhedral models,
smooth viewpoint changes can result in an arbitrary number of model vertices entering and
exiting the polyhedral rim. Hence, the shape of the rim changes in a very discontinuous
fashion, a problem not encountered with smooth surfaces where topological changes of the
rim are not as frequent. This fact resulted in discontinuities in the curvature estimates, which
ideally should vary continuously with viewpoint. However, Figure 13 shows that the major
peaks and valleys of the curvature estimates are clearly visible even in the presence of the
discontinuities caused by the polyhedral approximation.

Figure 13 also shows how the absolute value of the curvature of the occluding contour at
the selected points varies with viewpoint. Note that the candlestick and the torus are surfaces

of revolution. Therefore, a “side” view corresponds to the viewing direction that is a principal
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Figure 13: Curvature variations with respect to viewpoint at the selected points on the
occluding contour. The models (candlestick on the left and tori on the right) were rotated
a total of 27 radians. The curves for point 5 on the candlestick and on the tori end at the
viewpoint where their occlusion is detected. The curve for point 5 on the tori spans the

complete interval for which the point is visible
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direction for all points on their rim (i.e., the direction is tangent to the surface parallels).
This is illustrated by the fact that the curvature maxima and minima occur at the same
viewing directions for the selected points. View 2 of the candlestick and the tori corresponds
to the appearance of the contours at the points where the curvature at the selected points
obtains a maximum. The views in fact correspond to side views of the surfaces as expected.
Also, note that in the case of the candlestick, the curvature maxima are much larger than
the minima (over an order of magnitude), whereas in the case of the tori the extremal values
are not very different. This is because the difference in the values of the principal curvatures

at the selected points on the candlestick is much larger than for the two tori.

& Conclusions

We have demonstrated that an active observer can follow a very simple viewing strategy
to recover exact shape information at selected rim points. Furthermore, this strategy is
based purely on the computation of a simple property of the occluding contour (curvature
at a point). Our experimental results show that this strategy is readily implementable and
because of its simplicity and its low computational requirements, is very suitable for real-time
implementation.

The use of an active observer is the most crucial aspect of our approach. The observer’s
ability to purposefully change viewpoint enables them to reach the special viewpoint where
the shape of the occluding contour provides complete and exact surface shape information.
Moreover, our approach demonstrates that recovering quantitative shape information from
the occluding contour does not necessarily require knowledge of the vélocities or accelerations
of the active observer. The reason is that observer motion is not used to merely change the

shape of the occluding contour (as in the existing approaches), but it is used to change it in a
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well-defined way, factoring out the need for differential measurements involving viewer motion.
This is a major step towards qualitative, active vision, allowing the use of a world-centered
coordinate frame and incomplete knowledge of the observer’s motion.

We believe that our active approach of moving towards viewpoints that are closely related
to the geometry of the viewed surfaces is a very important and general one. Consider, for
example, the problem of obtaining a “face-on” view of a planar curve (or a texture element).
This problem has been studied extensively in the past and several approaches exist that
hypothesize planar views of the surface, based on information from a single viewpoint (e.g.,
[35, 36]). We are currently investigating an approach similar to the one presented in this
paper that enables the observer to change viewpoint in order to obtain a face-on view of the

contour.
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Appendix: The Extent of Viewing Direction Adjustments

Let us assume we have recovered the principal curvatures at p and the viewing direction
¢ is along the principal direction e; at p. Now assume that the observer changes viewing
direction on the plane of ¢ and the surface normal at p in order to introduce new points to
the rim. We show that the viewing direction adjustment that will be needed during the shape
recovery step is proportional (at a first approximation) to kg, and inversely proportional to
k,,, the geodesic and normal curvatures of the line of curvature corresponding to ez. This
is an important result because it allows us to predict the performance of this active viewing
strategy based on intrinsic properties of the viewed surface. It follows that the performance
of our strategy smoothly degrades as the surface becomes more complicated (i.e., k;, and ky,
become large). We first present some concepts from differential geometry for the study of

curves on surfaces.

The Local Geometry of Surface Curves

Let a(s) : I — 3 be a curve parameterized by arc length (i.e., |’ (s)| = 1). Consider the unit
tangent and unit normal vector, ¢(s) and n(s) respectively, at point a(s). We can describe the
curve with two quantities, its curvature &(s) and torsion 7(s), where ”(s) = r(s)n(s) and
(t(s) An(s))' = 7(s)n(s). The vectors ¢(s),n(s),t(s) An(s) describe an orthogonal coordinate
frame, the Frenet frame centered at a(s). This coordinate frame can be used to locally
describe the curve based on the values of « and 7 at a(s).

Now let S be a smooth, oriented surface, and let &(s) be a smooth curve on S. We can
locally describe @(s) using a coordinate frame similar to the Frenet frame called the Darboux
frame (Figure 14). Consider a point p on &(s). The Darboux frame is defined by N(p), the
normal to the surface, T'(p), the tangent to a(s), and V(p) = T(p) A N(p). Note that the

T —V plane is the plane tangent to S. The vector @'(s) defining the curvature of &(s) can be
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Figure 14: The Darboux Frame. w(s) lies on a sphere S, and p is a point of w(s). N(p)
is the surface normal, T = w'(s), and V = T A N(p) € T»(S). The Darboux frame is the
orthonormal coordinate frame of T, V, N.

analyzed in terms of two components, a tangential component (i.e., on Tp(.5)) in the direction
of V, and a normal component in the direction of N. Therefore we can define the curvature of
a(s) in terms of the curvatures of its projections kg, k, on the tangent plane of 5 and on the
T — N plane, respectively. k, is called the geodesic curvature of &(s) and k, is the curvature
of the normal section of S in the direction of T'. Intuitively, the geodesic curvature measures
how “far off” the T' — N plane the curve actually lies. We show that the geodesic curvature
of the lines of curvature is closely related to the strategy employed by the observer to select
new points for shape recovery. Intuitively, the geodesic curvature of the lines of curvature
measures how the arc length of a curve in the e; direction changes as one moves along the e;
direction.

The curve &(s) can be locally described by the vectors T', N, V and their derivatives. These

derivatives can also be expressed in terms of the three frame vectors:

dT

av
-d—s-' = ——kgT - TgN (5)
dN
—(—1‘;' = *knT + TgV (6)
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where 7, is called the geodesic torsion of a.

The Dependence of the Viewing Direction Adjustments on kg,

Intuitively, the dependence on k, is not unexpected: Recall that k,, measures how far off
the plane of ¢ and N(p) the line of curvature actually lies. On the other hand, the curve
B(s) traced by the visual ray that originally passed through p lies on that plane (Figure 15).
Therefore, one should expect a connection between the angle of B'(s) and kg,. The following

result shows that there is a very simple relation between them:

Proposition 2. (1) Let B(s) be the intersection of S with the plane defined by & and N(p)

(B(0) = p, B'(0) = £). If& is along the principal direction ey then

d
kgz = _Ef' (7)

where ky, is the geodesic curvature of the line of curvature along ey at point p, and o(s) is
the angle between B'(s) and the second principal direction at B(s).
(2) Let &' = B'(s) be the new viewing direction on the plane of & and N(p). If 0 is the
angle between ¢ and ', then for values of 8 close to 0 we have
$(0) ~ -—ull-:—gisiné? * (8)
Proof: (1) The Darboux trihedron for B(0) is composed of the vectors T'(0) = B'(0),
N(B(0)) = N(p), and V(0) = T(0) A N(B(0)), where N(-) is the Gauss map for the sur-
face. We use a second-order Taylor series expansion and Egs. (4)-(6) to find T(s) = B'(s)

with respect to T'(0) = &:
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T Tds | 2dT?
2

~ s(k,V + k. N) + fé-(kgv + k. NY (10)

Q

2
—% (k2 +52) T+
2
[skg + 5 (K + knTg)] V+
o2
[skn -5 (ky, — kgrg)] N (11)
where all coefficients of s are evaluated at 8(0). Now note that S(s) is always on the N — T

plane and therefore T(s) - V(0) = T(0) - V(0) = 0, or (T'(s) — 7(0)) - V(0) = 0 for all s.

Constraining the V-component of Eq. (11) to be identically equal to zero we get
kg =0 (12)

The geodesic curvature k, can be expressed in terms of the geodesic curvatures of the lines

of curvature using Liouville’s formula:
d
kg = kg, cosyp + kg, sin3) + -dif- (13)

where 1 is the angle between #'(0) and e;. But £/(0) is equal to ey, and therefore 3 = /2.
Noting that ¢ = 7/2 — 1 and combining Eqs. (12) and (13), we get the desired result. [
(2) ¢ will be tangent to B(s) for some s. Therefore, &' = T'(s). We use Eq. (11) to get a

first order approximation of s for values close to 0:

T =T N

e (14)

Note that [T(s) — T'(0)] - N equals sin 6, where 0 is defined as above. Now using Eq. (7) and
a first-order approximation for ¢(6) we get the desired result. O

Finally, we can draw three conclusions from Eq. (8):
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Figure 15: Changing directions on the T-N plane. Top: N,(S) is the T-N plane. The visual
ray initially grazes the surface at p in the direction T. N is the surface normal at p. As the
viewing directions change on this plane, the visual ray traces the curve B(s) = SN Ny(S). ¢
is the new point selected for shape recovery. Bottom: A view of the tangent plane at p. The
plane N,(S) and the traced curve are viewed “edge-on”. The viewing direction change stops
when the visual ray grazes p'. [ and I are the lines of minimum curvature passing through p
and p', respectively. The shape recovery step will require a rotation by an angle of f on the
tangent plane at p’ in order to align the viewing direction with e; at p'.

o If k,, = 0, no viewing direction adjustments will be done during the shape recovery
phase if the viewing direction changes in the plane of ¢ and N, in the second step. The
curve f(s) traces a part of the line of curvature associated with e;. This can happen

only if that line of curvature is also a geodesic.
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o ¢(0) can grow arbitrarily large with decreasing values of kn,. If kn, is close to 0, the
surface is locally flat in the e; direction. Therefore, in such a case the approximation
is not valid. However, this problem is inherent to the use of the occluding contour for
shape recovery in the case of almost flat surfaces. The reason is that if the surfaces
are locally ﬂat, surface points will enter and leave the rim at arbitrarily large rates.
This problem will also exist for methods that measure image velocities in the vicinity
of the rim (e.g. [3]), since they require that the image points or features are not widely

separated on the surface.

e Eq. (8) can also be used as a means to approximate kg,: After a small rotation by
¢ in the plane of N(p) and £, the shape recovery step will produce a value for #(0).
Hence, we can use the equation to approximate k4. This means that we will be able
to completely describe the line of curvature corresponding to e; in the vicinity of the

previously selected point.
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