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Abstract

An heterogeneous Multiple-SIMD (M-SIMD) architecture is used to analyse image
sequences by integrating image processing operations with optimal recursive
(Kalman) estimators. The architecture uses SIMD processors for data parallel (iconic)
operations and MIMD processors for control parallel (numeric and symbolic) tasks.
The SIMD processors are configured as small contiguous sub-arrays, with each sub-
array attached to a single MIMD processor. This allows operational autonomy
intermediate between the pure data and control parallel paradigms. Use of the
architecture is illustrated with size-based detection and segmentation techniques that
are guided by Kalman filters through an image sequence. The measurements of object
size on the image plane allow a robust estimate of the range and physical size of the
object in the world. Results are presented for the architecture performance, the image
processing, and the estimation techniques.



1 Introduction

Parallel array architectures are typically classified as SIMD (e.g. DAP, Connection
Machine [1,2]) or MIMD (iWarp, Transputer). SIMD architectures are suited to data
parallel problems where all elements, in a large array of data, are processed
identically, and MIMD architectures are effective where a number of data elements
are to be processed independently (control parallel). When information must be
extracted about several independent objects present in an image sequence both types
of parallelism are required.

The issue of control in image processing and image understanding has been
investigated widely in terms of bottom-up (data driven) approaches, top-down (model
driven) approaches, and also in terms of approaches intermediate between these two
extremes [3]. Knowledge based techniques [4, 5], through to approaches using
optimal least squares estimators [6] have been used to control the processing of single
images. We are interested here in processing sequences of images. Optimal recursive
estimators are well suited to image sequence processing and have been used in a
number of application areas [7, 8, 9, 10]. Each image of a sequence contains
insufficient information for the robust control of the operations on that image.
However, the information contained in each noisy image measurement may be
integrated in an optimal way through an image sequence. Image processing
operations provide the measurements from the image data that are the inputs to the
estimators. The resulting estimations are then used to control the image processing
operations on the next image of the sequence:
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Figure 1. Overview of the processing scheme.



We illustrate this approach with an object tracking and range estimation problem. A
typical requirement, before performing higher level 0peration§, is to detect objects of
a particular class within each image and then to segment these objects from their
backgrounds. The processes of detection and segmentation are, in general, improved
by increasing the a priori knowledge of the imaged object [11, 12, 13]. A priori
information about the image of an object, as it appears in a sequence of images, is
contained within models and updated by optimal recursive estimators. The initial a
priori information takes two forms. Models of the imaged object and its dynamic
behaviour, together with uncertain estimates of the quantities required to control the
image processing. As each image is processed the information contained in the
measurements is used to reduce this uncertainty, i.e. increase the a priori information
(in Fisher's sense) in the estimates that control the processing of the next image in the
sequence.

We will show that two types of computation dominate the task. The processing of
images is data parallel; the early stages of the image processing computations are
iconic, global, and use small integer word sizes. Later stages of the image processing
are iconic but local to objects. The processing may be guided by estimating properties
of the objects. This estimation is a numeric and control parallel problem if multiple
objects and multiple models are allowed. The numeric computations are floating point
intensive. The two extreme types of computation map onto two classes of parallel
architecture. Data parallel Single Instruction Multiple Data (SIMD) for the iconic
processing, and Multiple Instruction Multiple Data (MIMD) for the control parallel
numeric processing.

This diversity of processing requirements leads to a difficulty of parallelising the
overall task on one class of architecture. Amdahl’s Law [14] tells us that even small
parts of programs must be parallelised to achieve linear speedup with increasing
numbers of processors. If P is the fraction that is parallelisable and N the number of
processors then:

-1
speedup = [(1 -P)+ —IIH ] 1)

As N increases, this asymptotically approaches (1-P)-1. By using only one form of
processor, either data or control parallel, the fraction (1-P) may remain significant at
the task level. The approach of the heterogeneous M-SIMD architecture is to provide
compute capability to tackle both forms of computation simultaneously, i.e. to reduce



the serial component (1-P). If the fraction of the computation that is data parallel is D,
and the fraction that is control parallel is C, then combining these gives a modified
form of Amdahl’s Law:

=1
D+C} 2

speedup :[(1—(D+C))+ v

SIMD MIMD
The combination of SIMD and MIMD parallel arrays further reduces the fraction (1 -
(D + C)) increasing the available speedup. By partitioning the SIMD array into
subarrays with operational autonomy, that is creating processors with granularity and
characteristics intermediate between SIMD and MIMD, to give an M-SIMD
architecture, we can introduce further parallelism with the proportion, G, that can be
processed in this way:

-1
speedupz[(l—(D+C+G))+ D + C 4 O } 3)
N SIMD N MIMD N MSIMD

The speedup is now limited by the remaining serial fraction of the original code and

asymptotically approaches [1—(D+C +G)]_1. The use of multiple subarrays

independently in this way can be thought of as an array of MIMD processors each
with a two-dimensional ALU, data path, and registers.

We describe an architecture that combines the properties of bit-serial SIMD
processors with bit-parallel floating point MIMD processors. We add a further
refinement to this combination of processor types, at an additional hardware cost of
~10%, which allows limited operational autonomy [15] within the SIMD array by
dividing it into a number of subarrays:
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Figure 2. Comparison of SIMD and M-SIMD architectures.

Tracking the position and size of approaching objects through an image sequence is
used to illustrate the mapping onto the architecture. The image size of a stationary
automobile, as it is approached by a camera, is used to estimate the distance to the
vehicle [16]. The image processing operations that detect the object and segment it
from its background are sized based. The operations are first guided to detect objects
of an approximate size [17,18]. False detections are eliminated by comparing
measured positions with predicted positions [19]. The object is segmented from its
background using boundary points of the object given a prediction of the objects size
[18, 20, 21]. The recursive estimators maintain and refine estimates of both position
and size which are used to guide the image processing. The example reported here
could be extended to include more complex models of objects, and to distinguish
between multiple objects by matching against more than one model and performing a
consistency analysis [19]. Optimal recursive estimators provide a robust and
potentially powerful tool for the control of image sequence analysis.

2 Architecture

We have designed, built, and tested a prototype heterogeneous Multiple-SIMD
architecture. The architecture consists of an SIMD array divided into subarrays each
with an individual control stream and an associated conventional processor. Each
subarray, controller and conventional processor is referred to as a cluster. An
implementation of the architecture may consist of one or more clusters. The Warwick
Pyramid Machine consists of an 8 by 8 array of clusters.

The clusters may operate individually or form groups of two or more and run

synchronously. Several of these groups of clusters may then operate concurrently.



The operational autonomy of the clusters differentiates the architecture from
machines that simply combine an SIMD array with an MIMD array. The advantages
of M-SIMD are greater utilisation of the SIMD processors (by allowing operational
autonomy) and increased vertical data bandwidth between the SIMD and MIMD
processors. The cost is increased complexity both in software and hardware. The
software complexity is difficult to quantify but raises interesting issues of mixed
programming paradigms, and load-balancing. The hardware complexity is of the
order of an additional 10% over a machine consisting of a conventional SIMD array
combined with a conventional MIMD array.

Figure 3 shows a schematic of four clusters. Each of the prototype clusters is
implemented as a 16 by 16 SIMD array of bit-serial processors, with each processor
having 8K bits of memory. The instruction stream to this array is provided by a 16-bit
microcoded controller, which has 16K of 64 bit horizontal microcode memory and 4K
of 16 bit dual-port memory. This dual-port memory is for communication of program
and data to the MIMD processor. The MIMD processors currently used are
Transputers [22]. The prototype uses DAP SIMD Processing Elements (PE’s) [1].

The bit-serial SIMD PE’s are four-way nearest neighbor connected for data transfer.
The controllers are four-way nearest neighbor connected for control and
syhchronisation, and the MIMD processors are four-way connected (via 20 Mbit s°!
Inmos bit-serial links) for data communication.

Figure 3. Four clusters of an M-SIMD architecture.
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3 Processing Flow

The processing flow that we describe is typical of the enhancement, detection,
segmentation, feature extraction and classification approach for each frame in an
image sequence. The early stages are global iconic filtering operations. The later
stages of the processing are local to individual objects, and progressively less iconic
and more numeric. We describe the global detection and local segmentation stages of
this image processing in detail. Both the detection and segmentation techniques
require an estimate of the objects image size as input. The image size and position of
each object are tracked using (in this example) optimal recursive estimators in the
form of Kalman filters.

Objects are first detected within an image and then segmented to produce a measure
of object size. This may be carried forward to guide the detection and segmentation in
the subsequent frame. Image size may change in a systematic way from one image to
the next. A model of the way size changes with time may be used to integrate size
measurements within a tracking filter. From the current measurement the filter
produces a prediction of the size in the next frame, and an associated uncertainty.
This size estimate is used to control the image processing operations applied to the
next frame. Estimates of the objects physical size and actual range from the camera
image plane may also be computed.

The objects position on the image plane is tracked, giving a prediction of where the
object will occur in the next frame. This serves two purposes. It limits the processing
in the next image to a region of interest containing the object, and the tracked
centroid is used to select the true object out of possibly many false detections in the
next frame.

The process of integrating image measurements with Kalman filters is shown in
Figure 4. The first operation on the nth image is a global edge orientation detection
followed by a global detection of objects whose predicted size, Ax(nin-1), is available
from previous frames. The set of detected objects have centroids {xdq(n)}. These are
compared with the predicted position of the object, x(nIn-1), by a data association
operation that selects one detection, xd(n), as the detected centroid of the object being
tracked by this filter. Using this centroid and the same size prediction as used for the
detection, Ax(nIn-1), the segmentation operation separates the pixels within the object



from those of the background. From the segmentation a centroid, Xg(n), and size,
Axg(n), are measured. These measurements are used by the tracking filters to produce
predictions of the objects location and size in the next frame. Both filters are

recursive optimal estimators, Kalman filters [23].

{x®}
Position Size
Edge Tracking Daia Tracking Results
Orientation Kalonan filtee Association Kalman filter
x )

Object
Segmentation|

Figure 4. Integration of image processing and optimal estimation using size and

position measurements.

Uncertainties about the image plane measurements are incorporated into the Kalman
filters, but are not shown in Figure 4. The sources of measurement noise include, the
segmentation (such as an object in a cluttered scene) for the object size measurement,
and unsteady camera motion for the centroid tracking. The Kalman filters undergo a

bootstrap operation when an object is first detected.



4 Image Processing

The sized based detection and segmentation are described below. Initially, each
image undergoes an enhancement stage, and an edge detection stage that gives an
approximate edge orientation and magnitude across the image.

4.1 Detection

The spoke filter is used for the detection of objects, using edge magnitude and
orientation information [17]. It detects objects which lie within a specified range of
sizes, and which are approximately convex in shape. It is a refinement of the circle
Hough transform [24] with a particularly efficient implementation on bit-serial SIMD
parallel array architectures [18]. It can detect 'blobs’ which are not exactly, but only
approximately, circular and convex in shape.

The spoke filter [17] has as input an edge detected image, O(x). Edge orientation is
quantised to eight directions and the edge magnitude is thresholded at a magnitude of
t, to retain the top T percent of edge points to give the image T(x):
Toy=i ™ ||O(x).|| 21,0'(x)n, >0'(x)n,,i,j€[0,7], j #i @

0 ;otherwise

cos 0,
where the unit vector n; = |: 0 :l, O'(x) is the transpose of the vector of partial
sSm

i

spatial derivatives of the image intensity at position X, and the discrete orientations

/2]

are 0, =—.
4

The edge points, in T(x), are projected in the direction of their orientation, from a

distance Rpin to Rmax from the edge point to form eight binary spoke register images,

R;(x), one for each orientation as described above:

Ri(x) = 1 ; K>0
Rix) = 0 ; otherwise (5)

where i € [0, 7], nj is given in equation 4, and:



K= card{T(w) l [T(w)[ >0, "[I —nnf|(w- x)“ <L R, <|(w-x)|< Rm}

Rpnin and Rmax define the range of sizes of an object that the filter will detect. The jth
spoke register for each image position, x, will have a 1 present if the edge magnitude
at any point, w, within a distance Rpyin to Rpax exceeded the threshold t, and if the
quantised edge orientation T(w) is parallel (or anti-parallel) to the vector from x to w.
The values of Rpin and Rmax can be chosen well if the size of the object in the image
is known a priori. The spoke register images are smoothed, to give Rl*(x), over a 3 by

3 neighborhood around each x, R(x):

R (x)= JR(x) ©6)

ueR(x)

This overcomes the possibility of different spokes crossing without intersecting (a
problem associated with the image sampling). Edge orientations point towards the
centre of convex objects lighter than their backgrounds. There is a peak in the number
of spoke intersections near the centre of the object. The spoke intersection image,
F(x), gives a count of the number of spokes crossing at each position:

F(x)= card{R:= (x),i€e [0,7]} (7)

The centroids of regions of 7 or 8 spoke intersections are the detected positions.
When the contrast of the object is not solely lighter (nor darker) than its background,
or is not known, spokes radiate in the direction of the edge orientation and the edge
orientation + .

Different spoke lengths (Rmin and Rpax) for each edge orientation detect objects of
unequal width and height. The width and the height of the object were modelled in
the processing flow described in this report. Other spoke lengths were elliptically
interpolated. The Kalman filter gives the predicted size in the current frame, Ax(nln-
1). Rpin is 20% less than this value and Rpyax 20% more.

Figure 5 shows a simplified example. Only eight edge points of an object are shown
for simplicity (one for each of the orientations). The width of spokes is 3 pixels,
Rmm=5, and Rmax=13 piXCIS.

10
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Figure 5. Example of the Spoke filter
4.2 Segmentation

After detection and identification of the tracked object from the many possible
detections (see Section 5.1), a technique we have called the "Spoke Segmentor" [18]
segments the object from its background. Similar techniques reported by [20, 21] are
all closely related to the wedge filter approach [25]. In a similar way to the spoke
detection filter, the spoke segmentor operates on objects that are approximately
convex in shape and lie within a range of sizes.

Spokes radiate out across the edge image from the detection centroid, xd(n), at angles

of 2n/M (where M = number of segmentation spokes). Spokes are active from some
distance rmin to rmax from the centroid. A maximum likelihood, weighted, peak

edge magnitude, along the active spoke region is the object boundary contour point:

b;(n) = argmaxw{N(Hw — (xd(n) + Wmij

o Py (n|n—1)J||O*(x)m‘."| W}

®)

where W € W, the set of points on the spoke, and:

W= {w | ||[I —m;m]|(w- xd(n))" <1, 7 <w-x,(n)| < rm“}

11



m; is the unit vector in the ith spoke direction, N(x, 62) is the normal distribution, and
pri(n | n-l) is the variance in the predicted size in the ith orientation (available from
the predicted covariance matrix of the size tracking filter, the imaging model, and the
predicted size estimate). Note that the edge magnitudes along each spoke are further
weighted by the dot product between the local edge orientation and the direction of
the radiating spoke.

Figure 4 shows the signal flow graph for the spoke segmentor. The result of this
operation is a set of boundary points, {bi(n) | ie[0,M-1] } In high clutter
situations some of these points may not lie on the object boundary but instead on
other edge features. Post-processing overcomes this. The collated boundary points
form a 1D histogram of boundary distance from the detected centroid, ||bj(n) - xg(n)||.
A median filter removes isolated rogue spikes from the 1D histogram of boundary
distances.

A convex hull operation performed on the resulting boundary points produces an
approximate boundary contour. A measure of size, Axg(n) and the segmentation
centroid, Xg(n), are extracted from this image region. The pixels extracted from the

convex hull are used to classify the object - we do not discuss this further here.

We have found that by tracking both the object width and height a reliable detection
and segmentation can be achieved through an image sequence.

S Integration of image sequence measurements

Measurements, with associated noise variances, incorporated into a Kalman filter
produce estimates of s(n) - the system state and P(n) - the covariance of the state. The
plant noise describes the error between the system model and the true system.
Measurement noise describes the error between the measurement and the true
observable. The filter is recursive producing estimates of the state, with associated
covariances, as well as predictions for the next measurement. The state estimates are
updated with each new measurement by one iteration of-the Kalman filter [19]. Two
filters are required for each object, one for the centroid tracking and the other for the
size estimation.

12



5.1 Centroid Tracking

Tracking is the modelling of an object’s kinematic state by the processing of
measurements obtained from sensors. The measurements are noise-corrupted
observations used to update the estimates of the state of the observed system.
Ambiguity exists in associating measurements with tracked objects in high density
situations, i.e. which measurement should be associated with which tracked object.
Several methods exist to solve this data association problem in situations of both low
and high densities of objects, including probabilistic and Bayesian approaches [19].

We use position and velocity tracking in both the x and y dimensions of the image.
Image plane co-ordinates are used throughout. The system model for this is:

1/2
1
S.(1)=As, (=D +| | e (n) ©
1
where
1100
0100 : - . o
A = o8 1 1P s,(n)=[x % y y], and w,(n) is the plant noise with
0 001
variance oﬁ representing inadequacies in the kinematic model. (the subscript x

indicates that we are dealing with quantities from the position tracking filter.) The
measurement model is:

-
x(n)=C,s,(n)+ |i1 v, (n) (10)
1 0 0 0] * ,
where C, = 00 1 of x(n)=[x ], and vx(n) is the measurement noise with

variance o>

.
The prediction of the centroid in the next frame is:

x(n+1ln) = C,As,(n|n) (11)

13



Standard Kalman filter techniques give the state and covariance updates and
predictions. The filter undergoes a bootstrap process such that the centroid of the first
segmentation, with measurement variance O'fx, is used as the initial state and initial

covariance matrix Pyx(0).

In this application we assume a low density of objects in each image of the sequence.
The Nearest-Neighbor Standard Filter (NNSF) data association technique is then
appropriate [19]. In the NNSF the measurement nearest to the prediction from the
kinematic system is used. The Mahalanobis distance [26], between the predicted
centroid position, x(nIn-1), and the detection measurements {xq4(n)}, is computed, as:

d*(x) =[x, (n) = x(rn = 1)] P (nln = 1)[x,(n) - x(nln.~ 1)] (12)

The match in the nth image with the minimum Mahalanobis distance corresponds to
the tracked object. The NNSF determines which of the detections from the spoke
filter corresponds to the tracked object in the current frame. The spoke segmentor
uses the centroid of this detected region that has passed the NNSF test. The measured
centroid of the segmented object, xs(n), updates the position tracking filter. In the
images used below this is sufficient for the association of objects between image
frames.

5.2.1 Size tracking and range estimation

Figure 6 shows the image size of an object on the image plane. By similar triangles:

Aka AX

A= 2w ™= 2 —stm)

fe (13)

Where the range to the object in frame n, Z(n) metres, is the initial range, Z(, minus
the distance travelled towards the object, S(n). The physical size of the object is AX
metres, the object size on the image plane (in pixels) is Ax(n), k is a constant relating
pixel distances to metres and f is the focal length of the camera in metres. Using the
inverse image size the relationship between the image size of the object and the range
to the object is linearised [16]:

1 _ 2, S
Ax(n) KAX kfAX

y(n)= =a+bS(n) (14)

14



The constants a and b are the quantities to be estimated by the size tracking filter.
This relationship describes the way the size develops as a camera approaches an
object and allows the range to the object and physical size of the object to be
determined from the estimates of a and b.

Object

X,(n) Lxl(n)

Ax(n):

image plane Direction of travel

Figure 6. The Imager

The use of relative position (size) removes the need to find the focus of expansion,
making the technique immune to small random rotations of the translating camera.
The variation in depth of the occluding boundary is assumed small with respect to the
distance from the camera (see Discussion section 7).

5.2.2 Image Size Measurements

A first order error analysis gives the variance in the inverse image size measurements,
Pyy(n), in terms of the variance of the true image size measurements, paA:

Py (1) = gites = Pus*(0) = &%, (1) as)

This estimate of the variance in the inverse image size varies inversely with the fourth
power of the true image size. Assuming paa is time invariant (which is a reasonable
model for the spoke segmentor), pyy(n) reduces rapidly as the object size increases.

15



5.2.3 Inverse Size Kalman Filter Formulation

Two states model the system, equation 16. It has a single input y(n), the inverse

image size measurement, equation 17. The additive plant noise process, wy(n), is
approximated by zero mean Gaussian noise with variance 0',2,’ (n) representing the

plant noise in the inverse image size due to uncertainties in the camera forward
motion. The additive measurement noise process, vy(n), has variance of’ (n) that

varies with true image size (equation 11). The state evolution model is:

s,(n)= [ZE:;] =Ags,(n-1)+ [?]wy(n) (16)

10
where A y= [0 1}. The measurement model is:

y(n)=[1 S(n)]I:ZE:;] +v,(n)=C (n)s,(n)+v,(n) (17)

The predicted inverse size for the next time frame is given by:

a(n+ 1|n)} a18)

y(n+1n)= [1 S(n+ 1|n)]|:b(n +1n)

i.e. using the current estimates of the states a and b, and the distance that will have
been travelled when the next frame is acquired. Standard Kalman filter techniques
give the state and covariance updates and predictions.

5.2.4 Initial conditions for the inverse size Kalman filter

The inverse image size Kalman filter requires an initial estimate of both the states,
s,(0), and the covariance matrix, P, (0), which reflects the uncertainty in the initial

state. The state is given by s =f(z), a vector function of a vector independent variable,

where z=[Z, AX]". The covariance matrix for s in terms of that for z is then:

P, =J{P.J (19)

16



where P, is the covariance matrix for z and J, is the Jacobian of f with respect to z.
P, is given by equation 20 where p,, and p, are the variances in the initial

estimates of the object physical size and range respectively.

_ | Pax 0
ol {]

Then combining equations 20, 19, and 14 the initial covariance matrix for the size
Kalman filter is given (after some tedious effort) by equation 21 where Zp, AX are the
initial estimates of the object range and physical size respectively.

" ( DPax + Pzz} __Pxx
2 2 2
P,(0)= (A AX®  Z, ZAX 1)
kfAX _ D Pax
ZAX®  Z2AX°

This initial covariance matrix is used in the Kalman filter formulation in the usual
way [19]. The result given in equation 21 is critical to the successful implementation
of the range estimation scheme.

6 Results

The sequence of images was acquired with a Hitachi GP-6ME colour video camera
and digitised to a resolution of 360 x 270 pixels. The initial camera distance was
64.5m from a car. The camera was moved forward in steps of 1m, up to a distance of
2.5m from the car making a total of 62 images.

The product of the focal length, £, and the scale factor k (equation 13) was determined
by a calibration experiment to be kf = 610. The initial assumptions were: range Zg =
100 metres with variance pzz = 10,000m2; AX = 2m with variance pax = 1m2; image
size measurement variance pax = 25 pixels?; inverse image size plant noise O'Wy2 =
2*10-6m2pixels-2. The position tracking Kalman filter had plant noise variance Gyx2
= 1 pixel2, and measurement noise variance Gyx2 = 25 pixel2. The number of spokes,

Ns, used by for the segmentations was 32.

The initial states of the size Kalman filter can be found using equations 13 and 21.
The tracking Kalman filter is initialised as discussed in section 5.1 above.

17



Two of the images from the sequence are shown in Figure 7, at a distance of 22.5m
and 6.5m. "

Figure 7. segmented images at ranges of 22.5m and 6.5m

The measured object segmentation width is compared with the actual image width in
Figure 8 along with the width predications produced by the size Kalman filter. In
Figures 9 and 10 the filtered x and y centroid positions are compared with the actual
position and measured position on the image plane.

300
§ 1 — actual width
E® 500 - ~—  predicted width
) - .
o .% measured width
35|
O N "
100 -
0 7 I * T ¥ T
0 20 40 60

Image number

Figure 8. - Image size: actual, measured and predictions
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Figure 9. - Object centroid (x), actual, measured and filtered positions
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Figure 10. Object centroid (y), actual, measured and filtered positions

The estimates of range and physical size of the object produced by the size Kalman
filter are shown in Figures 11 and 12 respectively. The error bars on both are the

result of analysis described in section 7 below.
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Figure 11. Initial range estimation with error bars
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Figure 12. Object physical size estimation with error bars
7 Discussion and Error Analysis

Figure 8 shows the tracking of the object size through the image sequence, the curves
show the actual, measured and predicted object widths.

The imager was constrained to move on a plane. This can be seen by comparing the
measurements and the tracking of the x centroid of the object, with the y centroid of
the object. More noise is apparent in Figure 9 than in Figure 10, the difference
between the two is due to the camera yaw being larger than the pitch or the roll. This
emphasises the utility in using object (angular) size that is invariant to rotations of the
imager, Figure 8.

The uncertainty in the object size and range estimates reduces as the numbers of
measurements increase (the error bars in Figures 11 and 12 decrease in size). The
variances pzz of the estimate of the initial range, Zg, and pax of the object physical
size, AX, using equation 13 can be shown to be:

Do | P D - D
P~ B+ By -2B2 ) ana pg - ax*la 22
and are used to plot the error bars in Figures 11 and }2. (Paa, Pbb, and Pab are the

elements of the inverse image size covariance matrix updated from the initial

estimates of equation 21 by the inverse image size tracking filter).
The inverse image size state estimate and covariance are shown as a point at the

centre of an ellipse, Figure 13. The results shown are for the first image and then
every tenth image. Each ellipse represents a locus of points where the probability
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density for the system state sy(n), using its covariance information Py(n), has dropped
to 1/e of the maximum. These results are processed to produce estimates of the initial
range and object size using equations 23, and the associated errors using equations 22.

-0.0008

-0.00121

Figure 13 - error ellipses in the a/b space.

The estimated initial range and physical size from equation 14 are given by:

Zy=—=, and AX=— (23)

The final estimate (smallest ellipse) of initial range was 65.01 + 0.85m and object
physical size was 1.51 + 0.31m (cf. the true values were 64.50 + 0.01m and 1.35 £
0.01m respectively). The true values of the range and size fit within the error bars in
Figures 11, 12 respectively, and state estimates lie within the coarse initial estimates,
Figure 13.

Extensions to the current approach arise from the observation that the imaged size of
the object may change for reasons other than a change in distance between the camera
and the object. The object may be rotate and present a different silhouette. This effect
may be overcome by adopting a model of the structure of the object [10] and tracking
this structure to account for rotations and translations. With a number of models of
objects with different internal structure it should be possible to extend the manoeuvre
detection techniques from target tracking theory [19] to determine which model is
consistent with the measurement data (innovations should be white, zero-mean and
compatible with their covariance from the tracking filter). These conditions are met,
within a 95% confidence test, for the position and size tracking filters are used here.
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8.0 Processing Requirements

We have shown that given a sequence of segmentations of an object the range and
size of the object may be estimated. The accuracy of the final range and size estimates
for each object in the image plane depends, ceteris paribus, on the accuracy of the
segmentation. The image processing techniques used here are generic, the range
estimation does not depend on the way that the image size measurements are made,
only on its accuracy. Future developments in segmentation techniques can be
exploited by the approach outlined here. The algorithms may also vary with the
application domain, the level of robust behaviour required of the system, and the time
constraints imposed. We have investigated the image processing and estimation
processing requirements and their mappings onto a variety of computer architectures.

A comparison of the time taken to perform this processing, for multiple objects, for
different architectures, the AMT DAP (Distributed Array Processor) - SIMD, and the
Inmos Transputer - MIMD, and the WPM - MSIMD [22], can be seen in Figure 14.
For this comparison it is assumed that the size of the SIMD array matches the image
size (of 128 x 128 pixels), that the number of MIMD processors matches the number
of objects (64) in the image, and that the M-SIMD architecture has 8 by 8 clusters.

60-
MIMD
B sIMD (local)
‘2 ll SIMD (global)
R[fN|
SIMD MIMD MIMD+ M-SIMD
SIMD
Figure 14. Comparison of the processing time on SIMD, MIMD, MIMD + SIMD, and
MSIMD architectures

It can be seen that the M-SIMD architecture out performs SIMD, MIMD, and a direct
combination of an SIMD array with an MIMD array. The simple combination of
SIMD with MIMD arrays performs poorly on the SIMD local task, which has to be
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performed sequentially for each object (it requires local operational autonomy). We

are interested in applications where there are large numbers of objects being tracked.

The significant time advantage of the M-SIMD architecture over SIMD and MIMD is

achieved at relatively low cost in hardware complexity, see Table 1.

128 X 128 8X8 SIMD 64 Cluster | Additional
SIMD MIMD + M-SIMD cost of
MIMD M-SIMD
Gates 2 x 106 6 x 109 8 x 106 8.6x106 | 6.4x 105
Memory 1x109 1x10° 2x 109 27x10° | 6.7x108
(bits)

Table 1. Gate and memory bit counts for SIMD, MIMD, SIMD+MIMD, and M-
SIMD architectures.

Using the metric of ‘gate count*time’, which is a measure of the effective use of the

available gate resource, the M-SIMD architecture has a higher performance over
SIMD, MIMD and SIMD+MIMD arrays, Figure 15.

N

Gate.Second (*105 )

o

SIMD

MIMD  MIMD+
SIMD

M-SIMD

Figure 15. Gate*time on a range of architectures.




9 Concluding Remarks

We have shown how recursive estimators may be used to guide image processing

operations, and how representative algorithms from a tracking task may map onto a

heterogeneous massively parallel architecture. The global iconic, local iconic, and

numeric operations map efficiently onto an M-SIMD computer architecture. The

architecture combines two enhancements to conventional parallel architectures,

heterogeneity of processor types matched to the computation at each level, and

operational autonomy within an SIMD array. The cost of these enhancements in terms

of hardware complexity is ~10%.
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