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Abstract

We introduce a new algorithm for discontinuity-
preserving visual surface reconstruction, inspired on
the well known formulation of the problem as the fit-
ting of a weak membrane to the observed data. The
method works by slowly applying the data “force” to a
weak membrane which is allowed to tear when the ten-
sion exceeds a certain threshold; accordingly, the algo-
rithm is named “simulated tearing” (ST). Formally,
ST is a deterministic continuation method, i.e. the
problem to be solved is embeded in a family of prob-
lems, of which the first member has a simple solu-
tion. The proposed method is tested and compared with
mean field annealing (MFA), using real and synthetic
images. Conclusions are that ST is simpler, faster
and slightly outperforms MFA. Furthermore, ST al-
lows implementation based on integer arithmetic.

1 Introduction

Reconstruction of visual surfaces representing some
property of a scene (brightness, shape, distance, mo-
tion, ...), from observed image data, is known to be
an ill-posed inverse problem [2], [11], [17]. Both reg-
ularization and Bayesian approaches provide ways to
achieve stability by incorporating a priori knowledge
or constraints into the problem.

In earlier work, the solutions were restricted to
some class of continuous and smooth functions [1}, [2],
[3], (17], this being clearly unreasonable in the pres-
ence of discontinuities which are key features of visunal
perception. The incorporation of discontinuity detec-
tion into the surface reconstruction process has been
studied by several authors. Some fundamental refer-
ences are [4], [5], [13], [16], and also [8], [9], [11], these
last ones in a Bayesian framework. Independently of
their theoretical background, these formulations in-
clude a fundamental concept which is that of weak
constraint [4], and lead to the same type of hard opti-
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mization problems (non-convex, huge dimensionality)
for which several classes of methods have been pro-
posed:

o Monte Carlo type stochastic methods, such as
simulated annealing [9) and the Metropolis algo-
rithm [11], which are (theoretically) able to reach
optimal solutions at the cost of an enormous com-
putational load;

e deterministic continuation methods, not guaran-
teed to reach a global optimum but much faster
than the ones in the previous class, such as gradu-
ated non convexity (GNC) [5], mean field anneal-
ing (MFA) [8], [18], or the one proposed in [10];

e nonlinear/anisotropic diffusion methods [14], [15],
which are iterative deterministic algorithms that
work by simulating a diffusion process.

This paper introduces a new fully deterministic con-
tinuation method for discontinuity-preserving visual
surface reconstruction. The algorithm is inspired on
the interpretation of the reconstruction process as the
fitting of a weak membrane [5] to the observed data.
In the class of continuation methods, to which the pro-
posed technique belongs, the function to be minimized
is embeded in a family of functions (usually depending
on a control parameter) of which the first member is
easy to minimize; this minimum is then tracked along
the family of minima (by varying the control parame-
ter) until the desired solution is reached.

To understand the idea behind our approach, sup-
pose we want to adjust a weak membrane to some hard
discontinuous surface, allowing it to tear only when
needed to fit the discontinuities. What physical intu-
ition suggests is that we slowly press the membrane
against the hard surface, letting it tear little by little,
instead of forcing it with a single stroke. To translate
this idea into our problem, consider the visual sur-
face to be reconstructed as a discrete weak membrane



which is to be fitted to a 2D force field (the observed
data); the membrane is weak in the sense that it tears
if the tension between two neighbor points exceeds a
certain threshold. Let the force field be applied pro-
gressively, starting at a very low intensity up to its full
magnitude. At the first steps, when the force field is
faint, the surface has no discontinuities; as the force
field increases, the higher tension sites start to fear,
when the full force field is reached, the solution is a
piece-wise continuous surface, torn at the locations of
the detected discontinuities.

2 Problem formulation

Let discrete surfaces, defined on a M x M lattice
£ =1{Gj), i,j=1,..., M}, be described by 2D arrays
of “heights” x = {z:j, (i,j) € L}. Within a Bayesian
setting, the mazimum a posteriori (MAP) estimate of
a discrete surface x, with a first order piecewise Gauss
Markov random field prior, given the noisy observed
data field y = {, (i,5) € L} (see [8] or [9], for
further details), is

(%.5,9)
MAP

= arg min E (x,h,v) (1)

xhv
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E(x,h,v) = -2—%5 Z(z{_j - yi,j)z + aZ(hi,;’ +vi )
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+ uZ(xi,j —z;5-1)2 (1 = vij)
7
+ FZ(z,-IJ- = zi-1,5)(1 = hij)
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In (2), o is the (additive, white, and Gaussian) noise
variance, u and a are model parameters, and h and
v (with h;j,vi; € {0,1}, for (1,j) € L) are the, Te-
spectively, horizontal and vertical line processes, in-
troduced to weaken the continuity constraint. No-
tice that when some line process site, say h; j, is on
(hij = 1), the continuity constraint (zi; — zio1,5)?
is turned off. There is, however, a cost a associ-
ated with turning on one line process element. This
competition between the continuity term and the line
creation process gives rise to simultaneous surface-
reconstruction/discontinuity-detection. In (2), we as-
sume that the penalty for line creation is the same for
the horizontal and the vertical processes and uniform
over £, and that there is no interaction among line
processes sites. The off-lattice terms (those for which
(i,§) ¢ L) are taken as zero, i.e. free boundary con-
ditions are assumed. Energy function (2), which can
also be derived under a regularization framework, is
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known as the weak membrane model [5]. Due to the
presence of the line processes h and v, E(x,h,v) is
not convex and its minimization is not trivial. Note
that although the model has three parameters, a, o,
and p, the estimate (1) only depends on two: o/p (the
line creation threshold) and po? (which can be seen
as a noise to signal ratio).

Before proceeding, it is convenient to cast the
problem into vector notation. Let x, y, h,
and v now stand for vectors obtained by lexico-
graphically ordering the field elements, ie. x =
[11‘1,(61'2,...,Il’M,.’L‘z,l,...,IM’M]T, and similarly for
y, h, and v. Let us also define the vector 1=
[1,1,1,...,1]7, and denote a n x n identity matrix by
1,. Then, the energy E (x,h,v) can be written as

T Inl]
E(x,h,v) = x (ﬂA(h,V)-}-—r 2)x

3)

where additive terms, independent of x, h, and v, thus
irrelevant to the optimization problem, were omitted.
In (3), A(h,v)isa M?x M? highly sparse and struc-
tured matrix (block tridiagonal), function of h and v,

1
+a1T(v+h) - ;ExTy,

B, C; O 0 0 -1
C, B, C, 0 0
0 C, Bs Cj; 0
A(h,v) = : S - : )
. . CM—-I
L 0 CM—I BM

where 0 is a MxM block of zeros, and B; and C; (also
highly sparse and structured blocks) are given by:

(4 —vim — Vim41

—him = hima1), n=m=1,...,. M
B;[m,n] = v.-,,:‘—l 1) n=m-—1

Vim+1 — 1, n=m+l,
and

C; = diag {(hi1 — 1), (hiz = 1) .-+, (him — 1)}

This notation, which is a modification of the one
proposed in [12] to include the line processes, can eas-
ily be generalized in the following aspects:

o Higher orders; e.g. in the second order model,
first order differences (z;; — =i j—1) are replaced
by second order differences (2a:;)j—z,~,j_1—z,-‘j+1),
matrix A(h,v) is block pentadiagonal and ma-
trices B; are pentadiagonal. The second order
model is called (in [5]) the weak plate.



e An observation operator H, modeling, for exam-
ple, a blur effect, could also have been considered;
in (3), matrix Ips» would be replaced by HTH,
and y by HTy. Vectors y and x can be of differ-
ent dimensions (non-square H).

e Nonhomogeneous penalty for line creation; this
would imply the replacement of the term a1 (v+
h) by ofv + ag‘h, where «, and ay are penalty
vectors.

e Rectangular (nonsquare) image lattices can also
be straightforwardly adopted.

The algorithm proposed in the next section can eas-
ily be extended to encompass any of the above men-
tioned aspects.

3 Proposed algorithm

3.1 Preliminary facts

We propose a new continuation method, in which
the function to be minimized, E (x, h, v), is embeded
in a family of functions {E4 (x,h,v) , ¢ € [0;1]} con-
trolled by parameter ¢, as follows:

(uA(h v) )

+a1T(v+h)— —x y.

Es(x,h,v) =

(4)
Some facts are now invoked for future reference:

a) It is clear that E; (x,h,v) = E(x,h,v).

b) For sufficiently small ¢, the minimization of (4)
leads to {hi; = 0, (i,§) € L}, {vij = 0, (i,j) €
L}, and to some continuous surface x. Since we
are dealing with digital images which are bounded
below by 0 and above by some constant L, it is
enough (although better criteria can be devised)

to consider ¢ < L~1\/a/p.

¢} Given some fixed line configuration hy and vy,
the energy is quadratic with respect to x,

Iy
22"

(5)

I\ !
202 v
The only difficulty is in the inversion of the very
high dimension matrix involved, for which we

E4 (x,hg,vp) « x (pA(ho,vo)
¢ 7

- —x y)

its minimization being trivial,

5-‘((110:"0: ¢) = 5'_2 (ﬂA(ho,Vo) +
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have proposed neural structures [6], [7]. A re-
cursive solution, based on the Cholesky decom-
position of matrix A, can also be considered [12].

3.2 Algorithm
The proposed method is supported on the above
facts and works as follows:

Step 0 Set parameter ¢ to some small positive
constant ¢(®).  Perform the minimization of
Ey4o (x,h,v), knowing that #(® is small enough
to invoke fact b). The result of these first step is
a continuous surface x(®) and a zero line process
configuration h(® = 0, and v(®) = 0

Step 1 Using the present line processes configuration
h®) and v(*), and parameter ¢(*), compute

)
<t)=¢__
X =9

-1
(t) (¥
(samOvn+25) @

by applying, for example, any of the techniques
referred in fact c).

Step 2 Update the line processes according to the
following rule:

(z(l)
(:c(t)
Step 3 Compute ¢+ = ¢(&) 4 Ag. If glt+D) >

1 stop; if not, compute matrix A(h{¢+) v(t+1)
and go back to Step 1.
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z+1) -1
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Figure 1: Sloped flat surface over a constant
background plus Gaussian white noise.

The scheme just described is in fact a continua-
tion method. It tracks the solution along a family of
functions, of which the last member E; (x,h,v) is the
original function to be minimized. The algorithm can
easily be modified to take into account more general
models, as was mentioned at the end of Section 2.



The physical motivation and interpretation pre-
sented in the introduction can now be related with
the formal description just given. The 2D field x rep-
resents a piece-wise continuous membrane, torn ver-
tically (horizontally) at the sites for which v;; = 1
(hij = 1). The increasing force field applied to the
surface is represented by ¢y. When ¢ is small, the so-
lution surface (see (6)) fits well the force field without
being torn at any location, i.e. (zi; — i j-1)? < a/p
and (z;; — zi-1,3)? < a/p, for all sites (i,j). When
the intensity of the force field ¢ raises, the tension at
some sites starts to exceed the threshold a/u and the
surface is torn. Figures 1 and 2 illustrate the working
of ST (gray dashed lines represent broken line sites).

Figure 2: Surface reconstruction from the data
of Fig.1,for ¢ = 0.2, 6 = 0.4, ¢ = 0.6, and ¢ = 1.0.

A key aspect of the algorithm is the slow increase
of ¢ (force field intensity), such that only a few loca-
tions have to be torn at each iteration. This is crucial
with respect to the creation of double edges. Figures
3 and 4 illustrate this aspect for a 1D problem. Fig.
3(a) shows noisy data having a discontinuity around
pixel 27. In Fig. 3(b) the data has been smoothed;
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Figure 3: a) Noisy data with discontinuity
around pixel 27; (b) After smoothing, both A,
and A; exceed the discontinuity threshold. (c)
Final reconstruction with two discontinuities.

250 b) 250t C) atatat ts e ane® e
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Figure 4: (a) The same data of Fig.3(a) mul-
tiplied by 0.5; (b) After smoothing, only A,
exceeds the discontinuity threshold. (¢) Final
reconstruction with a single discontinuity.

let A; and A, denote the differences between 3 con-
secutive pixel intensities around the discontinuity. If
the line creation threshold is smaller than both A,
and Ag, two discontinuities will be signaled (a double
edge) and the final reconstructed weak string (the 1D
version of the weak membrane [5]) appears as shown
in Fig. 3(c). If, however, we start with a weaker force
field (Fig.4(a)) and increase its strength slowly, there
will very probably be some point at which only one
of the differences A; or A, say A;, will exceed the
discontinuity detection threshold (Fig. 4(b)). At this
point, the line process will be turned on at that site,
subsequent smoothing will decrease A;, and the result
will have only one discontinuity, as can be seen in Fig.
4(c).



4 Examples

In this section some examples, comparing the ST
algorithm with MFA are presented. The GNC algo-
rithm could also have been considered; however, it can
be seen as an approximation of MFA (8}, which does
not produce better results and has a similar compu-
tational load. In our tests, ST was about 2 times
faster than MFA, for the same number of steps in the
continuation process. This is mainly due to the more
complex line process computations of MFA (which are
sigmoidal functions, see [8]) when compared to the
very simple threshold-based Step 2 of the ST algo-
rithm. Expression (7) allows implementation based
on integer arithmetic, as long as an adequate scaling
is used. Since Step 1 of ST can also be implemented
using only integer computations, without a significant
degradation of the result [6], the complete algorithm
can be implemented on integer arithmetic.

40)
noise contaminated version (b). Edges (c)
and reconstructed image (d) obtained with ST.
Edges (e) and reconstructed image (f) obtained
with MFA.

Figure 5: Original image (a) and its (¢ =

A test with a synthetic image contaminated by
noise (¢ = 40) is exhibited in Fig. 5. The parame-
ters used were ¢ = 40.0, p = 0.1, and o = 70. For ST,
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we used ¢(® = 0.1 and A¢ = 0.1; for MFA parame-
ter B (see [8]) evolved as B®) = 0.0002x K*, stopped
at 8 = 1 (as suggested in [18]) with K such that also
10 iterations were performed. The lower (about 8%)
energy was obtained by ST.

To give experimental support to the statement
made at the end of the previous section, concerning
the importance of the slow increase of the force field
intensity, we studied the influence of the number of
iterations on the final energy obtained. The same
study was also performed for MFA. The results are
summarized in Fig. 6. For both algorithms, the con-
trol parameters kept the same initial and final values
($© = 0.1, ¢138H) = 1, for ST; A = 0.0002 up
to B = 1, for MFA), only the variation rate being
changed (A¢, for ST, and K for MFA). The final en-
ergy obtained does in fact decrease when the number
of iterations is increased. For up to 4 iterations, MFA
performed slightly better than ST. Above 5 iterations,
ST outperformed MFA, with both methods reaching
a plateau {with ST about 10% better than MFA) at
about 15 ~ 20 iterations.

HOR | N I —a— Simulated tearing N
: —4#— Mean field annealing

Final energy

6 12
Total number of iterations
Figure 6: Final energy reached by ST and MFA

as a function of the total number of iterations
performed .

In Figure 7, ST is compared with MFA using a real
image and equal model parameters (¢ = 1.0, p = 0.5,
a = 120, 15 iterations). The results are visually sim-
ilar, although ST reached a slightly lower (6%) final
energy .



Edges obtained

Figure 7: (a) Original image.
with the ST algorithm (b), and the MFA algo-
rithm (c).

5 Concluding remarks

We have presented a new algorithm for visual sur-
face reconstruction capable of preserving discontinu-
ities, which we called simulated tearing (ST). Formally
a continuation method, ST works by slowly applying
the data force to a weak surface which is allowed to tear
when the tension exceeds a certain threshold. The
algorithm was tested and compared with mean field
annealing (MFA) (also a continuation method), using
real and synthetic images. Although exhaustive tests
(e.g- Monte Carlo) and a deeper theoretical analysis
are still needed, we showed that ST and MFA provide
visually similar results, with ST yielding slightly bet-
ter energies. An important advantage of ST is that 1t
is faster and simpler than MFA and it can be imple-
mented using only integer arithmetic.
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