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Abstract 
We present an algorithm that p e r f o m  recursive estimation 
of ego-motion andambient structure from a stream of monoc- 
ular Perspective images of a number of feature points. The 
algorithm is based on an Extended Kalman Filter (EKF) that 
integrates over time the instantaneous motion and structure 
measurements computed by a 2-perspective-views step. 

Key features of our filter are ( I )  global observability of 
the model, (2) complete on-line characterization of the un- 
certainty of the measurementsprovided by the two-views step. 
The filter is thus guaranteed to be well-behaved regardless 
of the particular motion undergone by the observel: Re- 
gions of motion space that do not allow recovery of structure 
(e.g. pure rotation) may be crossed while maintaining good 
estimates of structure and motion; whenever reliable mea- 
surements are available they are exploited. The algorithm 
works well for arbitrary motions with minimal smoothness 
assumptions and no ad hoc tuning. Simulations are presented 
that illustrate these characteristics. 

1 Introduction 
We consider the problem of reconstructing the geometrical 
structure of a rigid, static scene and the motion of the observer 
from a sequence of noisy monocular images representing 
perspective projections of the scene during motion. It is well 
known that two perspective projections onto a plane of five 
or more points in general configuration suffice to determine 
their position in space and the relative motion of the two 
projecting planes up to a scale factor [6, 16,251. 

When more points are observed one may exploit redun- 
dancy to find a solution that rejects noise minimizing the 
discrepancy from the rigidity assumption. Moreover it is 
possible to exploit the fact that the scene is static and in- 
tegrate over time the information available from a long se- 
quence of images. Many attempts have been made over the 
last decade to recover structure and motion using stochastic 
estimators with different degrees of generality and compu- 
tational feasibility (see the introduction of [8] for a review), 
but to our judgement none of them is complete in terms of 
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Figure 1: Structure of the algorithm. 

conditioning with respect to motion and error treatment, and 
robust enough to be used in real-world applications. 

We propose a recursive algorithm for calculating structure 
and motion whose state equation is globally observable so 
that the filter is well-conditioned regardless of the particular 
motion. Each component of the state is measured by a two- 
frames module together with the variancdcovariance matrix 
of the measurement errors so that we need not use heuristic 
techniques or approximative information about the sensors' 
performance to set them. 

Our algorithm is composed of three modules: the first 
module computes optical flow/features displacement at each 
new image frame, the second module computes the instan- 
taneous structure and motion, the third module integrates in 
time the instantaneous measurements. 

As a first module one may use any one of a number of 
optical flow/feature displacement algorithms described in the 
literature (see [2] for a survey with tests). 
The second module calculates structure and motion in 

closed-form. We have chosen an algorithm recently pre- 
sented by Hartley [9] for its simplicity and robustness. It is 
based on a technique proposed by Longuet-IBggins [16]. 
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The third module is based on an Extended Kalman Filter 
(EKF) working at the same frequency as that of the image 
sequence. 

Since the EKF requires specification of the vari- 
ancdcovariance matrix for the measurements, a key require- 
ment of the second module is that, along with the instanta- 
neous motion and structure measurements, good estimates of 
the reliability of these measurements are provided. A com- 
plete characterization of the error sensitivity of the second 
module is calculated in [ 181. 

The overall structure of the algorithm is depicted in fig. 1. 
The inner loop is used to calculate the scale factor for the 
translation, and will be explained later. 

2 Description of the algorithm 
2.1 Rigid motion and notation 

Let Xi = [ X Y 2 I i T  be the coordinates of a generic 
point of a static scene with respect to an orthonormal refer- 
ence frame centered in the pupil of the monocular observer. 
The 2 axis points forward and coincides with the optical axis, 
while X and Y are parallel to the image plane, arranged in or- 
der to have a right-handed reference frame. As the observer 
moves in  the scene between two time instants, the generic 
point moves in the observer's reference and its coordinates 
change according to 

where T ( t )  is the position of the origin of the observer's refer- 
ence at time t with respect to the reference at time t + 1, while 
R(t) is a rotation matrix whose columns are the coordinates 
of the reference axes at time t with respect to the same axes 
at t + 1. Of course we could use different representations for 
orientation, as for example unit quaternions. 
Suppose we observe the points through their ideal perspec- 
tive projection, assuming for simplicity unitary focal length. 
Then the coordinates of the projections are: 

i 

V i  = 1 : N ,  (2)  
i [ ] 

x'(t) [ ; ] ( t )  = 2' (t ) 
which change according to ( 1 )  as the observer moves. 

2.2 Recovery of structure as a filtering problem 
Notice that in (1) we may interpret the quantity of interest 
as the state of a linear dynamical system, provided that we 
know the motion T,R exactly. In this case, if we measure the 
projection of the N observed feature points onto the image 
plane, x' V i  = 1 : N, up to a certain error, we can then set 
up a measurement equation for the model and try to estimate 
its state from such measurements: 

x"t + 1) = T( t )  -I- R(t )X' ( t )  + m'(t) 
2 ( t )  = x'(t)  + n'(t) 

(3) 

(4) 
where i = 1 : N .  n'(t) is the measurement error. Observe 
that, although equation (1) is an exact representation for 

rigid-stationary scenes, we have added here a noise term 
m'(t) which accounts for uncertainty in the knowledge of 
motion and round-off errors in the numerics. 

If this system was linear and if the noises were ideal zero- 
mean, white, Gaussian distributed, then the Kalman Filter 
would be the optimal state estimator in the sense of minimum 
variance error [15]. A suboptimal version of the traditional 
Kalman Filter extended to non-linear systems, known as "Ex- 
tended Kalman Filter (EKF)", has become very popular lately 
for its simplicity. Standard references on Kalman Filtering 
are [ 1,14,15]. A customary way to approach the problem of 
model errors is to assume zero-mean and whiteness, and play 
with variances of such errors until the prediction error is as 
uncorrelated as possible. This procedure is called "tuning", 
and standard tests can be used for the purpose. 

23 Formulation of a filter for estimating structure: 
observability of the model 

The filter described in the previous section may be refor- 
mulated so that the measurement equation is linear and the 
non-linearity is transferred to the state model. This is a more 
desirable situation, since the EKF treats the measurements as 
coming from a linear instrument. Furthermore the (small) li- 
nearization error introduced in the state equation contributes 
to keep the state variance non-zero and hence helps prevent- 
ing saturation. 

Suppose again, for the moment, known motion and rewrite 
the dynamical system describing the movement of the pro- 
jected point p' including in the state the unknown depth: call 

i [ f ] ( t )  = CC(t) +n"t) 

V i  = 1 : N, where 3 is given by 

r 1 

and X = [(I (2 1ITb. Then one may set up an EKF for 
the system described by the previous equations with state 

This structure has been used, although in a different for- 
mulation, by Matthies et al. [17] and Heel [ll, 12, 131. It 
is important to notice that this approach is not general and 
presents some difficulties. First of all motion is considered 
known, second the behavior of thefilter is affected by the 
motion itself: the observability of the 3iTH component of 
the state (depth) in fact is conditioned by the motion, e.g. for 
small translations and distant points the filter tends to saturate 
selectively along the 3iTX components. 

2.4 Modified model for estimating structure and 
motion 

The obvious way to get rid of observability problems is to 

ET = [ ( I T , .  . . p,. . .I. 



measure directly all of the components of the state. We need 
to make two modifications to the scheme just described: (1) 
insert the motion parameters in the state, (2) measure directly 
depth along with motion; these measurements may be made 
visually with a two-perspective-views algorithm (we use [9] 
in our experiments). In this case the observability matrix is 
the identity, and the filter is globally observable. 

In order to include motion in the state of the filter we need 
to write a dynamical equation describing it: if the camera is 
mounted on a moving vehicle we may know the dynamical 
model for motion, otherwise we can use a statistical model, 
the simplest being a random walk. In the present paper we 
will use a first order random walk, which correspond to a 
mild smoothness hypothesis; indeed the model proves quite 
flexible and suitable to model also non-regular motion. The 
complete state and measurement equations are therefore: 

(9) 

Notice that we have represented rotation via the vector R, 
instead of the matrix R. The two quantities are related by 
R(. )  = e(n")(-), where the operator (QA) is a skew symme- 
tric matrix which represents the wedge product i2 A ( e ) .  No- 
tice that representing orientation via unit quaternions would 
avoid the transformation between R and f2, but also hide the 
simple structure of the state equation. 

Now the state equation is completely observable from the 
measurements, though of course we have not solved the prob- 
lem of determining depth accurately in absence of reliable 
data, since the same uncertainty that used to affect the ob- 
servability of the filter now affects the quality of the mea- 
surements in 2: intuitively if the (monocular) observer stops 
he is no longer able to resolve depth, and he feeds the filter 
with meaningless measurements. 

In other words, we have traded observability for mea- 
surements quality. Notice though that in the Kalman Filter 
formalism we may model explicitly the accuracy of the mea- 
surements, so that this intrinsic difficulty may be handled in a 
principled way. The filter weights the measurements through 
their inverse variance and hence is able to discard unreliable 
data. 

2.5 Two-view algorithm to measure depth and motion; 
recovery of the scale factor 

In order to be able to use the above formulation we need a 
motion-and-structure algorithm that at each step calculates 
from visual data an instantaneous estimate of the depth of 

each point and of the motion of the observer together with 
the ermr variance of those estimates. 

In our experiments we use a scheme described in [ 181 that 
consists in a two-perspective views algorithm that, from the 
position in the image plane of N 2 8 points, returns an 
estimate for the depth of such points and for the motion of 
the observer, and the variance of such estimates. 

The Zviews algorithm consists of a chain of three Singular 
Value Decompositions (SVD) along the lines of [9, 16, 19, 
231. We give here a brief summary (we use Longuet-Higgins' 
notation - do not confuse the essential matrix Q with the 
variance of the model error Q and the rotation matrix R with 
R, the variance of the measurement errors): 

1. A set of N equations xiTQxi = 0 is solved simultane- 
ously via SVD to obtain the 'essential' matrix Q. 

2. The matrix Q is factored into its rotation and transla- 
tion components R and T using a second SVD. Q is 
calculated from R using Rodrigues' formula. 

3. Zi, the depth of each point, is calculated using a Total 
Least Squares procedure implemented via a third SVD. 

The error estimates are computed in the same spirit as 
Weng et al. [26]: the joint covariance matrix of the mea- 
surements T, 8, and the Zi, is computed by linearizing the 
algorithm around the zero-noise solution. This may be done 
by applying three times the equations coming from the linea- 
rization of the SVD [18]. The measurement error covariance 
matrix is computed at each iteration along with structure and 
motion and fed to the EKE 

Translation and depth can be resolved only up to a scale 
factor, due to the perspective projection framework. In order 
to overcome this ambiguity we need some external infor- 
mation such as the norm of the translation, or the distance 
between any two points in space, or the true depth of a point. 
Once this information is available ut one time instant it can be 
propagated to the subsequent ones, exploiting the temporal 
coherence of the structure (see [21] for details). 

3 Experimental assessment 
3.1 Implementation and tuning of the filter 
We have implemented the filter using M a t  lab and run com- 
puter simulations for testing it over a variety of motions and 
configuration of points. The equations of the filter are sum- 
marized in [14] ( theorem 8.1 on page 278: substitute ( for 
z, T for f ,  C for h [a]). 

As initial condition we have chosen the first output of the 
2-frames step, however the filter proved very insensitive, so 
that any other choice will also work (including zero), the only 
difference being a more appreciable transient. The variance 
of the measurement errors (R in [14]) are calculated in the 
two-frame step which is described in [ 181. The only param- 
eters which remain to be assigned are the components of the 
matrix variance of the model error (Q in [ 14]), for which the 
tuning procedure is carried out. In order to perform a coarse 
tuning we postulate, as customary, a diagonal Q and run the 
"Cumulative Periodogram" test with parameters varying by 
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one order of magnitude at a time. The filter proves fairly in- 
sensitive to tuning: we observe experimentally convergence 
over three order of magnitude variations in the tuning pa- 
rameters (though, of course, the quality of the estimates does 
vary). We would like to emphasize a consequence calculat- 
ing measurement reliability at each timestep: the tuning is 
independent of kind of motion and has to be performed only 
once. The computational cost of the whole procedure, which 
consists of additions and multiplications of matrices, one li- 
nearization and a matrix inversion, is 0 (3N + 7)3, where N 
is the number of observed points. For a detailed discussion 
of the implementation the reader is referred to [21]. 

3.2 A challenging motion 
We have run a computer simulation for testing the algorithm 
on a variety of motions. In this section we present the simu- 
lations obtained for a non-smooth motion with singularities. 

In our experiments we have considered a visual field of 
approximately 400, and we have assumed standard deviation 
of the error in the localization of the features = 2* w 3 m ,  
which corresponds to 1 pixel, according to the performance 
of current feature tracking algorithms (see [2]). We have 
considered a set of N=20 points generated with a uniform 
random generator in a cube of side l m  with centroid 1.5m 
ahead of the observer, corresponding to a visual field of ap- 
proximately 40". The motion is explained in detail in the 
caption of figure 2. Note that motion has discontinuities 
which challenge the dynamical model we have used, a first 
order random walk, which represents some smoothness hy- 
pothesis. Indeed. as it can be seen from figures 2 and 3, 
the model is flexible, as it performs also in the case of non 
regular motion. Observe now that as the observer stops trans- 
lating we have no parallax and the two-frame algorithm is no 
longer able to perceive depth. It is however able to perceive 
rotation. Notice that the impossibility of estimating depth in 
this case is inherent in the gmmetry, but that the filter needs 
not saturate: the algorithm retains its previous estimate of 
structure (depth) and updates them according to the (purely 
rotational) motion (see fig. 4). Notice that we do not use ex- 
temal information about the motion. Only the true distance 
between two features at time 0 is used to calculate the scale 
factor. Also note that any useful information about motion 
can be easily integrated within this framework, for exam- 
ple by inserting a state model for motion when available, or 
simply by including measurements for example from board 
instrumentation. 

4 Relation to previous work 
The literature on Kabnm Filter-based recursive algorithms 
for recovering 3-D structure and/or motion from a monocu- 
lar sequence of images dates back to the early eighties [7]. 
Extensive work has been done on three main variants of the 
problem: recovery of motion with known structure [4,7,8], 
recovery of structure with known motion [17, 201, and si- 
multaneous recovery of motion and structure [3,12,13]. We 
review the literam related 1.0 our work in the next para- 
graph. We do not review here the extensive literature on 

batch approaches to the motion and sttucture problem (for 
recent results see [ 10.22,24]). 

GeMery [7,8] considers the problem of tracking 3-D ob- 
jects of known shape, and recovering their motion and po- 
sition with respect to the observer, his state vector therefore 
consists of 12 parameters (6 configuration and 6 velocity); 
he treats both point and line features. Matthies et al. [17] 
use a filter formulation similar the the one described in sec- 
tion 2. They make the assumption of known motion, and 
demonstrate their scheme in the special case of translational 
motion both with a feature-based scene representation and 

0 2 0 4 0 6 0  O B 4 0 6 0  
tim tim 

4.2- 4 2 L - - - A  
0 2 0 4 0 6 0  0 2 0 4 0 6 0  

tim tim 

Figure 2: The motion of the observer with respect to his own 
reference is rotational about the vertical axis with velocity 
of 8 = 5O/step, while translational velocity is 1 - cos(0) 
along Z and sin(0) along Y. After 30 steps the observer 
stop translating and keeps on rotating. After 6 more steps he 
inverts the direction ofrotation and eventually, after42 steps, 
he starts translating back to his original position. zen>-mean 
Gaussian noise was added to the observations with a stanhrd 
deviation comsponding to 1 pixel. In this figure we show 
plots of the estimation of translation: in the topleft plot the 
X component of the translational velocity is shown: the es- 
timate of the filter (solid) is compared with the ground truth 
(dotted) and the 2-views algorithm (dashed). As it can be 
seen the X component of motion presents two f i s t  order dis- 
continuities, which challenge the dynamical model used for 
motion and for the scale factor. Notice that the estimate keeps 
within 2% staodard deviation e m r  (bottom-right plot). In 
order to keep the motion model flexible its van'ance is kept 
rehtively large hence the filter tracks closely the 2- 
views algorithm. Smaller variance values would result in 
more smoothing, but also poor handing of motion disconti- 
nuities. 
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Figure 3: Estimation of rotational velocity Notice that be- 
tween time steps 30 and 42 translation is zero, while rotation 
is non-zero and presents fist order discontinuities. How- 
ever the filter is still able to take advantage of the reliable 
measurements of rotation and estimate it correctly. Also it 
keeps updating the structure which is changing due to non- 
zero rotation, exploiting the dynamical stare equation (rigid- 
ity assumption). The bottom-right plot shows the rotation 
estimation error, which is within 2% standard deviation. 

with a dense depth-map. Recently Shekhar and Chellappa 
have successfully tested a similar approach, again assuming 
known motion [20]. Heel [ll, 12, 131 proposed a sequel 
of filter formulations for the recovery of both structure and 
motion, with further regularization of the depth map. The 
essence of the formulation is similar to the one by Matthies et 
al., but the motion is now estimated at each step with a least 
squares procedure from the estimated structure: the best es- 
timate of motion is used to produce an estimate for structure 
which is used to obtain the new estimate of motion. The filter 
has adaptive structure and shows severe convergence and ini- 
tialization problems (convergence has been experimentally 
demonstrated for 3 degrees of freedom, see [12] pag. 38). In 
Heel's scheme the motion parameters are not included in the 
state of the filter, hence motion temporal coherence cannot 
be exploited. 

None of the above approaches describes and discusses 
error dynamics. We suspect that most schemes keep the 
error variances constant in time. As a consequence the filter 
needs to be tuned for each individual motion condition and 
only constant motions are handled correctly. This might be 
the reason why in the literature one finds that simulations 
and testing are only performed for very simple motions. To 
our knowledge no current approach performs a complete and 

4 1  

4 '7 

time 

acpthofthefeaturell 

0 2 0 4 0 6 0  
time 

Figure 4: Depth for some points chosen at random among 
the 20 observed: The performance of the filter (solid) is 
compared with that of the two-fiames step (dashed). Ground 
truth is the dotted fine. As it can be. seen, during the period 
in which translation is zero, the two-frames step is unable 
to resolve depth and feeds the filter with meaningless mea- 
surements. However it also warns the filter that those data 
have very high variance, so that the gain saturates selectively 
along the components of translation and depth. On the con- 
trary measurements of rotation and image coordinates are 
still reliable, and the filter exploits the model equation and 
the still reliable measurements ofrotation to update structure. 
Notice the transient of approximately 20 time-steps. 

rigorous treatment of measurement and model errors. 

5 Conclusions 
In this paper we have presented a recursive algorithm to 
recover both the structure of a scene and ego-motion from a 
monocular sequence of images of a set of point features. The 
algorithm is based on an Extended Kalman Filter cascaded 
to a 2-perspective-views motion and structure step. The 2- 
views step returns to the filter instantaneous estimates of 
motion and structure and variances of such estimates. The 
filter has as its input all of the components of the state, hence 
the model is globally observable and optimally conditioned 
with respect to motion. 

We have demonstrated the features of our algorithm in a 
simulation with a motion pattern including (a) discontinuities 
and (b) ill-conditioned tracts. The simulations show that (a) 
discontinuities are correctly handled, i.e. the filter is not 
based on excessive smoothness assumptions, (b) depth is 
estimated in a robust fashion with respect to the motion: 
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also be explored to improve computational efficiency; for 
example how to exploit the structure of the matrix Q through 
the Riccati equation in computing the gain of the filter. 
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Figure 5:  Error in the determination of depth: the pedor- 
mance of the filter (solid) is compared with that of the two- 
frames step (dashed). As it can be seen as the observer 
stops translating the 2-frames algorithm can no longer re- 
solve depth, however the filter discards the unreliable data 
and keeps updating structure based on the state dynamical 
equation and the still reliable measurements ofrotation. 

when translation drops to zero the measurements from the 
2-frames algorithm are inaccurate, hence the filter discards 
them and estimates depth correctly using the state model. 

Our algorithm has a simple formulation, it is robust with 
respect to motion singularities and general since it requires 
only visual input (and one initial scale parameter if one is 
to recover the scale factor). Furthermore the formulation is 
complete since the only unknown parameters are the vari- 
ances of the model error, for which the tuning procedure is 
carried out. In order to recover the scale factor we need some 
external information. Once this information is available ut 
one step it is propagated to subsequent frames allowing re- 
covery of the scale factor throughout the sequence. Addi- 
tional information about the motion dynamics, if available, 
nxiy be inserted into the state of the filter. 

The filter is robust with respect to variation of the tuning 
parameters. 

The computational cost of one step of the filter is approx- 
imately O ( N 3 ) ,  where N is the number of observed points, 
since the filter performs matrix additions, multiplications 
and one inversion of the variance matrix for the pseudo- 
innovation. 

We have not yet addressed a number of issues: (a) The al- 
gorithm has not been tested on real image sequences. (b) Use 
of filter-generated predictions on feature positions and vari- 
ances in the first module (feature trackingloptical flow) could 
be added for improving efficiency (shown as dashed-line 
outer loop in fig. 1). This method is used in road-following 
vehicle navigation experiments by Dickmanns et al. 151. 
(c) Instead of the features position measured in the t - 1 im- 
age one could use the best current estimate of the position of 
the features from the filter in the 2-views algorithm (shown 
as dashed-line middle loop in fig. 1). (d) Integration with 
stereo is a natural extension. (e) Numerical issues should 


