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Abstract

A probe based approach is used to recognize objects in a cluttered background using an
infrared imager. A probe is a simple mathematical function which operates locally on image
grey levels and produces an output that is more directly usable by an algorithm. A directional
probe image is calculated by taking the difference in grey levels between pixels a set distance
apart in a given direction, centered on the probe image pixel. These probe images contain
the information necessary for use by an object recognition algorithm in a readily usable, and
mathematically describable, form. A parametric statistical image background model which
describes the probe images is introduced. The parameters of the probe image model can
be readily estimated from the image. Knowledge of these parameters, together with target
signatures obtained from Computer Aided Design (CAD) models, allows the likelihood ratio
for a given object pose hypothesis versus the background null hypothesis to be written. The
generalized likelihood ratio test is used to accept one of the object poses or to choose the
null hypothesis. Results of the method applied to a large set of terrain model board images
are presented.
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1 Introduction

A number of methods [1, 2, 3, 4, 8, 10] have been used to identify objects and discriminate
regions in infrared imagery. A relatively simple method is that of Bhanu and Holben [3],
who use a relaxation scheme to automatically set a threshold to separate “hot” and “cold”
regions of an image. This requires that the objects of interest be quite prominent. Some
methods use the physics of objects in the image. Aggarwal and Nandhakumar [1] use infrared
emission information together with visible reflectivity information to separate regions based

on thermal properties.

A paradigm often used for the extraction of objects from their backgrounds is the de-
tection/segmentation /feature extraction/recognition paradigm (e.g. [10]). It is particularly
attractive in situations for which reduced computational complexity is critical, because the
stages successively reduce the complexity of the problem to manageable proportions. The
chief disadvantage is that the stages introduce errors which cannot always be rectified by
later stages. Frequently such algorithms are particularly sensitive to imperfect segmenta-
tions. Bhanu gives a survey of such algorithms in [2]. Such algorithms often do not take
direct advantage of knowledge of the geometry of objects, relying instead on derivative fea-
tures such as moments. For applications in which segmentation is particularly difficult,
this can be ineffective as many commonly used features require that an intact silhouette be

present.

In an attempt to reduce the dependence of the algorithm on the segmentation scheme,
a number of authors (e.g. [4, 8]) have used the known geometry of objects of interest to
guide the separation of object from background, an approach sometimes called model-based
vision. The approach combines the segmentation/feature extraction/recognition stages into
one matching process in the hope of improving performance. It is used in [4], in which
an energy minimization scheme is used to match templates to image regions. Contour
smoothness, edge sharpness, and object shape are all taken into account during optimization,
though their relative weights change as the optimization proceeds. One advantage of such

approaches is that performance degrades gracefully as the quality of the silhouette degrades.

An alternative to simply choosing an intuitively appealing matching function is to develop
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an image model and object model that allow the application of a standard test of goodness of
fit, preferably one that can be proven optimal (e.g. [5, 9]). This is the general approach taken
in this paper. It differs from Margalit, Reed, and Gagliardi [9] in that a more complex image
model is required, and from Grimson [5], in that it does not rely on an apriori edge finder
which might function poorly for low contrast objects. Grimson obtains empirical background
probability distributions for ensembles of edges, and uses them to estimate the number of
edge correspondences required to ensure a low false alarm rate. The method requires a set
of images containing “false” objects similar to the images to be tested, in order to estimate
the probability of false correspondences. The method was developed for the identification of
parts in a manufacturing environment. The method developed here is more general, in that
the estimated probability distributions describe probe values, which are a more primitive
construct than edge correspondences. One advantage of this is that probability distributions

can be estimated using only the image with which the algorithm is being tested.

In this paper, image and target models that allow the calculation of the probability of an
observed image section are developed. These models are used to define an algorithm which
applies the generalized likelihood ratio test to test for the presence of the desired objects.
Such an approach has the advantage that the designer knows where to look to improve the
algorithm; since the generalized likelihood ratio is well accepted, although not optimal, the

image model must be improved if performance is to be improved.

The image model we have used requires that a specific type of probe be defined, where
the definition is chosen to correspond with the authors’ intuition of what probe function
will best differentiate objects of interest from their backgrounds. The probability density
function of the probe, or the parameters of this function, is then estimated from the image.
The pattern of probes used to search for a given object corresponds to the silhouette of
the object, as determined from a CAD model. The probability density function of probe
values corresponding to targets cannot be reasonably estimated from the image, because the
locations of targets are not assumed known, and because targets occur infrequently, which

would cause sample sizes to be small.

Explicit temperature predictions for the scene might be used to predict grey levels, but
this would require data that we cannot assume to be known. Accurate prediction of outdoor
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temperatures requires knowledge of recent thermal history, including whether the object
in question is under direct sunlight or precipitation, and the magnitudes of internal heat
sources. It is shown in the body of the paper that the variation in irradiation between an
object receiving direct sunlight and a shaded object can dwarf variations due to material
properties. While knowledge of such information might be realistic in controlled manufac-

turing environments, it is not realistic for noncooperative targets.

Algorithm designers may take a number of steps to decrease the computational com-
plexity of an algorithm, including prescreening to eliminate large areas of the image from
consideration, and decision trees to quickly sort through the set of candidate hypotheses.
If these measures are applied appropriately, they should introduce relatively small amounts
of error, as compared to the fundamental limitations of the matching scheme itself. The
matching scheme should be the heart of the algorithm. Unfortunately, matching schemes
tend to be based on heuristic measures that reflect the intuition of the algorithm designer.
While intuition can yield effective algorithms, the inherent difficulty in communicating in-
tuitive insights, and the absence of a standardized data set for comparison purposes, makes

it difficult to evaluate the relative merits of different algorithms.

Developers of object recognition algorithms have suffered from a lack of images on which
to design and test their algorithms. In particular, image sets have often consisted of too few
images for adequately understanding of the performance limitations of the algorithm. The
algorithm described in this paper has been tested on a set of approximately two thousand
images acquired from a terrain model board, encompassing a wide variety of target and
background conditions. A description of the image set and algorithm performance results

are presented in the paper.

The paper is organized as follows. Section 2 discusses the rationale for not making explicit
use of the apparent temperature information given by the infrared imager, but rather treating
apparent temperature values as grey levels. Section 3 introduces a simple image model, and
presents experimental results to justify its use. Section 4 demonstrates how the image model
described in Section 3 can be used to perform a generalized likelihood ratio test for a given
set of known objects. Section 5 presents experimental results of the recognition algorithm
described in Section 4. Section 6 discusses conclusions and future work.
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2 Problems with the Thermal Prediction Approach

The image model approach taken here is in contrast to methods used by Nandhakumar
and Aggarwal [1] in that it does not directly use knowledge about thermal interactions
between background elements and objects of interest to help in their extraction. The reason
that thermal prediction information is not used in our approach is that we do not wish to
assume that a coregistered visible wavelength image is available. Also, the characterizations
of objects required for thermal predictions to be accurate are much more detailed than we
would like to assume in our scenario. Presumably such an approach would involve calculating
thermal predictions for both man-made objects and background terrain. In our scenario, it
would be reasonable to assume some knowledge about the background terrain, such as the
general locations of fields and forests, an elevation map on the scale of tens of meters, some
idea about the types of vegetation present, and recent meteorological history. It would also
be reasonable to assume that exact representations of the objects of interest are available.
If this were all the necessary information, thermal prediction could be a great aid to object
recognition in outdoor scenes. However, the temperatures of vehicles depend greatly on their
recent activity, because vehicles have quite strong internal heat sources including the engine
and heater, internal friction, friction on wheels and tracks, etc. For a vehicle that has been
recently operated, these heat sources dominate the vehicle’s signature. Prediction of vehicle
temperature thus requires knowledge of the vehicle’s movement, engine status, etc. We do
not wish to assume that such knowledge is available. For backgrounds the problem is also
more complicated because the exact locations of tree lines and the spatial variations in the
densities and types of vegetation are crucial for prediction, but are presumably unavailable.
Significant signal variation can be observed even from relatively uniform sparse fields of
grass. Temperature prediction is useful if these types of conditions can be controlled, as in

indoor scenes, for example.

The thermal prediction approach could be less ambitious, and only predict probability
density functions (PDFs) of temperature, or simply reasonable temperature ranges. The
usefulness of the latter approach is somewhat questionable, as there are often significant

overlaps between natural and background objects, and even when a man-made object stands



out, it is not necessarily the object of interest, so that discrimination based on shape is
still necessary. While the pdf’s of object and background temperature would be usetul,
prediction would require estimating a priori probabilities such as the probability that a
vehicle has moved recently, that its engine is on, that it is shaded by foliage cover, etc. For
the background, we would similarly need to know the probability that the soil in the area
is of a given quality, that the trees are of a given species, etc. All of the above mentioned

factors are first order effects of the object and background temperature.

To demonstrate the difficulty of finding man-made objects in natural scenes based on
predicted temperature, a simple thermal model was created to predict the temperatures of
materials given meteorological data. The aim was to show that the effects of conditions that
cannot be assumed known can be strong enough that the range of temperatures which a
given material can have overlaps the temperature ranges of other materials. In particular,
the surface of a steel slab on top of soil can have temperatures similar to those of natural
materials such as soil, sand, rock, and wood. A more complex model would identify more

sets of conditions that produce overlap; for our purposes, a simple model suffices.

The simulation involves a simple slab of material placed on top of dry soil. A finite
difference model is applied to the material and the soil. Because the soil has low thermal
diffusivity, conduction is assumed to occur only in the vertical direction. The surface effects
considered are down-welling irradiation, direct and diffuse solar radiation, free convection,
and emission from the material. Solar radiation, air temperature, and down-welling irra-
diation were obtained from recorded meteorological files. For simplicity, these parameters
were kept constant while the finite difference model was allowed to reach steady state. The
results for materials in direct sunlight, in the shade, and at night are shown in Table 1.
Clearly, whether the object to be recognized is shadowed is more important than its ma-
terial composition. Of course, objects with internal heat sources might easily exceed the
temperature ranges shown. Vegetation was not included in the table because of the crucial
role played by evapo-transpiration in the regulation of plant temperature. It can be seen
that steel, because of its lower emissivity, has a significantly lower apparent temperature
than the other materials. Since man-made objects, often made of steel, typically have strong

internal heat sources, it can be seen that these objects have the greatest range of possible
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apparent temperature values.

Table 1: Predicted temperature and apparent blackbody temperature of materials.

Material | Sun | Shade | Night
Dry Soil | 298.5 | 282.9 280.3

Sand 297.9 | 282.9 280.5
Steel 302.6 | 289.5 287.4
Granite 290.2 | 288.5 277.9
Fir 298.2 | 282.9 280.4

Material | Sun | Shade | Night
Dry Soil | 294.3 | 278.9 276.4

Sand 290.2 | 275.5 273.2
Steel 207.2 | 198.3 196.9
Granite 282.7 | 281.0 270.7
Fir 292.0 | 276.9 274.5

The heat equation is written as
N\ or o
()=
o) Ot Ot
where T'is temperature, ¢ is time, « is thermal diffusivity, and ¢ is input energy. The thermal
diffusivity breaks down as

a=k/pe,

where p is the material density, k is the thermal conductivity, and ¢” is the specific heat of

the material.

Since we are considering a large flat surface and uniform volume in which the heat flow
is exclusively vertical, a one dimensional approximation can be used. The finite difference
equations can be obtained by discretizing the above equation as

vt =rt T =21 T
aAt N Azx?

following the notation in [7], where the external heat flux term has been dropped. For

internal nodes at which external heat flux is zero, the finite difference model is simply [7]

T = F(Tpsrl + Trooat) + (1 — 2T,
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where Tt is the temperature at the m'® node at time ¢, and the Fourier number F' is
F = aAt/(Az)?

where Az is the vertical spacing of the nodes, and At is the time step used by the finite

difference model. At the surface node, the equation is
Tt = 2T + (1 = 2F) T 4 Ty,

where T, is the temperature change due to energy exchange at the exposed surface. It
breaks down as

T = At(P. 4+ P. + PZ'T){AJ}/)CP}_I
P. = —eo{T}}*
P.= h{T, — T}

where ¢ is the emissivity of the surface material, o is the Stefan-Boltzmann constant, A
is the free convection coefficient of air, T}, is the ambient air temperature, and F;, is the
irradiation onto the surface due to direct and diffuse solar, as well as down-welling irradiation.
The meteorological parameters, including FP;,., were taken from recorded data files and the

material constants were obtained from tables in [7].

The apparent temperature of an object is the temperature of a blackbody that would
produce the same emission as the object. Thus, objects with low emissivities have lower
apparent temperatures than objects at the same temperature with higher emissivities. The
formula is

T,y = /7T,

where T,, is the apparent temperature and 7}, is the actual temperature.

3 The Probe Image Model

The image model used by Margalit, Reed, and Gagliardi [9] assumes that the pixel grey levels
of an infrared image can be modeled as a Gaussian with slowly varying local mean. For their

purposes it was unnecessary to model how the local mean varied, as they were concerned
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with small targets containing only a few pixels. For our purposes, statistical characterization

of the background jumps is crucial.

Our assumption, which will be justified later, is that the difference in grey level between
two pixels at a distance d apart can be modeled as a zero mean Gaussian, with variance a
monotonically nondecreasing function of d. Such a random variable will be called a probe,
and denoted by J. Each probe J will be correlated with neighboring probes, a fact for
which our algorithm must account. The variances of the probes, and their correlations with
neighboring probes, will vary from image to image, and thus will be calculated locally. The

algorithm will then make use of this background distribution to search for desired objects.

Consider an image formed by calculating the value of a probe of a given distance and
given direction centered at each pixel of an input image. Thus for an input image {x;;}
where the first subscript denotes the vertical axis and the second the horizontal, the probe

image {y,;} for probes of distance d in the horizontal direction is
Yij = Titd,j — Ti-d,j

Then the random field Y = {y;;; (¢, j)ew}, where w is the pixel grid, is modeled as a field
of correlated zero mean Gaussians. This correlation is measured for probe images formed in
each principal direction. A whitening filter can be applied based on the correlation values,
resulting in a field of uncorrelated zero mean Gaussians. Thus, locally, each probe value,
after whitening, may be treated as an independent identically distributed (IID) sample of a
random variable. This greatly simplifies the hypothesis test used to test for the presence of
the target objects. The role of the Gaussian assumption is only to assert that the whitening
filter, which causes the pixels to be uncorrelated, also causes the pixels to be independent.
The recognition algorithm uses the actual local histogram as a sample probability density
function rather than fitting a Gaussian to the histogram, thus reducing the algorithm’s

dependence on the Gaussian assumption.

The Gaussian assumption was tested by performing Kolmogorov-Smirnov tests of the con-
formity of sample histogram to a Gaussian distributions. The resulting average, minimum,

and maximum K-S test values are recorded in Table 2.



Table 2: Kolmogorov-Smirnov test comparison of empirical probe pdfs vs. Gaussian distri-

Direction | Jump Size | Average | Minimum | Maximum
1 1 0.09613 0.08042 0.10649
1 2 0.08048 0.05586 0.10540
1 3 0.06439 0.03850 0.10678
1 4 0.05153 0.03038 0.10680
1 5 0.04418 0.03017 0.10570
1 6 0.04037 0.03201 0.10559
1 7 0.03961 0.03391 0.10658
1 8 0.03990 0.03523 0.10602
1 9 0.04101 0.03659 0.10599
1 10 0.04223 0.03755 0.10662
Direction | Jump Size | Average | Minimum | Maximum
2 1 0.09696 0.08160 0.10536
2 2 0.08432 0.06148 0.10573
2 3 0.07203 0.04626 0.10520
2 4 0.06165 0.03534 0.10562
2 5 0.05431 0.03102 0.10582
2 6 0.04823 0.03296 0.10549
2 7 0.04502 0.03354 0.10588
2 8 0.04327 0.03367 0.10458
2 9 0.04269 0.03502 0.10537
2 10 0.04264 0.03672 0.10519
Direction | Jump Size | Average | Minimum | Maximum
3 1 0.10075 0.09855 0.10650
3 2 0.09902 0.09606 0.10688
3 3 0.09543 0.09192 0.10583
3 4 0.09167 0.08601 0.10610
3 5 0.08807 0.08128 0.10480
3 6 0.08459 0.07674 0.10508
3 7 0.08110 0.07237 0.10532
3 8 0.07787 0.06762 0.10571
3 9 0.07458 0.06271 0.10577
3 10 0.07211 0.06010 0.10524
Direction | Jump Size | Average | Minimum | Maximum
4 1 0.09554 0.07952 0.10665
4 2 0.07952 0.05508 0.10631
4 3 0.06359 0.03736 0.10525
4 4 0.05104 0.03022 0.10529
4 5 0.04412 0.03041 0.10548
4 6 0.04064 0.03195 0.10548
4 7 0.04003 0.03423 0.10711
4 8 0.04042 0.03553 0.10609
4 9 0.04155 0.03707 0.10528
4 10 0.04271 0.00000 0.10535
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Figure 1: Histogram of probe image.

4 The Likelihood Ratio

The IID background distribution makes it easy to calculate P(J | B), the probability of a
given set J of probes given that the set is drawn from the background distribution. The
image is assumed to be locally stationary. For each probe, a local histogram is computed
and used to calculate the parameters of an assumed Gaussian distribution. Alternatively,
the local histogram itself may be used as the pdf of the probe. Making use of the IID nature

of the probes allows us to write
P(J| B) HP

where P(.J;) is the pdf of the probes.

The pdfs of probes associated with a target are more problematic. As previously dis-
cussed, prediction of target signatures requires a great deal of information which we do not
wish to assume known. Absence of this knowledge makes signature prediction virtually im-
possible. However, the geometry of the situation provides some hope. The target shape is
presumed to be known exactly; in particular, its silhouette shape is known. Since a probe
that straddles the edge of the target represents a difference in temperature between a metal
object and natural vegetation, it is reasonable to hope that the probe will show a jump
discontinuity of some significance. The strength of the jump discontinuity will vary greatly
according to environmental and target conditions. For this reason, we will only use probes

that straddle the silhouette of our hypothesized target, and we will assume that the mag-
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nitudes of these probes follow a uniform distribution over the discrete alphabet of possible

probe values. This is essentially a worst case distribution [11].

Consider a set of probes that straddle a given target silhouette. Then the likelihood ratio

may be written as

k
L= [1p(s:)

where K is a constant. If a uniform cost function may be assumed for all of the potential

hypotheses, then the generalized likelihood ratio test may be implemented. The test will
then choose the target pose hypothesis that produces the largest L(.J), and will declare that
hypothesis if this L(.J) exceeds a threshold, but declare “no target” if it does not.

A common technique used to make tests of this type more robust is the use of § Wind-
sorized statistics [13] to prevent abnormally large probe values from distorting the results.
In this technique, probe values that exceed a threshold will be treated as if they were equal
to the threshold. For the case of infrared imagery, the horizon typically causes a large jump
in apparent temperature. Hence, L(.J) for silhouette hypotheses that run along this roughly
horizontal line will be quite large, even if the probes corresponding to the target side are
nonexistent. Using # Windsorized statistics decreases the effect of the horizon pixels, as well
as the effect of other edges.

Finding the maximum L(.J) is identical to finding the minimum P(.J | B). Defining 7 as

the value of the threshold for line processes, we have
P(J|B)=P(r) || {i: Ji = r} [ [[]i i < 7P(J5)]

or

—log P(J | B) = —|[ {i : Jy = 7} || log P(7) = 3 log P(J)

Since 7 will be in the tail of the distribution, and it is assumed that for targets a large pro-
portion of the probes will exceed the distribution, the above equation may be approximated

as

—log P(J | B)x — || {¢:J; > 7}

In other words, the test simply counts the number of probes along the silhouette that
exceed a threshold. The problem becomes one of binary template matching, a subject

discussed extensively in the literature (e.g. [14]).
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The knowledge of the background distribution allows estimation of the false alarm rate
associated with a choice of the threshold 7. Choosing a desired false alarm rate allows
comparison of likelihood functions that are generated with different numbers of probes.

Define v(7) as the probability that a background probe exceeds 7. Then
y(r)=PlJ; >7]=1-Fi(r)

where F;() is the cumulative distribution function of J;. If J(7) is defined as the number of
probes that must exceed 7 in order for the hypothesis to be declared, then the false alarm
rate a , which is defined as the probability that a background image portion will be declared

to be a target, will be
a=1—BW(r),1 - Fi(r),N)

Here N is the number of probes used to test the hypothesis and B(k, p,n) is the cumula-
tive distribution function of a binomial random variable, where n is the number of Bernoulli
trials, p is the probability associated with each Bernoulli trial, and & is the number of trials
with positive result. The independence of the probes allows each probe to be treated as a

Bernoulli random variable.

It would be undesirable to simply choose the threshold 7 and ¥(7) a priori. Instead we
chose a desired false alarm threshold «, allowed 7 to vary over the alphabet of possible probe
values, and for each value of 7 used the J(7) that gives the desired o . Thus for each image
portion presented to the algorithm, a range of 7 values was calculated. Since a number
of hypotheses need to be compared in the generalized likelihood ratio test, the algorithm
actually varies 7, determines the actual number of probes that exceed 7, determines the false
alarm rate associated with these numbers, and chooses the 7 that provides the lowest false
alarm rate. If this lowest false alarm rate is the minimum among all the hypotheses, and
is lower than the chosen false alarm rate threshold «, then the object is declared to be a

target.

Note that the actual false alarm rate will not be equal to the « value chosen in the
algorithm. Actually, o would be the false alarm rate associated with one a priori choice of
7, if there were only one silhouette hypothesis, and if each test were independent. Since the

algorithm tests the same silhouette centered at neighboring pixels, it is clear that these tests
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are not independent. Also, the tests for different silhouettes are not independent, nor are the
tests performed at different 7s. This makes the calculation of the predicted false alarm rate
rather complex, especially when one takes into account the changing size of the silhouettes

as a function of range.

One of the parameters to be chosen is the probe distance. There are many factors that

influence this choice, some of which are not obvious. These include the following:

1) The quantization of a sharp edge results in an intermediate pixel that has a value
between those of the object and its background. This means that the probe should

straddle at least one pixel.

2) The blur kernel of the sensor optics further reduces the sharpness of the edge. The

blur kernel size depends on how the sensor is focused.

3) Extremely tight probes would make the algorithm quite sensitive to range error, as

well as error in the assumption that the targets are on a level surface.

4) Since the variance of the background probes monotonically increases with probe dis-

tance, tighter probes provide stronger matches for a given edge strength.

5) As probe distances increase, the probability that a given probe straddles the silhou-
ettes of other target hypotheses increases; thus the number of probes that differentiate

between two hypotheses is reduced.

An easy solution that addresses the first four of the above concerns is to vary the probe
distance for each probe to determine the distance that gives the strongest probe. This means
that at a give jump discontinuity, the probe will be stronger if it is well centered on the jump
and somewhat weaker if it is not, but a jump that is not perfectly located is still allowed to

influence a hypothesis.

4.1 Implementation considerations

The most obvious steps that can be taken to decrease computation time are the introduction

of an effective prescreener, and the use of a decision tree scheme to quickly sort through
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the hypotheses. In our implementation, an extremely simple contrast box prescreener was
used to reduce the number of candidate pixels, but no decision tree was used. The reason
was that the algorithm should have a matching function that separates hypotheses in some
optimal way, and the prescreener serves only to eliminate some hypotheses at some locations.
Algorithm speed was also increased by applying hypotheses at coarse resolution, and moving
up to full resolution only if the coarse resolution test result warranted it. No attempt was
made to choose optimal settings of thresholds at different resolutions; the purpose was only

to reduce computation time.

The algorithm allows great reductions in computation time if certain calculations are
performed and their results stored prior to the actual testing of hypotheses. The basic
algorithm raster scans the image, and at each pixel, tests the fit of each silhouette hypothesis.
To prohibit overlap of targets, the best fit hypothesis within a neighborhood is retained, and
nearby hypotheses with lower likelihood ratios are eliminated. The probes used for a given

hypothesis are centered at the pixels of the silhouette of that hypothesis.

We choose a set of probe thresholds 7; such that there are an equal number of probes
in the background between each value of 7;. A great deal of computation can be saved if
probe images are constructed, and then scaled so that only the subscripts (“labels”) of the
thresholds are stored. In other words, a probe image is constructed in which the alphabet is
the set of labels, and pixel value ;7 means that the probe at that pixel exceeds thresholds 7;
for 7 € [0, 5]. This means that the significance of the probe in a certain direction at a certain
pixel is calculated only once, rather than every time a silhouette hypothesis uses that pixel.
This is especially important because the conversion requires floating point calculations while
lookups in the probe significance image require only integer operations. On the other hand,
this method requires more memory use, since a probe significance image must be stored for

each principal direction used.

The introduction of an intermediate step in the calculation of the probe significance image
can save even more calculation. As described earlier, the size of the probe at each pixel in
each direction is optimized to give the greatest significance. This is done by calculating
probe significance for varying probe sizes, choosing the most significant, and then storing
that result. The results are probe significance images in which optimization over probe size

14



has already been performed, so that this optimization adds almost no computational cost to

the algorithm.

The creation and storage of cumulative binomial distribution tables also saves a great
deal of computation time. These tables are indexed by the total number of probes, the
number of probes that exceed or equal the threshold label being tested, and the threshold
label. Because the a values chosen are quite low, there are computer precision problems
associated with these tables; namely, the value returned from a table is often zero. For this
reason, an approximation is used for the cumulative binomial distribution that holds for the
tail end values [12], namely

(k+ D —p)

P{X > K} ~ bk

where

bk _ n kl_ n—k
(k,n,p) . x p*(1 —p)

The above expression allows logarithms to be taken, thus avoiding the underflow problem.

4.2 Occlusion performance

The performance of the algorithm when a target is partially occluded can be easily deter-
mined. Since the algorithm looks only at the silhouette, and all points along the silhouette
are treated equally, occlusion simply reduces the number of probes that actually straddle
the target. If it is assumed that the probes that are occluded do not, by chance, straddle a
sharp discontinuity in the background which causes it to exceed the threshold, then occlusion
eliminates a subset of the probes, requiring the remaining probes to be stronger if the object
is to be declared a target. Thus the algorithm has the desirable property that it degrades
gracefully as occlusion is increased; and partial occlusion can be compensated by stronger

edges on the portion of the silhouette that remains visible.

Figure 2 shows the fraction of probes associated with a hypothesis that can give negative
results but still allow the algorithm to declare the hypothesis, for a given number of probes
and given «. Of course, it makes no difference to the algorithm whether the probes give

negative results because a portion of the target is occluded or because a portion of the
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target silhouette has low contrast. Figure 2 shows that for a given «, as the number of
probes decreases, a larger percentage of them must be positive for the algorithm to declare
the hypothesis. This is due to the constant false alarm rate (CFAR) nature of the algorithm.
The implication is that detection performance suffers as range increases. The imagery used
to evaluate the algorithm had a 2.3 x 1.7 degree field of view with 640 x 480 pixels. Consider
a target pose that is 5 meters wide by 3 meters high. The silhouette would consist of 250

probes at one kilometer, but only 50 probes at five kilometers.
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Figure 2: Fraction of positive probes required to declare a target as a function of contrast.
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5 Experimental Results

In order to test the performance of the algorithm, it was run on six real FLIR images, as
well as about 2000 images obtained from a scale model terrain board. The real FLIR images
show high contrast white hot targets in an environment with relatively low clutter. Figure 3
shows two of the FLIR images. The results were scored only for those targets for which
CAD models were available. Algorithm detections on vehicles for which CAD models were
unavailable were ignored. The result was that for the nine target recognition opportunities,
all were recognizable with an « threshold that eliminated any false alarms. Of course, if the

threshold were lowered, some false detections would be reported.

The terrain board images are quite difficult in that the background contains a large
number of target-like objects, and many of the targets are difficult for human observers to
recognize because they have quite low contrasts. Figure 4 shows the sample terrain board
images. The detection vs. false alarm curves for the algorithm are shown in Figure 5, together
with confusion matrices for some values of a. In order to estimate detection performance for
prominent objects, the images were rescored using only those targets that were painted with
high reflectivity paints, in other words, those targets whose simulated temperatures were the

highest. These results are shown in Figure 6.

Four vehicles were chosen to be objects for the image model, based on the availability of
CAD models for the vehicles. The CAD models were ray traced to determine their silhouettes
at increments of five degrees in azimuth. The elevation angle was assumed to be zero. These

silhouettes were used as the hypothesis silhouettes in the images.

The set of terrain board images were produced in 1990 by personnel of the U.5. Army
Night Vision and Electronic Sensors Directorate [6]. The simulated infrared images were
obtained by capturing images of a scale model terrain board using a camera sensitive in the
visible region of the spectrum, and an 8 bit digitizer. The grey levels of the image were then
reversed, so that grey level ¢ became grey level 255 —¢. This provides a reasonable simulation
of the appearance of infrared imagery, as discussed below. The targets were painted so that
when inverted, the target signatures correspond to those typically found in infrared imagery.

The advantage of using terrain board imagery is that conditions can be controlled, allowing

17



(c) (d)

Figure 3: Recognition results on real FLIR images (a) and (¢). The recognized targets
are highlighted in (b) and (d). Only targets for which CAD models were available were

considered for experiments.

repetition of experiments and choice of operating conditions. Background objects can be
placed at will, allowing the user to increase clutter or occlusion. Terrain board imagery can
also be gathered much more cheaply than real imagery. The drawback, of course, is that
inverted video is not a perfect approximation of infrared imagery. In order to justify use of
this imagery to test the algorithm, a test was made to see if the probe image model, which
matched nicely with a set of actual FLIR imagery, also matched the inverted visible imagery

captured from the terrain board. Table 2 shows the results of the Kolmogorov-Smirnov test
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(c) (d)

Figure 4: Recognition results on NVL Terrain Board images. (a) and (c) are typical images
fed to the algorithm. Recognized targets are outlined in (b) and (c). Note the presence of
two false alarms in (b) and one in (d).

on a set of terrain board images. Since the probe image model applies to the terrain board

images, it is reasonable to test the algorithm on this set of images.

The defensibility of the notion of using inverted visible imagery as a simulation of infrared
imagery depends on the application. Clearly, the approach of Aggarwal and Nandhakumar
[1], which uses infrared and visible imagery together to estimate the thermal properties of

objects in the image, would not be well served by this imagery, not just because the in-
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Figure 5: Detection and recognition probabilities on the entire terrain board data set.
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Figure 6: Detection and recognition probabilities on high contrast targets in terrain board
imagery.

frared and visible would be essentially the same, but because they rely on relatively subtle
phenomenology present in infrared imagery. For algorithms that do not make use of ther-
modynamic phenomena, the emphasis is on the structure of the objects in the image; the
exact grey level values of specific objects are not significant, as long as the contrast between
objects and their surrounding backgrounds is great enough. Under certain conditions, as
shown below, image inversion is a good approximation to the difference between visible and

infrared images. In any case, the difference is that the structure of objects remains the
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same, while grey level values change significantly. If one is looking for structure and not
attributing any significance to grey levels other than using significant changes in grey level
to mark locations where there is probably either a change in material or a jump in physical
location, then image inversion is a sufficient model for testing algorithms. The majority of

object recognition algorithms fall into this category.

Consider a set of objects that are diffuse radiators and can be modeled as grey bodies,
which means that reflectivity and emissivity are related as ¢ = 1 — r, and the absorptivity
a = e. Over a somewhat narrow temperature range, the radiance may be treated as a linear
function of temperature, as B = cel'. For steady state conditions, the irradiation on a

surface ¢ can be written as
g=R+C,+Cyg=ceT+ T =T, +g(T - T,)

where C, is energy convected from the surface, Cy is energy conducted away from the surface,
h is the convection coefficient, and g is a constant related to the thermal diffusivity of the
material. For dry soils the last term plays a minor role, and so may be dropped. Solving for
temperature and using R = ceT' gives

q — cel,

— Ta
R =ce(T, + T e

)

Since, for grey bodies, the reflected energy is proportional to 1 — e, the radiance should
be a linear function of e for inversion to be valid. Figure 7 shows a plot of the radiance
as a function of emissivity. Clearly for the conditions outlined, inversion is a reasonable
approximation. The conditions tend to hold best for mineral substances, soils and rocks, and
not well for vegetation. Thin foliage such as leaves and grass blades, because of transpiration,
tends toward the ambient air temperature. Soils and rocks tend to have emissivities between
.85 and .95, hence that part of the curve is the most important. Of course, the description
above does not apply to objects with internal heat sources. For our experimental setup,
those objects were deliberately painted so that inversion would produce reasonable results

in the infrared, rather than making them accurate in the visible.

21



Near linear radiance of grey bodies

500.0

400.0

300.0 -

200.0

radiance [ W/m"2 ]

100.0 -

0.0 I I I I
0.0 0.2 0.4 0.6 0.8 1.0

emissivity
Figure 7: Radiance vs. emissivity at 300K.

6 Conclusions

This paper provides a parametric image model for infrared images, and an associated object
recognition scheme. The goal of the work is to use knowledge about the geometry of the
set of permissible objects to extract those objects. The algorithm degrades gracefully under
decreasing contrast and increasing occlusion. It should be noted that the method allows
probes to be defined in any way that assigns a single value to the probe, and causes the
probes to have a distribution that is similar to Gaussian. Preliminary experiments suggest
that almost any simple combination of sums and differences of grey level values meets this
criterion. Also, probes of different types can be combined easily using the likelihood function.
Thus, for example, one might use a corner detector at appropriate regions of the silhouette,
and edge operators on the standard edges. The probabilities of each probe can be calculated

from the local background region as described in the body of the paper.
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