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Abstract

Current approaches for detecting periodic motion assume a station-
ary camera and place limits on an object’s motion. These approaches
rely on the assumption that a periodic motion projects to a set of
periodic image curves, an assumption that is invalid in general. Using
affine-invariance, we derive necessary and sufficient conditions for an
image sequence to be the projection of a periodic motion. No restric-
tions are placed on either the motion of the camera or the object. Our
algorithm is shown to be provably-correct for noise-free data and is
extended to be robust with respect to occlusions and noise. The ex-
tended algorithm is evaluated with real and synthetic image sequences.
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1 Introduction

Many real-life motions can be characterized as having a periodic compo-
nent. For instance, most human locomotory motions (e.g., walking, running,
skipping, shuffling) can be decomposed into a repetitive motion (e.g., run-
ning in place) and a net translatory component. To determine periodicity
information, the periodic component needs to be isolated. The problem is
compounded with a moving camera because changes in viewpoint may alter
the projection of a periodic motion.

In this paper we describe a technique for determining periodicity infor-
mation from image sequences that is invariant with respect to (1) changes in
the position, orientation, and scale of the moving object, and (2) changes in
viewpoint. The key observation is that effects due to both (1) and (2) can
be modeled by affine transformations so we can make use of recent results in
affine-invariance [1, 2].

Periodicity is remarkable in that it can be detected without taking into
account the structure of the objects producing the periodic motion. Therefore
periodicity information can be detected at an early stage and used by higher
level processes of a motion-analysis system. A problem in current motion
recognition systems [3, 4] is temporal alignment,; it is difficult to match two
motions that are out of phase or have different periods. The latter difficulty
is resolved by detecting the period at an early stage in the visual analysis
process.

Periodic motions have a regular structure that can be exploited to deter-
mine some important qualities of the object, including its 3D shape, identity,
and motion. In fact, many techniques designed for the analysis of rigid-body
motion can be naturally extended to cope with non-rigid periodic motions.
The key observation is that each configuration of a periodically moving object
repeats in the sense that it reappears in each cycle, perhaps in a different po-
sition or orientation. When these corresponding configurations are grouped
together, they can be analyzed using affine or rigid-body techniques (e.g.,
shape-from-motion, recognition) since they are all rigid transformations of
the same configuration. For periodic motions, the problem of determining
corresponding images reduces to determining the period.

In addition to being interesting in its own right, the period of a motion
is often linked to important properties that may otherwise be difficult to de-
termine. Examples include the relation of heart-rate to activity and fitness



levels, the period of a hand on a clock to units of time, and the period of
locomotion to velocity. To elucidate the last example, imagine that some-
body is running towards you from a distance and you wish to determine their
velocity. If the person is far away, it is difficult to judge their velocity based
on cues like looming. On the other hand, if the runner’s period can be mea-
sured, the approximate velocity can be determined based on the correlation
of stride frequency to net translational velocity. In fact, if the aforementioned
correlation is known, the period provides a measure of velocity that is in-
variant with respect to the relative positions and orientations of the observer
and the runner. In particular, the period can be used to determine velocity
without recovering depth.

The remainder of the paper is structured as follows. Section 2 discusses
related work. Section 3 formally defines the concept of periodic motion.
Section 4 describes affine-invariance and matching, and lays the theoretical
groundwork for the rest of the paper. Section 5 presents an algorithm for de-
tecting a periodic motion and determining its period, and Section 6 presents
some experimental results.

2 Related Work

Several researchers have investigated ways of measuring periodicity from
image-sequences [5, 6, 7]. Allmen and Dyer [5] described an approach for
detecting periodicity under orthographic projection for an object that does
not rotate in depth. They used the curvature scale space of point trajec-
tories to detect repeating patterns of curvature maxima and hence infer a
period. Polana and Nelson [6] presented a method for detecting periodic
motions using Fourier transforms of several point trajectories. In theory, the
period of the motion could be detected as well by averaging the fundamental
frequencies of the point trajectories, although the authors indicated that de-
termining the period in this way was unreliable. Tsai and Shah [7] described
a similar technique, using Fourier transforms of curvature values, where the
period was determined from a single point trajectory.

Each of the previous approaches relied on the assumption that periodic
point trajectories of an object appear periodic in projection. Unfortunately,
this assumption is invalid when the camera is allowed to move (even if the
camera is restricted to move parallel to the image plane). Equivalently, the



assumption is invalid when an object is allowed unrestricted rigid movement
during the course of a periodic motion. For example, consider the chaotic
motion of a flying bat. The bat exhibits a motion that is periodic relative
to a bat-centered coordinate frame. However, no single point on the bat will
appear to move in a periodic manner in a camera-centered frame. Detecting
the period of the flapping wings of the bat requires considering the relative
motion of different points on the object.

3 Periodic Motions

We find it convenient to represent a motion M(¢) of n point trajectories as
a time-varying 3 by n matrix. The #th column of M(t) represents the 3D
position of the ith point at time ¢.

We call a motion M purely-periodic if it repeats with period p, i.e.,

M(t +p) = M(?) (1)

holds for some constant p > 0 and all times ¢ in a given time domain. We
call the smallest such constant p the period.

Examples of purely-periodic motions include a rotating wheel, a spinning
top, waving gestures, and a person running in place. Notice that a purely-
periodic motion in R will produce a projection that is purely-periodic (in
R2) when the camera is stationary, so no knowledge of the projection pro-
cess is needed to determine periodicity information. The more challenging
cases involve motions that are only partially periodic or involve a moving
camera. For example, suppose we allow a runner to move along an arbitrary
path, around a track for instance. Intuitively, the runner still exhibits a mo-
tion that repeats, in some sense, although the motion may no longer satisfy
Eq. (1). Notice, however, that the runner’s motion is purely-periodic in a ref-
erence frame that moves with the runner. The apparent motion of the runner
with respect to a stationary camera can be decomposed into two component
motions, that of running in place, and the rigid-body motion induced by a
moving reference frame?.

1Others have referred to this decomposition in terms of “relative” and “common” mo-
tion, respectively.
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Figure 1: An affine transformation, A, of the coordinate axes transforms a
square to a parallelogram. A parallelogram can be interpreted as a square in
some reference frame.

Eq. (1) can be generalized to accommodate a moving reference frame by
introducing a class of allowable transformations that does not affect the peri-
odicity. Specifically, note that any change in reference frame can be modeled
by a 3D affine transformation of the scene (i.e., a rotation and translation)
with respect to the camera frame. The converse does not hold unless the
notion of reference frame is generalized to include all affine transformations
(e.g., scaling, bending, and shearing motions). The use of affine reference
frames [1, 8] identifies affine transformations with reference frames so that
any affine transformation of the scene can be explained by a change in ref-
erence frame (see Fig. 1). Therefore, a motion can be considered periodic
in some reference frame (possibly moving with respect to the camera) if the
apparent motion of the scene is periodic modulo affine transformations.

We say that a motion M is affinely-periodic if

M(t) = A(t) o C(t) (2)

for some purely-periodic motion C and some time-varying affine transforma-
tion A.

Because the projection process is not invertible, we cannot hope to detect
all possible 3D periodic motions: a projected motion may appear periodic
even though the 3D motion that generated it was not, and the converse is
also possible. The problem is even worse when the motion is sampled in
time (in an image sequence). The best we can hope to do is to determine
if the projected sampled motion could have been produced by a 3D periodic
motion. For clarity we will use the term still and the notation F; to denote
a projection (expressed as a 2 by n matrix) of a motion C(i).



We call a sequence of stills apparently-periodic if the stills are the
orthographic? projection of a time-sampled, affinely-periodic motion. Notice
that the above definition doesn’t place any restrictions on the configuration
of the camera; the camera parameters may vary from one image to the next.

4 Affine Matching

Our approach is based on the observation that corresponding stills from
different cycles of a projected, affinely-periodic motion must match modulo
affine transformations. This notion of matching is actually a necessary and
sufficient condition for a motion to be apparently-periodic. In this section we
define precisely what is meant by matching and demonstrate its relationship
to periodic motions. Although the concept of matching extends to other
classes of transformations, the results in this section exploit the choice of
affine transformations.

4.1 Match Criteria

We say that m 3D shapes match if they are all affine transformations of a
single shape. Matching relates to periodic motions by the following observa-
tion:

3D Match Criterion: A motion C is affinely-periodic with period p if and
only if for each time t there exists a shape S € R* X R" and a sequence of
affine transformations, {A;} C R® x R, such that C(t + kp) = Ax oS for
every integer k.

In other words, corresponding configurations from different cycles of a pe-
riodic motion are affine transformations of the same shape. The observation
follows directly from the definitions of Section 3.

Now consider the more difficult problem of determining whether a set
of 3D shapes match when the only available data is a projected image of
each shape. We say that a set of stills match when there exists a single 3D

2The use of orthography here is arbitrary. All linear projection models are equivalent
in this affine context since the projective transformation can be absorbed by the affine
function A in Eq. (2).



shape which could have produced the stills under affine transformations (i.e.,
changes in reference frame) and projection. The problem of inferring matches
under projection is depicted visually in Fig. 2.

Clearly, corresponding stills from different cycles will be projections of
affine transformations of the same object. Here we can use the result, due to
Tomasi and Kanade [2], that the matrix formed by the registered concate-
nation of affinely corresponding stills has rank at most 3. Towards this end,
define the measurement matrix of stills '; and period p as

F;
F;
7 (3)

Fi+(k—1)p

The measurement matrix can be registered to eliminate effects due to trans-
lation by subtracting each row’s centroid from each element in the row [2].
Denote the registered version of M? as M?. By the 3D Match Criterion and
[2], M? can be expressed as

M? = RS (4)

where R is 2k by 3 and S is 3 by n. Since Mf is the product of two rank
3 (or less) matrices, M? is itself of rank at most 3. Therefore, an affinely-
periodic motion produces registered measurement matrices of rank at most
3. Conversely, any registered measurement matrix of rank 3 or less can be
decomposed as in Eq. (4) using singular value decomposition [2]. Therefore,
we have the following:

Projected Match Criterion: A sequence of stills, Fy, ..., Fp,, 15 apparently-
periodic with period p if and only if MY is of rank at most 8 fori=1,...,m.

We say that a set of stills {Fyjp}5= matches when M? is of rank 3 or
less. In other words, a set of stills match when they can be explained by
projections of affine transformations of the same object.



Figure 2: Inferring 3D matches from projected images. The top two images
are top and side-views of a stationary bat. The bottom image is a side-view
of a bat in a different position. The only bats that match pair-wise are the
top two.



4.2 Approximate Matching

Even when a set of stills don’t match, we can characterize their relative
distance by the amount by which we have to perturb the stills in order to
make them match. Define the distance between a set of stills as follows:

dist A({Fi+jp f;é) = min(||Ellrms) (5)

where rank(M? + E) < 3. ||E||;ms is the root-mean-squared norm of the
matrix E defined by: [|Ellrms = /50 2 B In other words, consider all
possible ways of additively perturbing a set of stills (by a matrix E) in order
to produce a match. Then dist, is defined to be the norm of the smallest
such perturbation.

This definition of distance is not very useful computationally, however,
since it implies searching a very large space of possible perturbations. Fortu-

nately, there is a simple way of recharacterizing dist A({Fi+jp}§;3) in terms

of the singular values of M?:

Theorem 1 (Affine Matching) dista({Fiijp}ics) = /55 Lams 07 where

0; s the ith singular value of M.

Proof: Let X denote M?. The singular value decomposition of X is of
the form

X = UV (6)

where U and V are orthogonal matrices and the singular values of X appear
along the diagonal of ¥ (a 2k by n diagonal matrix). The above equation
can be re-expressed as

X =USV +UYV (7)
where 3 is of the form
01
S 09 0
5= N ®
0 0



and ' is of the form

0 0
g=l, (9)
On
Eq. (7) can be expressed as
X=X+X (10)

where X = ULV and X' = UT'V.

X is the optimal (in an RMS sense) rank-3 approximation to X [9]. Hence,
X' is the minimal perturbation of X that produces a match. Therefore,
dist s({X}7) = || X' |lrms- The latter term is just [|[Z'||;ms since U and V are
orthogonal and the theorem follows. O

The measure dista({Fisjp}5=0) gives the average amount (in pixels) nec-
essary to additively perturb the 2D location of each feature in a set of stills
in order to produce a perfect match. In the case where there are only two
stills, X and Y, we abbreviate dist 4({X, Y}) as dist4(X,Y).

dist 4 has the following properties:

o dist,({X;}7) = 0 if and only if the set of stills {X;} match exactly.

e dist 4 is well-behaved with respect to noise since it is defined in terms
of feature measurement perturbations. See, for example, [9].

e dist, is defined in image coordinates and can be directly related to
measurement errors.

e dist 4 is always zero when less than five features are considered.

e For n features, dist4(X,Y) = 37 and evaluation cost is O(n) arith-
metic operations. For m stills, the evaluation cost is the smaller of

O(nm?) and O(mn?).



5 An Algorithm

The Projected Match Criterion suggests a brute-force algorithm: check every
possible value of p, p = 1,..., %, matching every group of stills having an
inter-still spacing of p. If a value of p is found such that M? is of rank 3
or less for every value of 4, the motion is apparently-periodic with period p.
This scheme requires O(m?) evaluations of the match function, each requiring
O(nm?) operations for a total cost of O(nm?).

Although the Projected Match Criterion guarantees that the above algo-
rithm is correct for perfect data, the algorithm is not practical in the presence
of occlusion and noise. To address the issues of occlusion and loss of features,
we match only two stills at a time, requiring only that F; and F;,, have at
least five features in common (as opposed to requiring that some number of
features be visible throughout the entire sequence). A consequence of match-
ing fewer stills at a time is that absolute correctness is compromised (i.e., it
is theoretically possible for m stills to match pair-wise but not match when
considered together). However, in practice, we have found pair-wise match-
ing to be sufficient. Empirical support for pair-wise matching can be found
in Sec. 6.1.

A major effect of noise is that perfect matches are virtually eliminated; we
cannot rely on the presence of zeros of dist 4. Because dist, is well-behaved,
we can still use minima as indicators of likely periods, although it is neces-
sary to evaluate the significance of each minimum in order to discriminate
a periodic from a non-periodic motion. Towards this end, we seek a confi-
dence measure on a real-valued function, f, with the following normalization
constraints: (1) the range is [0,1], (2) a value of 1 is achieved if and only
if f(t) = 0, and (3) the confidence is 0 if f(f) > mean;. The following
confidence formula satisfies these constraints:

ft) )

11
mean (11)

con fidences(t) = maz (0,1 —

This confidence function has one singular point, occurring when
mean; = 0. In this case the motion has a period of 1, a case which can
easily be checked for separately.

10



With this machinery, we now define an algorithm for detecting if a motion
is periodic and determining its period:

1. Compute dist 4(F;, F;) for all values of 4 < j within a reasonable range
(e.g., so that F; and F; have at least 5 features in common).

2. Average the results from Step 1 for each value of p = j — %; compute
M(p) = i“Z0{ dist 4(F;, F;)}. k varies over the integers to encourage
recurrence.

3. Compute confidencey to determine if there is an acceptable period.

The above algorithm returns a list of confidence values, one for each can-
didate period. In practice, the detected period with the highest confidence,
Pmaz, corresponds to an integral multiple of the true period. To see why
this is true, notice that a periodic function will repeat at integral multiples
of its period. If a confidence threshold is specified, the true period can be
determined by choosing the smallest divisor of s Whose confidence value
exceeds the threshold.

One might hope to replace Step 3 with a Fourier transform and deduce
the fundamental frequency (and hence the period) as in [6]. However, this
modification is theoretically unjustified due to the fact that M (¢) # M (i+p)
in general, for a periodic motion. In fact, the only constraint we use is that
M (kxp) = 0 for positive k, which follows from the Projected Match Criterion.

The cost of this algorithm is dominated by the first step which calls for
O(m?) two-way matches, each having a match cost of O(n) operations (recall
that m is the number of stills and n the total number of features). In practice
the cost can be dramatically reduced by subsampling ¢ in Step 1, without a
significant decrease in accuracy®. Any number of values of i can be chosen
based on the available computing resources. If this number is chosen to be
constant, the overall cost becomes O(mn). Subsampling is discussed further
in Sec. 6.1.

3Note that subsampling does not affect the number of possible periods considered.
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Figure 3: Projections of a simulated jogger moving around a track. Left: The
jogger at three different points along the path under orthographic projection.
Right: Same image under perspective projection with the camera 300 units
from the center of the track. Note the projective distortions in the perspective
image that are not modeled by orthographic projection.

6 Experimental Results

In this section we present the results of running the algorithm on three image-
sequences, one synthetic and the other two real. The sequences are of a
simulated human jogging around a track, a rotating phonograph turntable,
and a person walking in an arc. The latter two sequences were taken with
a moving, off-the-shelf, hand-held video camera and features were tracked
using reflective markers and custom software.

6.1 Results on Synthetic Data

In order to study the effects of noise and perspective distortion on the al-
gorithm, we created a simulation of a human jogging around a short track
using a volumetric model and real motion data (see Fig. 3).

To model the human torso, we used nine parallelepipeds connected by
revolute joints. The model was roughly 300 units tall and the track had

12



a diameter of 200 units. The camera was fixed at an angle of 30 degrees
from horizontal. The periodic motion consisted of a sequence of joint angles
extrapolated from real motion data of a human running, provided by N.
Goddard [3]. The projected positions of vertices of the parallelepipeds were
used as input to the algorithm. No attempt was made to distinguish visible
from occluded vertices. We found the algorithm to be robust to both feature
noise and perspective effects (see Fig. 4). The period with the highest
confidence was always a multiple of the correct period. The most evident
effect of noise and perspective was a gradual degradation of confidence values
(see Fig. 4). The results suggest that estimates of noise and perspective
factors, if available, should influence threshold selection.

The algorithm in Sec. 5 computes period confidence values by matching
two stills at a time. While matching a large number of stills at a time is
impractical due computational expense and changes in the feature set, the
choice of two stills is by no means mandatory. Fig. 5 compares confidence
values for matching 2, 3, 4, and 5 stills at once. Fig. 5 shows that the
confidence curves (level-curves obtained by fixing the number of stills) are
qualitatively very similar. Most significantly, the true period (30) can be
easily determined from any of these curves. Since the overall computational
cost of the algorithm grows as the number of stills increases, it makes sense
to match a small number of stills (e.g., 2 or 3) at once.

Another way of significantly reducing the run-time of the algorithm is to
decrease the number of iterations (the values of 4 in Step 1 of the algorithm).
Recall that the algorithm works by matching each still with each subsequent
still. The technique can be made more efficient by choosing a small set of
reference stills to be matched against. With this modification all matches
that do not include a reference still are eliminated. A variety of methods
could be used to choose reference stills, such as subsampling ¢ (e.g., i =
1,3,5,7...) random selection, or truncating 4 at some chosen point. Each
method can be tailored according to available computing resources. The
subsampling technique is susceptible to problems when the sampling rate
and period are not relatively prime. For instance, if the sampling rate is 10
and the period is 30, the “same” three stills will be chosen in each cycle (i.e.,
the 1st, 11th and 21st). In this case the reference stills are redundant and
it is analogous to choosing only three reference stills. Our implementation
avoids this problem by using the truncation method (see Fig. 6).

13



Effects of Noise and Perspective on Confidence
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Figure 4: Effects of noise and perspective on synthetic jogger sequence. Top:
Plot of period confidences for orthographic projection, perspective projection from
400 units away, and uniform feature noise in a radius of 4 pixels. Middle: Plot
of confidence of the true period under varying amounts of feature noise. Fach
feature was perturbed randomly in a local disk of radius increasing from 0 to 10
pixels. Results were averaged over 5 trials per data point. Bottom: Confidence
under perspective as camera distance from the track center varied from 300 to
2000 units. In all cases the detected period was a multiple of the true period.

14



o 0.6

no

@

nfid

1

30

15

period period
Figure 5: Effects of varying the number of stills matched on period confidence
values. Left: Simulated jogger under perspective projection from 300 units
away. Right: Simulated jogger under uniform feature noise of 5 pixel radius
and orthographic projection. Changes in confidence values due to increasing
the number of stills matched are minor whereas the increase in computational
cost is significant (not shown).

Fig. 6 illustrates the use of reference stills with a synthetic sequence of a
bat flapping. The motion of a bat is such that it passes through each wing
configuration twice in each cycle, once when the wings are rising and once
when they are falling. Therefore, there is a potential for “spurious” periods if
too few reference stills are used. On a Sun Sparcstation 10/30 total running
time was 21 seconds without the use of reference stills, less than 3 seconds
with 10 reference stills, and less than % second with 1 reference still. The bat
sequence contained 20 features and 100 stills.

6.2 Results on Real Image Sequences

The first real image sequence contains a rotating turntable with the camera
moving roughly in a quarter-arc around the turntable. Note that the algo-
rithm cannot detect the period of an object, such as the turntable, whose
only motion is affine. This limitation is easily overcome by considering both
features on the moving object and elsewhere in an otherwise static scene.
The algorithm detects the period of the entire scene, which corresponds to
the period of the affinely-moving object. Under these circumstances, it 1s

15
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Figure 6: Effects of using a small number of reference stills on period con-
fidence values. The algorithm was run on a synthetic flying bat sequence
having a period of 20. With only one reference still a spurious period of 10
appears. As the number of reference stills is increased, the spurious period
is eliminated and the confidence values quickly converge to the limit (100
reference stills is the maximum possible).
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not necessary to segment the scene before applying the algorithm. As can
be seen in Fig. 7, the algorithm correctly detected the true period with high
confidence (0.88).

In the second image-sequence, a human subject walks in an arc subtending
about 70 degrees. To aid in feature detection and tracking, reflective markers
were placed in areas which were visible for the duration of the sequence (i.e.,
right arm, right leg, mid torso, and head). The motion was relatively even
and the algorithm was able to detect a likely period of 37 with a confidence
of 0.58 (see Fig. 7). The relatively low confidence value, compared to that
of the turntable, can be explained by the fact that each still in the walking
sequence can be roughly approximated by an affine transformation of the
first still, through horizontal shears and reflections. In fact, we found this
property to be true of other human locomotory motions such as running,
skipping, and jumping. We have found that the periods of these nearly-
affine motions can be reliably detected with our approach, but the resulting
confidence values tend to be lower.

7 Conclusion

We have presented a method of detecting periodicity that is insensitive to
changes in viewpoint and affine transformations of a periodically-moving ob-
ject. The approach is provably-correct with ideal data and was extended to
work with noisy data using a measure of confidence. We have evaluated the
performance of the algorithm with respect to feature noise and perspective
distortion, and have demonstrated its effectiveness on real image sequences.
Future work will investigate the generalization to repeating motions lack-
ing a constant period as well as consider the feasibility of obtaining sub-still
accuracy.
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Figure 7: Results on two real image sequences. The ground truth frequency for
the turntable is 33% revolutions per minute, or 54 stills per revolution at NTSC
video rate. Despite severely uneven camera motion, the algorithm detected the
true period, with a confidence of 0.88. For the sequence of a person walking, the
period with the highest confidence is 111 stills. However, 37 stills is the period
selected since it is an integral divisor of 111 and has a relatively high confidence
value (e.g., greater than 0.5). Above are selected stills from each image sequence.
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