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Abstract 

We present a novel, robust, integrated approach to seg- 
mentation shape and motion estimation of articulated ob- 
jects. Initially, we assume the object consists of a single 
part, and we$t a deformable model to the given data using 
our physics-based framework. As the object attains new 
postures, we decide based on certain criteria if and when 
to replace the initial model with two new models. These 
criteria are based on the model's state and the given data. 
We then fit the models to the data using a novel algorithm 
for assigning forces from the data to the two models, which 
allows partial overlap between them and determination of 
joint location . This approach is applied iteratively until 
all the object's moving parts are identiJed. Furthermore, 
we de$ne new global deformations and we demonstrate 
our technique in a series of experiments, where Kalrnan 
filtering is employed to account for noise and occlusion. 

1 Introduction 

The systematic identification of an articulated object's 
parts has been a longstanding research topic in computer 
vision. Accomplishing this task using a single image is an 
underconstrained problem. For example, when we observe 
a human arm in a posture as in Figs. l(a-b), assuming 
no prior knowledge about its structure, we cannot decide 
whether it is composed of multiple parts. Similarly, based 
on Fig. l(c), we may conclude that it is a bent object. In 
this paper, we develop a new technique to reliably identify 
an articulated object's parts, joints, shape and motion. Our 
technique uses an object's motion sequence to provide the 
necessary constraints for the above tasks. 

Despite the large body of work on segmentation, shape 
and motion estimation of articulated objects, most existing 
techniques either assume a priori knowledge of an object's 
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parts [7, 1 1,4] or determine its parts under certain assump- 
tions [12, 2, 6, 3, 8, 51. In all of the above techniques, 
the process of segmentation and the process of shape and 
motion estimation are decoupled leading to possible lack 
of robustness and inaccuracies in shape and motion estima- 
tion. 

(a) (b) (c) 
Figure 1: Different postures of a moving human arm 

In this paper, we present our integrated approach to 
segmentation, shape and motion estimation of complex 
articulated objects whose parts form open chains. Our 
physics-based algorithm couples the processes of segmen- 
tation, shape and motion estimation. This coupling allows 
the robust extraction of parts and the estimation of object 
shape and motion. Our input is a sequence of monocular 
images from a moving articulated object. We initially as- 
sume that the data in the first frame belong to a single-part 
object and we fit a single deformable model. As the model 
deforms to fit data from subsequent frames we decide when 
to initially split the model to two new models based on cer- 
tain criteria. These criteria depend on the model's state 
and the given data. In order to achieve partial overlap 
between the above two models at the end of the fitting pro- 
cess, we devise a new algorithm for assigning weighted 
forces from a given datapoint to each of the two models. 
These weights are computed based on the theory of fuzzy 
clustering and allow partial overlap between parts. Our 
algorithm for part-identification, shape and motion estima- 
tion is applied iteratively over subsequent frames until all 
the object's moving parts are identified. In order to cope 



with occlusion, we incorporate a Kalman filter to our dy- 
namic fitting algorithm to predict the location of the data at 
the next frame. 

2 Deformable models 
Recently, we developed [4] a physics-based framework 

which provides deformable models and robust techniques 
for inferring shape and motion from noisy data. ~ollbw- 
ing the notation in [4] the position x of a point on the 
deformable model is given by x = c + Rp where c and 
R are the translation and rotation of the model frame with 
respect to the reference frame, while p is the position of the 
given point with respect to the model frame. Furthermore, 
p = s + d, where d represents local deformations and s is 
the model's global reference shape. This global reference 
shape is defined as s = T(e(u; ao, a!, . . .); bo, b l ,  . . .), 
where the geometric primitive e is subjected to the global 
deformation T which depends on the parameters b i .  We 
extend the class of allowable global deformations to in- 
clude a parameterized piecewise bending deformation that 
ensures constant curvature along the major axis of bending. 
This definition is inspired from [I] and is useful for many 
natural and man-made objects. 

The domain of bending is a bounded subspace of the 
Euclidean space R ~ .  This domain is partitioned into three 
non-intersecting zones: the jixed zone, the bending zone 
and the relocation zone. The fixed zone remains unchanged 
during bending. In the bending zone, parameter bo denotes 
the radius of curvature. The range of the bending zone is 
controlled by parameters bl  and ba. The center of the bend 
occurs at ( b l  + b 2 ) / 2 .  The relocation zone is translated 
and rotated rigidly. The bending angle 6 is constant at 
the extremities and changes linearly in the bending zone. 
Specifically: 

The isotropic bending deformation s = Tb(e; bo, b l ,  b ~ )  
along a centerline parallel to the x-axis of a primitive 
e = ( e l ,  e z ,  e3)T is given by: 

Our definition, versus the one presented in [I] allows us 
to decouple the recovery of the rotation and bending pa- 
rameters during model fitting. To approximate the thin 
plate under tension deformation energy [4], suitable for C' 
continuous model surface, we employ the finite element 

method to discretize our deformable models into a set of 
connected element domains. Our implementation is based 
on the use of a new class of shape functions which are 
tensor products of one-dimensional Hermite polynomials: 

where the subscripts are related to the two endpoints of 
the one-dimensional segment and the superscripts, 0 and 1, 
denote the association of a basis function to a nodal variable 
and a nodal derivative, respectively. The finite element 
nodal degrees of freedom are the nodal displacements and 
their derivatives. 

3 Active part-identification, shape and mo- 
tion estimation 

Instead of estimating the shape and motion of complex 
objects under the assumption of prior segmentation, our 
technique allows active, simultaneous segmentation and 
fitting. To identify the object's parts, we use a sequence 
of images which contain different postures of the moving 
object. When we observe an articulated object in a pos- 
ture where the articulations are not detectable, we assume 
initially that the object consists of a single part. Using our 
physics-based framework, we fit a deformable model to the 
given time-varying data and we monitor the relevant model 
parameters. As the object moves and attains new postures, 
we decide if and when to replace the initial model with two 
new models. This decision is based on the error of fit, the 
rate of change and magnitude of the bending deformation 
and the continuity of the given data within the bending 
region. The first two criteria are necessary to signal that 
the global deformations are inadequate to represent the ob- 
ject's shape accurately and that there is a shape change over 
time. However, they are not sufficient to signal that there 
is more than one part. For example, if the image sequences 
are taken from a bending elastic object, then the error from 
fitting the data using only global deformations should not 
lead us to the conclusion that there exist two parts. The 
reason is that if we allow local deformations, we can mini- 
mize the error of fit. The third criterion, the detection of a 
discontinuity in the first derivative of the given data within 
the bending region, is what distinguishes an elastic object 
from an articulated object like a robot arm, a human arm or 
a human finger. 

When the above criteria are met, we replace the initial 
model with two new models. We identify the data that cor- 
respond to the fixed, bending and relocation zones of the 
initial model based on the estimated bending parameters bl  
and b2 and the image projection assumptions (orthographic 
or perspective). We then initialize the two models based on 
the data that correspond to the fixed and the relocation zones 



of the initial model. However, the datapoints that corre- 
spond to the bending region of the initial model are marked 
as orphan datapoints since it is uncertain as to which of the 
two new models they should be assigned. This is necessary 
since we do not know in advance the shape of each of the 
two models. Our goal then is to fit the two new models 
to the given data. In addition, we would like them to fit 
in a way that allows partial overlap between the two parts. 
Since we know to which model the data in the fixed and the 
relocation zones belong, we use our previously developed 
algorithm for assigning forces from datapoints to points on 
the model. To assign forces from the orphan data to the two 
models, we use a novel algorithm that allows the weighted 
assignment of a given orphan datapoint to both deformable 
models. We compute these weights, whose sum is always 
equal to one, by minimizing an appropriately selected en- 
ergy expression. Once we compute all the forces from the 
datapoints to the two models, we estimate the shape and 
motion of the two new models using our physics-based 
framework [4]. Our algorithm can be applied under both 
orthographic and perspective projections based on recent 
extensions presented in [5 ] .  

3.1 Weighted force-assignment based on fuzzy 
clustering 

Since we do not know to which model each orphan dat- 
apoint should be assigned, we developed a new algorithm 
for assigning forces from an orphan datapoint to each of 
the two deformable models inspired by the theory of fuzzy 
clustering [9]. Clustering techniques are normally applied 
to feature space, but in certain cases they can be directly 
applied in image space. When feasible, direct application 
of clustering algorithms may have advantages over feature 
space approaches. Examples of such advantages is the ap- 
plicability to sparse data so that there is no need to extract 
features and the lower sensitivity to noise. In the context 
of treating the image space itself as the feature space, the 
problem of assigning forces from the orphan datapoints to 
the models is viewed as a direct clustering problem. Most 
methods, which are based on objective function minimiza- 
tion may be classified into two categories: hard or fuzzy. In 
hard or crisp methods, each sample vector strictly belongs 
to one and only one cluster. In fuzzy methods it is shared to 
varying degrees among several clusters. In our algorithm, 
fuzziness is related to the uncertainty, by introducing a dat- 
apoint's degree of membership in a particular model. Our 
algorithm can be viewed as gradually decreasing the fuzzi- 
ness of the associations. In this way, a datapoint exerts a 
force to each of the two deformable models instead of only 
to one. Each datapoint exerts a force to the point on the 
surface of each model which has minimal distance from 
it. The force is proportional to the distance between the 
datapoint and the selected point on the model. Each force 
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Figure 3: Force Assignment 

is subsequently multiplied by a certainty weight. We com- 
pute these certainty weights by minimizing an appropriately 
defined energy term subject to the constraint that the sum 
of the certainty weights is one. Intuitively, the certainty 
weights represent the degree of membership of a datapoint 
to a given model. Thus our algorithm assigns a higher 
certainty weight to the force exerted from the datapoint to 
a point on a model that has the minimum distance from 
the datapoint. Even though we highlighted our algorithm 
for the case of two models, our algorithm is applicable for 
assigning a datapoint to any number of deformable models. 

We will now formally present our algorithm for the case 
of a given datapoint that can be assigned to an arbitrary 
number of models m. We assume that we have a set of 
datapoints di, i = 1 ..n, and we want to find the certainty 
weights for the forces that will be exerted from each dat- 
apoint di ,  to each of the deformable models j = l...m. 
We then denote the weight of the force from datapoint di 
to model j as p d z I j .  Let also 4 be the point on model j 
that corresponds to datapoint di and let pz;,,  be the cer- 

tainty measure that the model point 4 belongs to model 
k = l . . .m (its value is 1 if k = j and 0 otherwise). We 
then define the following energy term 

that we want to minimize with respect to p d , , ,  subject to 
the constraints xY=, p d i P j  = 1, i = l...n. We perform 
the minimization for each datapoint di using the method of 
Lagrange multipliers and minimize the following formulas 

with respect to ~ d , , ~ .  The minimum of those formulas is 
computed by setting d E w , i / d p d , , j  = 0,  i = 1 ... n. After 
some algebraic manipulation we compute the ~ d , , ~ ,  i = 
1.. .n, based on the following formulas 

Once we compute the certainty weights ~ d , , ~ ( i  = 
l...n, j = I ... m), wemultiply them with thecorresponding 



distance between di and 4 to compute the resulting forces 
3 j  di - - p d i ,  (di - 4 ) .  An important property of our new 
force assignment algorithm is that it allows partial overlap 
between the two models at a joint. Therefore, we can de- 
termine the joint location in an articulated object using the 
following algorithm. 

3.2 Determination of joint location 

Let's assume that we have estimated the shape and mo- 
tion of the two parts of an articulated object at times t and 
t + St, by fitting two models mo and ml. Then we want to 
identify the location of their common joint. Following the 
notation in [4], the unknown location of the center of the 
joint can be expressed in terms of the parameters of model 
mo at times t and t + St as: 

and with respect to the parameters of model ml at times t 
and t + St as: 

Under the obvious assumption that xo(t)=xl ( t )  and xo(t + 
6t)=xl (t + St) and by subtracting the above two equations, 
we arrive at the following system of equations, with un- 
knowns the locations po and pl of the joint with respect to 
the model reference frames of the two models, 

-RI ( t )  [ :ti)+ st) -R l ( t  + 61) ] [ i: ] = 

which is easily solved. We follow a Kalman filter based 
approach [4], if the location of the joint varies between 
frames due to noise in the data. Therefore, we can robustly 
estimate the locations of the joints of an articulated object. 

3.3 Coping with occlusion 

To cope with occlusion, we use a continuous extended 
Kalman filter [4] to predict the location of the data at the 
next time step, in addition to filtering the noise. The predic- 
tion is based on the magnitude of the estimated parameter 
derivatives which define and allow a spatio-temporal search 
space (our parameters are associated with both the shape 
and the motion of the model). In this way we can ignore 
spurious edges in both space and time that get introduced 
when another object temporarily occludes part of our ob- 
ject. 

Figure 4: Segmentation, shape and motion estimation 
of a human finger. A sample of the image sequence. 

4 Experiments 

We ~erformed experiments demonstrating our integrated 
approach to segmentation, shape and nonrigid motion es- 
timation from motion image data obtained >from a robot 
arm, a human arm with occlusion and a human finger. Due 
to lack of space, we only present the results from the last 
two experiments. 

We use image data obtained from the planar motion of 
a bending human finger (Fig. 4). Fig. 5(a) shows the final 
fitted model to the first frame using only global deforma- 
tions. Fig. 5(b) shows the model fitted to a subsequent 
image frame. Fig. 5(c) shows the model fitted to the image 
frame where the partitioning criteria are satisfied and the 
hypothesis that the object is comprised from two parts is 
generated. Figs. 5(d-f) demonstrate the fitting of the two 
new models to the image data. Fig. 5(d) shows the initial- 
ization of the new models, Fig. 5(e) shows an intermediate 
step in the fitting process, while Fig. 5(f) shows the finally 
fitted models. The overlap between the two models allows 
us to compute robustly the location of the joint over several 
frames and place a point-to-point constraint between the 
two models. Fig. 5(g) shows the models fitted to a new 
frame, while Fig. 5(h) shows the models fitted to the frame 
where the partitioning criteria are satisfied for the upper 
model and the hypothesis that the upper model should be 
replaced by two new models is generated. Fig. 5(i) shows 
the initialization of the two new models based on our tech- 
nique, while Fig. 5(j) shows all three models fitted to the 
given data. 

Finally, we tested our algorithm using data obtained 
from a human arm which is occluded during its planar 
motion (Figs. 6(a-c)). Fig. 6(d) shows the data from an in- 
termediate image frame, where the existence of two mod- 
els has been established. The location of the joint has 
been determined and a point-to-point constraint enforces 
the contact of the two models. Fig. 6(e) shows data from 
a subsequent frame where partial occlusion occurs; it can 
be seen in the form of additional edge points. Figs. 6(f-g) 
show the previous position of the models and the models 
fitted to the new data while ignoring the additional data- 
points due to occlusion through the use of the predictive 
power of the Kalman filter. Fig. 6(h) shows data from a 
subsequent frame where partial occlusion occurs resulting 
in missing contour points, while Fig. 6(i) shows the models 



( 0  (g) (h) (i) 6 )  
Figure 5: Segmentation, shape and motion estimation of a human finger. 

( 0  (g) (h) ( i>  
Figure 6: Segmentation, shape and motion estimation of an occluded human arm. 
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We have presented a novel integrated approach to seg- 
mentation, shape and motion estimation. Based on certain 
criteria that depend on the model's state and the given image 
sequence, our physics-based estimation technique allows 
the iterative part-identification, shape and motion estima- 
tion of articulated objects whose parts form open chains. 
Our algorithm allows identification of joint location and 
can cope with occlusion. We are currently extending our 
algorithm to allow segmentation of more complex shapes 
like human bodies. 
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