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Abstract 
A fundamental problem in depth from defocus is the 

measurement of relative defocus between images. We 
propose a class of broadband operators tha t ,  when used 
together, provide invariance to  scene texture and pro- 
duce accurate and dense depth maps. Since the opera- 
tors are broadband, a small number of them are suffi- 
cient for depth estimation of scenes with complex tex- 
tural properties. Experiments are conducted on both 
synthetic and real scenes to  evaluate the performance of 
the proposed operators. The  depth detection gain error 
is less than I%, irrespective of texture frequency. Depth 
accuracy is found to  be 0.5 - 1.2% of the distance of 
the object, from the imaging optics. 

1 Introduction 

The depth from defocus method uses the relative 
defocus in two images taken with different optical 
settings to  determine three-dimensional scene struc- 
ture [Pentland-1987, Subbarao-1988, Ens and Lawrence- 
1991, Bove, Jr.-1993, Subbarao and Surya-1994, Nayar 
e2 al.-1995, Xiong and Shafer-19951. The  focus level in 
the two images can be varied by changing the focus set- 
ting of the lens, by moving the image sensor with respect 
to  the lens, or by changing the aperture size. Depth 
from defocus is not confronted with the missing part 
and correspondence problems faced by stereo and struc- 
ture from motion. This  makes it an attractive prospect 
for structure estimation. 

Despite these merits, at this point in time, f a t ,  ac- 
curate, and dense depth from defocus has only been 
demonstrated using active illumination tha t  constrains 
the dominant frequencies of the scene texture [Na- 
yar e t  al.-1995, Watanabe e t  a/.-19951. Past investi- 
gations of passzve depth from defocus indicate tha t  it 
can prove computationally expensive to  obtain a reli- 
able depth map.  This  is because the frequency char- 
acteristics of scene textures are, to  a large extent, un- 
predictable. Furthermore, the texture itself can vary 
dramatically over the image. Since the response of 
the defocus (blur) function varies with texture fre- 
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quency, a single broadband filter tha t  produces an  ag- 
gregate estimate of defocus for an unknown texture 
cannot lead to  accurate depth estimates. One solu- 
tion is t o  use an  large bank of narrow-band filters and 
compute depth in a least-squares sense using all domi- 
nant  frequencies of the texture [Xiong and Shafer-1995, 
Gokstorp-l994]. However, this requires one to  forego 
computational efficiency. 

Subbarao and Surya [Subbarao and Surya-19941 pro- 
posed t8he §- Transform and applied it to deplh from de- 
focus. They modeled the image as a third-order poly- 
nomial in spatial domain, and arrived at a ,simple and 
elegant expression [Subbarao and Surya- 19941: 

(1) 
where, il and i2 are the far and near focused images. 
respect:ively. The  blur circle diameters i n  images i l  and 
i2 are expressed by their second central moments uz2 
and u ~ ' ~ ,  respectively. Since an additional d a t i o n  be- 
tween u2 and u1 can be obtained from the focus set+tings 
used for the two images, us and can be solved for 
and mapped to  a depth estimate. As we see no terms 
tha t  de:pend on scene frequency in equation (I), this can 
be considered to  be a sort of texture-frequency invari- 
ant  depth from defocus method. It produces reasonable 
depth estimates for large planar surfaces i n  the scene. 
However, it  does not, yield depth maps with high spa- 
tial resolut,ion tha t  are needed when depth variations in 
the scene are significant. We argue that t,liis requires a 
more detailed analysis of image formation as well as the 
design of new filters based on frequency analysis. 

In this paper, we propose a small set of filters, or oper- 
ators, for passive depth from defocus. These operators, 
when used in conjunction, yield invariance to  texture 
frequen'cy while computing depth. The  underlying idea 
is t o  precisely model relative image blur in frequency do- 
main anid express this model as a rational function of t,wo 
linear combinations of basis functions. This rational ex- 
pression leads us to  a texture-invariant, set of operators. 
The  outputs  of the operators are used as coefficients in 
a depth recovery equation tha t  is solved t,o get a depth 
estimatae. The  attractive feature of this approach is tha t  
it uses only a small number of broadband linear oper- 
ators with small kernel supports. Consequently. depth 
maps are computed not only with high efficiency and 
accurac,y but also with high spatial resolution. Since 
our operators are derived using a rational expression t,o 
model relative image blur, they are referred to  as mtzo- 
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nul operators. Rational operators are general, in tha t ,  
they can be derived for any blur model. In [Watanabe 
and Nayar-19951, we have shown how the outputs of ra- 
tional operators can be used to  derive a dep th  confidence 
measure that ,  in turn,  can be used to enhance computed 
depth maps. 

2 Depth F'rom Defocus 

Fundamental to  depth from defocus is the relation- 
ship between focused and defocused images[Born and 
Wolf-19651. Figure 1 shows the basic image formation 
geometry. All light rays that  are radiated by object 
point P and pass the aperture A are refracted by the 
lens to converge at point Q on the image plane. The  
relationship between the object distance d ,  focal length 
of the lens f ,  and the image distance di is given by the 
lens law: 

1 1 1  - + - = - .  
d di f 

Each point on the object plane is projected onto a single 
point on the image plane, causing a clear or focused im- 
age if to be formed. If, however, the sensor plane does 
not coincide with the image plane and is displaced from 
i t ,  the  energy received from P by the lens is distributed 
over a patch on the sensor plane. The result is a blurred 
image of P .  

I t  is clear tha t  a single image does not include suffi- 
cient information for depth estimation, as two different 
scenes defocused t o  different degrees could produce iden- 
tical images. A solution t o  the depth estimation problem 
is achieved by using two images, i l  and iz, separated by 
a known physical distance 2e [Ens and Lawrence-1991, 
Subbarao and Surya-19941. The distance y of the image 
il from the lens should also be known. Given the above 
described setting, the problem is reduced to  analyzing 
the relative blurring of each scene point in the two im- 
ages and computing the position of its focused image. 
A restriction here is tha t  the focused images of all of 
the scene points must lie between the fur-focused sensor 
plane il and the near-focusedsensor plane iz. For ease of 
description, we introduce the normalized depth C Y ,  which 
equals -1 at i l  and 1 at iz. Then,  using di  = y + ( l + a ) e  
in the lens law (2),  we obtain the depth d of the scene 
point. 

2.1 Defocus Function 

In Figure 1, (1 & a ) e  is the distance between the fo- 
cused image of a scene point and its defocused image 
formed OII  t,he sensor plane. The light energy radiated 
by the scene point and collected by the imaging optics is 
uniformly distributed on the sensor plane over a circular 
patch with a radius of (1 f a ) e  aid,'. This distribution, 

'This geonmric model is vdid as far as the image is not ex- 
actly focused, j n  which case, a wave optics model is needed to 

I k 

Figure 1: Image formation and depth from defociis. The 
two images, i l  and i ~ ,  include all the information required 
to recover scene structure between the focused planes in the 
scene corresponding to the t.wo images. 

f, o a  I 

also called the pzllbox, is the defocus function: 

where, + is used for image i l ,  - is used for image iz, and 
n(r)  is the rectangular function which takes the value 1 
for Irl < and 0 otherwise. Fe is the effective F-number 
of the optics. In the optical system shown in Figure 1, Fe 
equals d i / 2 a .  In order to  eliminate magnification differ- 
ences between the near and far focused images, we have 
used telecentrzc optics, which is described in [Watan- 
abe and Nayar-19961. In the telecentric case, Fe equals 
f l 2 a ' .  

In Fourier domain, the defocus function in (3) is: 

H ( u ,  v; (1 f @ ) e ,  F e )  = 

n( 1 i c y ) e d W  Fe 

(4  1 

J1 ( 4 1 f @ ) e  J-) 2 Fe 

where, J1  is the first-order Bessel function of the first 
kind, and U and v denote spatial frequency parameters 
in the I and y directions, respectively'. T h e  effect of 
defocus in spatial and frequency domains can be written 
as: 

and 

describe the point spread function. Further, it is assumed that 
lens induced aberrations are small compared to the radius of the 
blur circle [Born and Wolf-19651. 

'In the past, most investigators have used the Gaussian model 
instead of the pillbox model for the blur function. This is mainly 
to facilitate mathematical manipulations; the Fourier transform 
of a Gaussian function is also a Gaussian which can be converted 
into a quadratic function by using the logarithm. As we will see, 
in our approach, any form of blur function can be used. 
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Since Q can vary from point to  point in the image, 
strictly speaking, we have a space -var ian t  system tha t  
cannot be expressed as a convolution. Therefore, equa- 
tion (5) does not hold in a rigorous sense. However, if 
we assume tha t  a is constant in a small patch around 
each pixel, equation (5) remains valid within the small 
patch. 

2.2 Depth from Two Images 

We now introduce the normalazed ratzo,  $ . ( U ,  v; a)> 
where, M(u, V) = I ~ ( U ,  U) - I ~ ( u ,  U )  and 
P ( u ,  v )  = I z (u ,  v )  + 11(u, v). Equivalently, in the 
spatial domain, we have m ( x ,  y) = i z ( 2 ,  y) -- i l ( x ,  y) 
and p(z ,y)  = iz(z ,y)  + i l ( z , y ) .  Since the spectrum 
Zj(u,v) of the focused image, which appears in equa- 
tions ( 5 )  and ( 6 ) ,  gets cancelled, the above normalized 
ratio is simply: 

M - 
r 

Figure 2: Relation between the normalized image ratio Al/P 
and the defocus parameter CY. An upper frequency bound can 
be determined, below which, M / P  is a monotonic function 
of the clefocus parameter CY. For any given frequency within 
this bound, M / P  can be unambiguously mapped to a dept.11 
estimate /3. 

3 Relative Defocus as a Rational Ex- 
M(uq v ;  &) - H ( u ,  71; (1 - @ ) e ,  Fe) - H ( u ,  V ;  (1  + a ) e ,  Fe) 
P(u ,  v; a )  H ( u ,  U ;  (1 - a ) e ,  Fe)  + H ( u ,  v ;  ( I  + a)e ,  Fe)  

piressian - 
We have established the monotonic response of the 

normalized image ratio M / P  t o  the  normalized depth 
(or defocus) a over all frequencies (see equa.tion ( 7 )  and 
Figure 2). Our objective here is to model this relation 
in closed form. In doing S O ,  we would like the model to  
be precise and yet lead us to  a small numbler of linear 
operators for depth recovery. To this end, we model 
the function M / P  by a rational expression of two linear 
combinations of basis n p  functions: 

C G p i ( u ,  v) b p i ( a )  

(7) 
Figure 2 shows the relationship between the normal- 

ized image ratio M / P  and the  normalized depth for 
several spatial frequencies. I t  is Seen tha t  M / P  is a 
monotonic function of a for -1  5 CY 5 1, provided the 
radial frequency jT = d v  is not too large. As a 
rule of thumb, this frequency range equals the width of 
the  main lobe of the defocus function H when it  is max- 
imally defocused, i.e. when the  distance between the 
focused image if and the  sensor plane is 2e. From the 
zero-crossing of the defocus function, the  highest fre- 

monotonic is found to be: 

M ( u ,  U; a )  i= l  

P ( u ,  21; (2) 'lA' 
+ €(U, v, 0)  3 (9) - - quency below which the normalized image ratio M / P  is -- 

~ M i ( u ,  v) b M i ( a )  
i = l  

Fe 
e 

where, b p i ( a )  ( i  = l . . n p )  and 6 ~ i ( ~ )  ( i  = l . . n j l )  a.re 
the basis functions, Gpi(u,  TI) and G(M;(zL,  v )  a.re blle co- 
efficients which are functions of frequency ( U ,  ( I ) ?  and 
& ( U ,  ZJ, c y )  is the residual error of the  fit of tlic model to  
the function n / P .  If the model is accurate., t'he resid- 
ual error is negligible, and it becomes possible t,o use 
the model to map the normalized image ratio AJ/P t>o 
the norrnalized depth a .  The  above expression can be 
rewritten as: 

2 G ~ i ( u ,  b p i ( @ )  

('1 fT 5 0.61 - . 

F~~ any givell frequency within the above bound, since 
~ / p  is a monotonic function of a ,  M/P can be unanl- 
biguously lllapped to a depth estimate 0, as s.-,own in 
Figure 2. 

Besides serving a critical role in our development, 
Figure 2 also gives us new way of viewing previous ap- 
proaches to depth from defocus: If one can by some 
method determine the amplitudes, 11 and 12 of the 
spectra of the two defocused images at a predefined 
radial frequency fro  = d--, a unique depth es- 
t imate can be obtained. This is the basic idea that, 
most of the previous work is based on [Pentland-1987, 
Gokstorp-1994, Xiong and Shafer-19951, although the 
ratio used in the past is simply 11/12 rather than the 
normalized ratio M I P  introduced here. 

M ( u ,  71; a )  i=l 

P(U, v ;  a )  n*4 

-- - = R(:P; U. 2 , )  . - 

C G ~ i ( u . 9  71) b n f i ( P )  
i = l  

(10) 
Ilere, LY on the left, hand side represents t h r  actual d e p t h  
of the scene point, while on the  right is tlw e.sfZni.ated 
dep th .  ,4 difference between the  two can arise only when 
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tlie residual error is non-zero. If the normalized r h o  on 
the left side is given to  us for any frequency (U, U ) ,  we can 
obtain the depth estimate p by solving equation (10). 

Figure 3: A n  example set of the coefficient functions ob- 
tained bp fitting the polynomial model to the normalized 
image ratio M / P .  Here, Gpl(u.2)) was chosen and the re- 
maining t,wo functions determined from the fit. 

The above model for the normalized image ratio is 
general. In principle, any basis tha t  captures the mono- 
tonicity and structure of t,he normalized ratio can be 
used. To he specific in our discussion, we use the ba- 
sis we have choseii in our implementation. Since the 
response of Af/P to a is odd-symmetric and is almost, 
linear for small radial frequencies f,. (see Figure 2 ) ,  we 
could model the response using three basis functions 
that  are powers of 8: 

n p  = 2. 1Lhf = 1,  b p i ( / ? )  @, b P 2 ( @ )  = p3. b M l ( p )  = 1. 
(11) 

Then, equation (10) becomes3: 

( 1 2 )  
The term including E3 can be seen as a small correction 
that compensates for the discrepancy of M / P  from a 
linear model. From the previous section, we know that 
the blurring model completely determines M / P  for any 
given depth a and frequency (ti,  7 ) ) .  The above polyno- 
mial model, R(@; U ,  U ) ,  can therefore be fit to the theo- 
retical A f / P  in equation (7) by assumingp to  be a .  This 
gives us the unknown ratios GPIIGhf1 and G P ? / G M I  
as functions of frequency (U, . ) .  In the case of a rota- 
tionally syrnmetric blurring model, such as the pillbox 
function, these ratios reduce to  functions of just the ra- 
dial frequency fr . 

Now, if we fix any one of the coefficient. functions, say, 
Cpl ( P L ,  I ; ) >  all t,hr ot8hcr coefficients can  be determined 
from tlie ratios4. Therefore, it is possible to determine 

tanhap) gives us a 
slightly better fit. when the defocus model is the pillbox function. 
Yet, to reduce the computational cost of solving equat.ion (10) for 
depth 0, we have chosen this simple polynomial model. 

In practice, G p l  ( U ,  U )  cannot be selected in an entirely arbi- 
trary fashion. Other restrictions that need to be considered are 
detailed in [Watanabe and Nayar-19951. 

3M’e found that replacing b p z ( / 3 )  by (0 - 

M j  
INVARIANCE TO f .  ’ 

Figure 4: Depth P ,  estimated using the polynomial model in 
equation ( 1 2 ) .  is plotted as a function of spat.ia1 frequency for 
different values of actual depth 0. We see that t.he est,imated 
depth equals the actual depth and is invariant. to frequencies 
within the upper bound f T m a z  given by equation (13 ) .  

all the coefficient functions that  ensure that, the above 
polynomial model accurately fits t,he normalized image 
ratio M / P  given by equation (7).  Figure 3 shows an es- 
ample set, (based on an a.rbitrary selection of Gpl(71, U)) 
of the coefficient functions, G p l ,  Gp2 aiid G M ~ ,  for the 
case of the pillbox blur model. 

We now examine how well the polynoinia.1 model fits 
the plots in Figure 2 of the normalized rat.io % ( U ,  U ,  a). 
More precisely, we are interested i n  knowing how well 
the model can used to es t imak dept,li. To t.his eiid, for 
each frequency, we select a “true” c1cpt.h value CY and 
find the corresponding ratio M / P  using the analyt,ical 
expression in ( 7 ) .  This ratio is t.hei1 plugged int,o the 
polynomial model of (12) to  calculate the depth estimatp 
9 using the Newton-Raphson method. This process is 
repeat.ed for all frequencies. 

Figure 4 shows t.hat, the estiinat,cd d t y t l i  B is, for 
all pract,ical purposes, equal t,o the act.iial dcpt.li 1 1 ,  in- 
dicating that. the polynomial inotl(~l is intlccd accurat,c. 
Further, the est,iniat,ed depth is itivariant (inseiisitivc) 
t.o t,exture frequency as far as tlic radial freyucncy J,. 
is below f,. m a r .  Above this frequeiicj- limit, f,. m a r ,  tlic 
response of ? ( U ,  7); a )  t,o cy shown i n  Figure 2 ,  Ixconies 
non-inonotonic within the region -1 5 n 5 1 and hence 
an accurate depth estimate is not obta.inable. In  prac- 
tice, any image can be convolved rising a passband filter 
to ensure that  all frequencies above f rnaa r  are removed. 
The rule of thumb used to determine j,.,,1113. is given by 
equation (8). However, for t,he pillhox blur model, we 
have found via numerical simulation that f,. ,nar is in fact) 
1.2 times larger‘ than the limit given by equation (8) .  

5This number can be increased front 1 .Z to 1.3 if a l a rgu  nuni- 
bcr of Newton-Raphson iterations are nscd. flowevcr, d r p t . 1 1  w- 
sults in this additional range are not numerically st.able in tllc 
presence of noise since t,hc response curves of A f / P  tend Lo 1lat.ten 
out. Hence, we use only one it.erat.ion. 
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This is a valuable side-effect of introducing the normal- 
ized image ratio M / P ;  we can utilize 20% more fre- 
quency spectrum information than conventional meth- 
ods which use the ratio 11/12. 

4 Rational Operators 

We have introduced a rational expression model for 
the normalized ratio M / P  and shown that  the solution 
of equation (10) gives us robust depth estimates for all 
frequencies within a permissible range. Thus far, this 
robustness was demonstrated for individual frequencies. 
In this section, we show how the rational model can be 
used to design a small set of broadband operators tha t  
can handle arbitrary textures. 

Taking cross-products in equation ( lo) ,  we get: 
? % A I  

M ( u ,  'U: CY) CAfi(u, 'U) b A 4 t ( P )  = 
7 = 1  

11 P 

P ( ~ L ,  7); 0) Gpi(7l, 'U) bp,(P) . (14) 
? = I  

By integrating over the entire frequency space. we get: 

where: 

Chfi(N) = /"I" M ( u ,  V ;  CY) Ghf i (U,  'U) du dv 

C : p i ( ( t )  = sP,lI P ( u ,  v ; a )  Gpj(u,  1 1 )  d,udz(.16) 

. - "  -" 

Ilerc. wc invoI;e the power tlieoreni [~racewelI-1965]: 
o ; . x  

F ( u ,  7:) C( U ,  1 7 )  du dz. = LL 
~ ~ J J X ,  Y ) d - T : ,  -Y) dy  7 (17) 

where, F ( u ,  77) and G(u ,  T I )  a.re the Fourier transforms of 
functions f ( z ,  y) and g(i, y), respectively. Sincc we are 
conduct,ing a spatial-frequency anadysis, that  is, \I" are 
analyzing the frequency content in a. small area centered 
around each pixel, the right hand side of equation (1F) 
is nothing but a. convolution. This implies that  ~ f i ( a )  
and c p ; ( a )  are a.ctually functions of (z,y) and can be 
tletermiiietl by convolutions as: 

where, yMi (z ,  y) and g p i ( z ,  y)  are the inverse Fourier 
transforms of G ~ f i ( u ,  U )  and Gpi(71, U), respectively. In 
short ,  all the coefficients needed t,o compute depth usiiig 
the polynomial in equation (15) can be determined by  
convolving the difference image m ( x ,  y) and the summed 
image p ( z ,  y) with linear operators that are spatial do- 
main equivalents of the coefficient funct,ions. We refer 
these ams rational operators. The outputs of 1,hese oper- 
ators at each pixel (2, y) a.re plugged int,o equation (15) 
to determine depth p ( z ,  y). 

As an  example. if we use the model i n  equation ( 1 2 ) .  
the depth recovery equation (15) becomes: 

CA.II (X,YICl)  = cpl(Z,y;@)/ .?  + C p ? ( . C , , ! / ; 0 ' ) / 3 ' .  (1:)) 

By substituting equation (18). we have: 

SAll("> Y) * dz, Y; Q )  

g p 1 ( 3 : ,  y) * p ( z ,  y; a )  P 
= 
+ 

Again, the above three ra.tional operat.ors arc iiot,liinl?; 
but inverse Fourier transforms of the cocfficient frlnc- 
tions shown in Figure 3 .  We see t.liat., thougli tlit, opera- 
tors are all broadband (see Figure 3 ) ,  the aliovc recovery 
equation is independent of scene t.exture and provides ail 

efficient means of computing precise dept.li ecitinmtes. 

4.1 

gpL)(x, y) * p ( * r ,  ?/: Q )  &)) 

Design of Discrete Rational Operators 

As stsated earlier, in principle, one of the tlirce rat.io- 
nal filters, say, gpl(x,  y), can be chosen and the11 thc, 
remaining t,wo filters gnl l (x ,  y) a i d  gp2(x, y) can bc de- 
rived. flowever, since. we are interested i n  ihigli a m -  
racy. several factors need t,o Iw considered during t Iic 
design of t 110 filters. These include: ( a )  t.hc iise of a p r c x -  
filtcr t,o rcniovc t,hc I)(' componelit a.iitl liigli f r c q r ~ ~ i -  
cies almve f,.,,,,,, in tlic t.wo iiiiages, ( I ) )  t . l i c ,  hest choicc. 
for q p 1  ( x ,  y) ,  and (c)  t . h t  design of tliscretc filters w i t h  
small support. that  have t.hc dcsircd freqiiency charact,rr- 
istics. For lack of space, we refer t81ie interested readcr t.o 
[Watanabe and Nayar-19951 for details of the design of 
c1iscret.e rational operat,or. Here. we present, an esaiiiplc. 
operator set. that, we have used in  our experiments. 

Figures 5 and 6 show the kernels and their frequency 
responses for the three rat(iona1 operators and the prc3- 
filter, dlerived with kernel size set. t.0 7 x 7  arid e / F r  = 
2.307 pixels. Since tlie discrete Fouricr t.ransform o f  it 
kernel of size k,  1ia.s t,he miniinuni discrete frequency 
period of  l / k s ,  it. is difficult, t,o obtain precisely any rc- 
sponse in t,he frequency region tielow l / k , c .  Furt,lier, t . 1 1 ~  
spectrum in this region is going t80 be suppressed h\. t.he 
prefilter as it is closr to  tlie DC component. Tliere- 
fore, the  maximum frcqucncy f,. must he well almvc 
l / k s ,  L\;C express this contIit,ion as J,.,,,,,~ 2 :!k. ITsing 
equation ( 1 3 ) ,  we ol.)t,ain: 

( 2 1 )  
2r. - < 0 . 7 3 k , .  
Fe - 

435 



This condition can be interpreted as follows: The  max- 
imum blur circle diameter 2e/Fe must be smaller than 
73% of the  kernel size H, . This is also intuitively reason- 
able as the  kernel should be larger than the blur circle 
as i t  seeks t o  measure blur6. 

-0,001 0.045 0.179 0.297 0.179 0.045 -0.001 
0.045 0.400 0 . 8 6 8  1.093 0 868 0.400 0.045 
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1 
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-0.068 0,059 0.176 -0.019 0.176 0 . 0 5 9 - 0 . 0 6 8  
-0.061 0.145 -0.019 -0.698 -0.019 0.145 -0.061 
-0.068 0.059 0.176-0.019 0.176 0 . 0 5 9 - 0 . 0 6 8  
-0.020 -0,068 0 .059  0.145 0.059 -0.068-0.020 
0.056 -0,020 -0.068 -0.061 -0.068 -0.020 0.056 

( 
i 

9Pl = 

-0.143 -0.198 -0.105 -0.071 -0.105 - 0 . 1 9 8  -0.143 
-0.198 -0.192 0.017 0.072 0.017-0.192-0.198 
-0 ,105  0.017 0.284 0.460 0.284 0.017-0.105 
-0.071 0,072 0 . 4 6 0  0.644 0 . 4 6 0  0.072 -0.071 
-0,105 0.017 0.284 0.460 0.284 0.017-0.105 
-0.198 -0 .192  0.017 0.072 0.017 -0.192 -0 .198  
-0.143 -0 .198  -0.105 -0.071 -0.105 -0.198 -0.143 

9 p 2  = 

p r a J i l l  = 

Figure 3 :  Rational operator kernels derived using kernel size 
of 7x7  and e / F ,  = 2.307 pixels. Regardless of the nature 
of scene texture, passive depth from defocus can be accom- 
plished using this small operator set. In general, the number 
of rational operators and their kernels depend on the order 
of the rational expression used to model the normalized ra- 
tio M / P ,  the selected kernel size ks, and the imaging optics 
used ( e / F , ) .  

5 Algorithm 

Figure 7 illustrates the flow of the depth from defo- 
cus algorithm we have implemented. The  far and near 
focused images are first added and subtracted to  pro- 
duce p ( . , ~ )  and m ( z , y ) ,  respectively. Then they are 
convolved with the  prefilter and subsequently with the 
three rat.iona1 operators. The  resulting coefficient im- 
ages are then smoothed by local averaging. The  final 
step is the  computation of depth from the coefficients 
using a single iteration of the Newton-Raphson method 
[Watanabe and  Nayar-19951. Alternatrively, depth com- 
putation can be achieved using a precomputed two- 
dimensional look-up table. The  look-up table is config- 

as inputs and provides depth /?(x,y) as output.  In sum- 
mary, a depth map  is generated with as few as 5 two- 
dimensional convolutions, simple smoothing of the co- 

ured to take c'nfl(x, Y ) / + ~ ( X ,  Y) and clpa(z,  Y)/C~~(Z, Y) 

'Since the above conditions relat.ed to kernel size are rough, 
we suggest that the linearity of depth estimation be checked (us- 
ing synthetic images) t.0 find the best kernel size k,. Such an 
evaluation is reported in [Watanabe and Nayar-19951. 

(d) prefiltei 

Figure 6: 
shown in Figure 5. 

Frequency responses of the rational operators 

efficient images, and a straightforward depth computa- 
tion step. The  above operations can he executed effi- 
ciently using a pipelined image processor. If one uses 
Datacube's MV200 pipeline processor, all the  computa- 
tions can be realized using as few as 10 pipelines. The  
entire depth from defocus algorithm can then be exe- 
cuted in 0.16 msec for an image of size 512x480. 

6 Experiments 

We first illustratc the linearity of dept,h estimat,ioli 
and its invariance to t.exturc frequency using synthet,ic 
images. The  synthetic images shown in Figure 8 corre- 
spond to  a planar surface tha t  is inclined away from tlw 
sensor such that  its normalized depth value is 0 at. the 
top and 255 at. the bottom. The  plane includes 10 ver- 
tical strips with different. textural properties. The  left. 
7 strips have textures with narrow power spectra. whose 
central frequencies are 0.015, 0.03, 0.08. 0.13, 0.18, 0.25 
and 0.35, from left to  right. The  sth strip is white noise. 
The  next two strips are fractals with dimensions of 3 
and 2.5, respectively [Peitgen and Saupe-19881. T h r  
near and far focused images were generated using thc 
pillbox blur model. The  defocus condition used was 
e / F ,  = 2 . 3 0 i  pixels. In all our experiments, the digi- 
tal images used are of size 640x480. The depth map 
estimated using the 7 x 7  rational operat.ors and 5 x 5  co- 
efficient, smoothing is shown as a gray-coded image i n  
Figure 8 ( c )  and a wireframe in Figure 8(d) .  As is ev- 
ident, the proposed algorithm produces high a.ccura.cy 
despite the significant texture variations between thc 
vertical strips. A detailed error analysis can be found i n  
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Figure '7: The flow of the depth from defocus algorithm. 
Using Datacube's MV200 pipeline processor, the entire algo- 
rithm can be executed in as little as 0.16 msec to obtain a 
512x480 depth map. 

[Watanabe and Nayar-1995]. 
Images of real scenes were taken using a SONY XC- 

77 monochrome camera. The  lens used is a Cosmicar 
B1214D-2 with f=25mm. The  lens was converted into a 
telecentric lens by using an additional aperture t o  make 
its magnification invariant to  defocus (see [Watanabe 
and Nayar-19961). As a result of telecentricitg., image 
shifts bet,ween the far and near focused images are lower 
than 1/10 of a pixel. The  lens aperture was set t,o F/8.3. 
The  far-focused image il was taken with the lens focused 
at 86'3" from the camera, and the near-focused image 
i2 with the  lens focused at 529". These two distances 
were chosen so that. all scene points lie between them. 
The  above focus settings result in a maximum b h r  circle 
radius of ./Fe = 2.30'7 pixels. For each of the two focus 
settings, 256 images were averaged over 8.5 sec to  get 
images with high signal-to-noise ratio. 

Figure 9 shows results obtained for a scene tha t  in- 
cludes a variety of t,extures. Figure 9(a.) and (b) are 
the far-focused and near-focused images, respectively. 
Figure 9(c) and (d) are the computed depth m a p  and 
i ts  wireframe plot. Depth maps of all the curved and 
planar surfaces are det,ected with high fidelity and high 
resolution without any post-filtering. After 9x9  median 
filtering, we get an even better depth map  as slhown in 
Figure 9(e). 

T h e  last experiment seeks t.0 quantify the accuracy of 
depth estima.tion. The  target used is a plane paper sim- 
ilar to  the textured background in the scene in Figure 9. 
This plane is moved in steps of 25" and  a depth map  
of the p l ane j s  computed for each position. The  plot 

h map 

Figure 8: Depth from defocus applied to synthetic images 
of an the inclined plane is accurately recovered despite the 
significant texture variations. 

in Figure 10 illustrates t ha t  the algorithm has excellent 
depth estinnation linearity. The  RMS error of w line fit 
to the measured depths is 4.2 m m .  Depth values for a 
50x50 area were used to estimate the  RRlS depth error 
for each position of the planar surface. In Figure 10 the 
RMS errors are plot,ted as fa error bars. The  RRIS er- 
ror relative to object distance is seen to vary with object 
distance. It is 0.4% - 0.8% for close objects and 0.8% - 1.2% for objects farther than 880 IT" This is partly 
because of the mapping from the depth measured on the 
image side to depth on the object side. 

7 Conclusions 

We proposed the class of rational operators for pas- 
sive depth from defocus. Though the operators are 
broad blan d I urh en used together, they provide invariance 
to scene texture. Since they are broadband, a small 
number of operators are sufficient to  cover t,he entire 
frequency spectrum. Hence, rational operators can re- 
place large filter banks tha t  are expensive firom a com- 
putational perspective. This  advantage comes with out^ 
the need to sacrifice depth estimation accuratcy and res- 
olution. We have det,ailed the procedure used to design 
rational opera.t,ors. As an example, we constructed 7x7  
operators using a polynomial model for the normalized 
image ratio. However, the  notion of rational operat,ors 
is more general and represents a complettc class of filters. 
The  design procedure described here can be used to con- 
st,ruct operators based on other rational models for the 
normallized irnage ratio. Further, rational operators can 
be derived for any desired blur function. 

The proposed depth from defocus algorit1:11n rcquirea 
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Figure 9: The depth from defocus algorithm applied to a 
real scene with complex textures. 

only a total of 5 convolutions. \?'e tested the algo- 
rithm using both synthetic scenes and real scenes to  
evaluate performance. Depth accuracy was found to  be 
0.5 - 1.2% of object distance from the  sensor. Given the 
efficiency of the algorithm, it is worth pursuing a real- 
time implementation using a pipeline image processing 
architecture such as the Datacube MV200. We estimate 
that  such an algorithm would result in at least 6 depth 
maps per second of 512x480 resolution. 
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