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Abstract

Automatic video browsing requires algorithms for
detecting a variety of events� including production ef�
fects �e�g�� scene breaks and captions� and moving ob�
jects� We present new methods that use edges and
motion for detecting production e�ects and computing
motion segmentation� Production e�ects� such as cuts�
dissolves� wipes and captions� can be detected by look�
ing for new edges that are far from previous edges� A
global motion computation is used to register consecu�
tive images� We have also developed a method for mo�
tion segmentation� which does not require computing
local optical �ow� Our methods run at several frames
per second on a Sparc workstation� and tolerate com�
pression artifacts�

� Introduction
With modern compression techniques and the

plummeting costs of secondary storage� it is becoming
feasible to have thousands of hours of digital image
sequences available on�line� Several recent research
projects have investigated tools for querying such large
image databases ��� ��� Automatic browsing of image
sequences requires algorithms for detecting a variety
of events� such as production e	ects 
such as scene
breaks and captions� and moving objects�

Automated browsing is a fertile area for developing
and applying computer vision algorithms� Compres�
sion artifacts are a major challenge� since lossy com�
pression is commonplace in such applications� In this
paper� we describe new methods for detecting produc�
tion e	ects and moving objects� By using edges and
motion� we have designed solutions that withstand
compression artifacts�

We begin by reviewing existing work on automatic
video browsing� which has focused on scene break de�
tection and 
to a lesser extent� motion� In section � we
present our solutions for detecting scene breaks� and
in section � we supply experimental evidence that our

methods perform well� In section � we extend these
methods to handle other production e	ects 
eg� cap�
tions and subtitles� and to perform motion segmenta�
tion�

� Related work
Most existing work has focused on browsing us�

ing scene break detection� although there has also
been some work on motion�based browsing� Scene
break detection and motion segmentation are also im�
portant for a number of multimedia applications be�
sides video browsing� such as compression and au�
tomatic keyframing� Motion�based compression al�
gorithms like MPEG can obtain higher compression
rates without sacri
cing quality when the locations
of scene breaks are known� Knowledge about scene
breaks can be used to look for higher�level structures

such as a sequence of cuts between cameras�� or to
ensure that keyframes come from di	erent scenes�

��� Scene break detection

Scene breaks mark the transition from one sequence
of consecutive images 
or scene� to another� A cut is
an instantaneous transition from one scene to the next�
A fade is a gradual transition between a scene and a
constant image 
fade out� or between a constant im�
age and a scene 
fade in�� During a fade� images have
their intensities multiplied by some value �� that varies
between ��� and ���� A dissolve is a gradual transi�
tion from one scene to another� in which the 
rst scene
fades out and the second scene fades in� Another com�
mon scene break is a wipe� in which a line moves across
the screen� with the new scene appearing behind the
line�

Scene breaks are detected by computing and thresh�
olding a similarity measure between consecutive im�
ages� Existing work has relied directly on intensity
data� using such techniques as image di	erencing and
intensity histogramming� Most approaches are based
on intensity histograms� and concentrate on cuts ��� ��



These methods have di�culty with �busy� scenes� in
which intensities change substantially from frame to
frame� Such changes often result from camera or ob�
ject motion�

Cuts usually result in a dramatic change in image
intensities� so they can be detected much of the time�
However� a dissolve is a gradual change of all the in�
tensities� and cannot be easily distinguished from mo�
tion� A dissolve can even occur between two scenes
each containing motion� Thus� dissolves are more dif�

cult to detect than cuts� especially if the scenes in�
volve motion� Increasing the detection threshold can
reduce false positives due to motion� but at the risk of
missing gradual scene transitions�

Hampapur� Jain and Weymouth ��� use an explicit
model of the video production process to detect a vari�
ety of scene breaks� While their approach is intensity�
based� it does not involve histogramming� Instead�
they compute a chromatic image from a pair of con�
secutive images� Its value at each pixel is the change
in intensity between the two images divided by the
intensity in the later image� Ideally� the chromatic
image should be uniform and non�zero during a fade�

The di�culties caused by motion and by dissolves
are well�known� For example� Hampapur� Jain and
Weymouth note in their discussion of dissolves that
their measure �is applicable if the change due to the
editing dominates the change due to motion���� page
���� and describe both object and camera motion as
causes of false positives for their method� Another re�
cent paper ���� describes motion as a major limitation
of histogram�based methods�

Zhang� Kankanhalli and Smoliar ���� have extended
conventional histogram�based approaches to handle
dissolves and to deal with certain camera motions�
They use a dual threshold on the change in the inten�
sity histogram to detect dissolves� In addition� they
have a method for avoiding the false positives that
result from certain classes of camera motion� such as
pans and zooms� They propose to detect such camera
motion and suppress the output of their scene�break
measure during camera motion�

Their method does not handle false positives that
arise from more complex camera motions or from ob�
ject motion� Nor does their method handle false neg�
atives that occur in dissolves between scenes involv�
ing motion� In section � we will provide an empirical
comparison of our method with histogram�based tech�
niques and with chromatic scaling�

��� Motion�based browsing

A number of groups are currently investigating the
use of motion for automatic browsing of videos� For

example� researchers are exploring motion�based ex�
tensions to QBIC ��� and to Photobook ���� However�
little work on motion�based browsing of videos has
been published�

There has� of course� been a great deal of work on
related problems� such as computingmotion or motion
segmentation� Most work on motion segmentation in�
volves some kind of local computation of motion 
often
called optical �ow�� For example� Adiv ��� partitions
the �ow 
eld into connected segments whose motion
is consistent with a planar surface moving rigidly� An�
other approach ���� �� focuses on layered representa�
tions of multiple motions� which computes optical �ow
and performs a segmentation into regions�

� An Edge�Based Approach
During a cut or a dissolve� new intensity edges ap�

pear far from the locations of old edges and old edges
disappear far from the locations of new edges� These
simple observations allow us to detect and classify
scene breaks� We de
ne an edge pixel that appears far
from an existing edge pixel as an incoming edge pixel�
and an edge pixel that disappears far from an exist�
ing edge pixel as an outgoing edge pixel� By counting
the incoming and outgoing edge pixels� we can detect
and classify cuts� fades and dissolves� By analyzing
the spatial distribution of incoming and outgoing edge
pixels� we can detect and classify wipes�

Our method can be easily extended in order to han�
dle motion� We can use any registration technique to
compute a global motion between frames� We can
then apply this global motion to align the frames be�
fore detecting incoming or outgoing edge pixels�

The algorithm we propose takes as input two con�
secutive images I and I �� We 
rst perform an edge
detection step� resulting in two binary images E and
E�� Let �in denote the fraction of edge pixels in E�

which are more than a 
xed distance r from the clos�
est edge pixel in E� �in measures the proportion of
incoming edge pixels� It should assume a high value
during a fade in� or a cut� or at the end of a dissolve��

Similarly� let �out be the fraction of edge pixels in
E which are farther than r away from the closest edge
pixel in E�� �out measures the proportion of outgoing
edge pixels� It should assume a high value during a
fade out� or a cut� or at the beginning of a dissolve�

Our basic measure of dissimilarity is

� � max
�in� �out�� 
��

This represents the fraction of changed edges� this
fraction of the edges have entered or exited� Scene

�Due to the quantization of intensities� new edges will gen�
erally not show up until the end of the dissolve�



breaks can be detected by looking for peaks in �� which
we term the edge change fraction� In our experiments�
we have used a Canny�style edge detector� We smooth
the image with a Gaussian of width �� threshold the
gradient magnitude at a value of � � and perform non�
maximum suppression�

��� Motion compensation

Our algorithm handles small motions through the
use of dilated edges� Edges which move no farther
than the dilation radius r will not result in changing
pixels 
i�e�� incoming or outgoing edge pixels�� Even if
every edge moves by r pixels� there will still be no
changing pixels� A slow camera pan� for example�
will be handled in this manner� Other examples that
give rise to small motions include rotations� zooms and
non�rigid object motions�

A single larger motion requires a motion compensa�
tion step before computing the edge change fraction�
In our experience� it has been su�cient to restrict the
motion to be purely translational� While it is possible
to handle a�ne or projective motions� they incur sig�
ni
cant additional overhead� and do not seem to result
in better performance�

We have explored two algorithms for computing
motion� both of which have given satisfactory results�
The algorithms are based on correlation� but also tol�
erate the presence of multiple motions� In our initial
experiments we used the Hausdor	 distance ���� which
operates on edge images� More recently� we have used
correlation based on non�parametric local transforms�
an approach described in �����

Note that the simple motion compensation scheme
described does not handle multiple� distinctive mo�
tions� For example� if the camera pans to follow a
fast�moving object� motion compensation will stabi�
lize either the object or the background� Edges un�
dergoing the secondary motion will appear to move�
if the relative motion is larger than r� this will result
in incoming and outgoing pixels� Handling this case
requires motion segmentation� which we will discuss
in section ����

��� Peak detection and classi�cation

There are three basic steps to our algorithm� mo�
tion compensate I and I �� perform edge detection� and
compute �in and �out 
and thus� ��� Once this is done�
scene breaks can be detected by looking for peaks in ��
A detailed description of the methods used to classify
di	erent types of scene breaks is beyond the scope of
this paper� a full speci
cation is given in ����� A sum�
mary of the classi
cation methods for cuts� dissolves�
fades� and wipes is given here�

Cuts occur between a single set of frames and typ�
ically have the most intense di	erence measure� all
the other transitions occur over a sequence of frames�
Fades are characterized by a transition from or to a
constant image� therefore either �in or �out will be
near�zero for the duration of the transition� Wipes are
characterized by the spatial distribution of changing
pixels� In a wipe� the region of change moves consis�
tently across the frame for the duration of the transi�
tion� while in the other scene breaks the distribution
of changing pixels is random� Scene transitions that
do not display the characteristics of a cut� fade� or
wipe are classi
ed as dissolves�

��� The Hausdor� distance

Our similarity measure is related to the Hausdor	
distance� which has been used to search for the best
match for a model in an image ���� The Hausdor	
distance� which originates in point set topology� is a
metric for comparing point sets� The distance from
the point set A to the point set B is de
ned as

h
A�B� � max
a�A

min
b�B

ka� bk� 
��

If h
E�� E� � r then every edge pixel in E� is within
r of the closest edge pixel in E� there are no incoming
edge pixels� and so �in � �� Similarly� if h
E�E�� � r
then there are no outgoing edge pixels and �out � ��

Most applications of the Hausdor	 distance use a
generalization called the partial Hausdor	 distance�
which is

hK
A�B� � Kth

a�A
min
b�B

ka� bk� 
��

This selects the Kth ranked distance from a point in
A to its closest point in B� If we select the largest
such distance� we have the original Hausdor	 distance
de
ned in equation ��

Applications which use the partial Hausdor	 dis�
tance for matching can provide a 
xed fraction f �
K�jAj� which is �� �� This speci
es what fraction of
the points in A should be close to their nearest neigh�
bor in B at the best match� Alternatively� a 
xed
distance can be supplied� and the fraction of points in
A within this distance of their nearest neighbor in B
can be minimized�
��	 Algorithm parameters

Because our algorithm is based on edges� it relies on
the performance of the edge detector� Clearly our so�
lution will not work on image sequences with minimal
contrast� or in circumstances in which edge detection
fails�

Our algorithm has several parameters that control
its performance�



� the edge detector�s smoothing width � and
threshold � �

� the expansion distance r�

We have gotten good performance from a single set
of parameters across all the image sequences we have
tested� These parameters are � � ��� and � � ���
for the edge detector� and r � �� and were used to
generate the data shown in this paper�

��
 Compression tolerance

Most video will undergo some form of compression
during its existence� and most compression methods
are lossy� It is therefore important that our algorithm
degrade gracefully in the presence of compression�
induced artifacts� While edge detection is a	ected by
lossy compression� especially at high compression ra�
tios� we do not rely on the precise location of edge
pixels� We only wish to know if another edge pixel
is with r of an edge� As a consequence� the precise
location of edge pixels can be changed by image com�
pression without seriously degrading our algorithm�s
performance� The experimental evidence we present
in the next section comes from images that were highly
compressed with the lossy JPEG compression scheme�

Figure � shows the results from an Eric Clapton
MPEG that has been further compressed by JPEG�
compressing each frame with a quality factor of �� Our
algorithm performs correctly even though the com�
pression artifacts are so enormous as to make the se�
quence almost unviewable� Figure � also shows frame
��� at this compression rate�

� Experimental Results
We have tested our algorithm on a number of im�

age sequences� containing various scene breaks� To
provide a comparison� we have also implemented two
other intensity�based measures used to detect scene
breaks� The 
rst measure is the intensity histogram
di	erence� which is used with slight variations in most
work on scene breaks ��� �� ���� The second mea�
sure is the chromatic scaling method of Hampapur�
Jain and Weymouth ���� a recent method for classify�
ing scene breaks� We implemented a histogramming
variant used by Zhang� Kankanhalli and Smoliar� For
each of the � color channels we used the � most signif�
icant bits� for a total of N � �� bins in the histogram�
histograms are compared using the L� distance�

	�� Sources of data

The image sequences used for testing are both
MPEG and QuickTime movies� Our web page
http���www�cs�cornell�edu�Info�People�rdz�

dissolve�html contains links to the sites from which
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Figure �� Clapton music video sequence results at ���
bits�pixel

samples were obtained� Segment genres include mu�
sic videos� television advertisements� NASA recordings
and motion picture trailers� We found motion picture
trailers to be particularly useful for their frequent and
rich scene transitions� The sequences are highly com�
pressed� MPEG movies typically have ���� bits per
pixel and the QuickTime movies typically have ���
bits per pixel 
including the audio track�� All these
sequences are color� so the compression ratios 
from
���bit color images� range from ���� to ����� Movies
available on the web are also characterized by small
frame sizes� most were ���� ��� and the movie trail�
ers were ���� ��� These high compression ratios and
small images are the result of using videos available
on the World�Wide Web� which places a premium on
compression to minimize bandwidth and storage costs�
However� this makes our data set representative of the
kind of video that is widely available today�

The image sequences we have collected fall into
three classes� Several image sequences had easy scene
breaks� which could be detected by all the methods we
tried� For example� there may only be cuts� or there



may be minimal motion� Another class of image se�
quences caused errors for conventional intensity�based
methods� but were handled correctly by our feature�
based method� Examples include sequences with mo�
tion� and especially ones with both motion and dis�
solves� Finally� certain image sequences yielded incor�
rect answers� no matter which method we used� Ex�
amples include commercials with very rapid changes
in lighting and fast�moving objects passing right in
front of the camera with velocities as high as �� pixels
per frame�

	�� Comparative results

The Clapton video that we used to demonstrate
compression tolerance is an example of a movie for
which the other methods we implemented failed and
has been used to benchmark other algorithms 
e�g��
���� � The Clapton sequence is di�cult because of
large object motion 
the singer� and the long duration

over �� frames� of the dissolves� Figure � compares
all three methods on the Clapton video� all methods
are intended to produce distinctive peaks at cuts and
dissolves� The data used here is the original decoded
MPEG� not the further JPEG�compressed data illus�
trated earlier�

The intensity histogram di	erence� shown in 
g�
ure �
b�� shows a rise during the 
rst dissolve� and it
is possible that the dual threshold scheme of ���� would
detect this 
depending on the exact thresholds used��
However� the second dissolve appears to be indistin�
guishable from the noise� Their method for handling
motion would not help here� since the problem is a
false negative rather than a false positive�

The chromatic scaling feature of ��� is shown in 
g�
ure �
c�� As the authors state� their method has di��
culty with dissolves involving motion�

	�� Results on our data set

Our algorithm has been tested on an initial dataset
of over �� sequences mentioned in section ���� This
data set consists of over ������ frames of video with
a total of ��� cuts �� dissolves and �� fades� Results
for our method and for the dual�thresholding color�
histogramming method described in ���� are given�
A single set of parameters is used with each method
for all the sequences� The parameters for the color�
histogramming method were obtained by searching
for the parameters that minimized the number of er�
rors 
false negatives and false positives�� The num�
ber of false negatives could not be reduced for color�
histogramming without introducing a much larger
number of false positives� 
Note that the histogram
method does not classify scene breaks� All the false
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Figure �� Results from the clapton sequence



positives listed here exceed the single frame cut�
detection threshold��

Method False Negatives False Positives
cut fade�dissolve cut fade�dissolve

Edge Chg� � � � �
Histogram � � � na

	�	 Performance

The initial implementation of our algorithm is op�
timized for simplicity rather than for speed� However�
its performance is still reasonable� Most of the pro�
cessing time comes from the global motion computa�
tion� We have implemented our algorithm on a Sparc
workstation with a single ���MHz processor� and with
� ���MHz processors� Because it is so easy to perform
the motion compensation in parallel� we have obtained
near linear speedups�

The table below shows our implementation�s per�
formance with motion compensation disabled� when
running on the table tennis sequence�

Image dimensions � processor � processors
��� �� ����� Hz ����� Hz
���� ��� ���� Hz ����� Hz
���� ��� ��� Hz ���� Hz

The next table shows the performance when using a
simple Hausdor	�distance based motion compensation
scheme� The running time is linear in the number
of disparities considered� Data is shown for a range
of disparities which has been adequate for images of
these sizes�

Image dimensions � processor � processors
��� �� ���� Hz ����� Hz
���� ��� ���� Hz ���� Hz
���� ��� ��� Hz �� Hz

The performance on our corpus of MPEG movies was
typically around � frames per second on a single pro�
cessor�

	�
 Limitations

In our experience� our algorithm�s failures involve
false positives which result from very rapid motion
of large objects� We are developing methods to help
eliminate false positives� including the motion segmen�
tation scheme described in section ���� These methods
are not yet fully implemented and were not used when
generating the above results�

Figure �� Example of caption localization

� Extensions

We also address two problems in video browsing
beyond scene break detection� First� incoming and
outgoing pixels can be used to identify other produc�
tion e	ects� such as textual overlays� Second� our mo�
tion estimation methods can be extended to perform
motion segmentation without local optical �ow com�
putation�


�� Production e�ects

We have extended our work on scene break detec�
tion to handle other production e	ects involving over�
lays� Many broadcast videos also provide some kind
of textual overlay� For example� news broadcasts of�
ten begin a story by overlaying the location of the
reporter� Similarly� a number of movies and television
shows overlay the opening credits on top of a scene�

These textual overlays contain signi
cantly more
information than scene breaks� but they share some
similarities� Textual overlays can suddenly appear and
disappear 
like a cut�� or gradually fade in and fade
out 
like a dissolve�� The pixels in the textual overlay
should show up as incoming pixels when they appear�
and as outgoing pixels when they disappear�

An example is shown in 
gure �� The title caption
is overlayed on a �busy� sequence of a waterfall and
appears instantaneously� in a manner similiar to a cut�
There are signi
cant edges in the background� which
causes some degradation in the output� however� the
captions clearly show up as incoming edges�


�� Motion segmentation

We have developed a simple scheme for motion seg�
mentation that does not require estimating local op�
tical �ow� It is based on the motion compensation
scheme described in section ���� which performs a sin�
gle estimate of global image motion� The advantage of
our approach is that global image motion can be esti�
mated much more e�ciently than local motion� We
address two related problems� 
rst� computing the
secondary motion� and secondly� segmenting the im�
age into pixels undergoing di	erent motions� As an



example� we will analyze a sequence where a camera
pans to track a fast�moving ice skater�

����� Computing the secondary motion

Correlation�based methods for computing motion
compute the shift 
displacement� that makes the two
images most similar� The similarity of the two images
is a scalar function of the displacement� this similar�
ity forms an error surface� The motion estimate is
the displacement with the highest peak in the error
surface�� Figure � shows the error surfaces for two
motion algorithms� for a scenes with one and two mo�
tions� Besides the standard sum of squared di	erences

L�� error measure� we also show the results from us�
ing the census transform ���� to computemotion� Note
that the standard 
L�� correlation method yields an
error surface which does not show the presence of the
second motion� The census transform� on the other
hand� shows the second motion clearly as a second
bump�
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Figure �� Error surfaces for motion algorithms� for
scenes with one motion 
left� and two motions 
right��

�For ease of viewing� we have displayed the similarity be�
tween the images� But we will use the �error surface	 terminol�
ogy� since it is standard�

We observed that in sequences with two motions
there was always a clear secondary peak in the er�
ror surface� This suggested a simple method for com�
puting the second motion� namely 
nding the second
highest isolated peak� Note that such dual�peak de�
tection methods have been used with local motion es�
timation before� to compute discontinuities ��� and
to segment objects ����� Results from this approach
are shown in 
gure �� The x displacements are dis�
placed for the primary 
shown as a line� and secondary

shown with asterixes� motions� Note that around
frame �� the primary motion and the secondary mo�
tion switch� This occurs because the skater is mov�
ing towards the camera� and becomes larger than the
background�
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Figure �� Primary and secondary motions in ice skater
sequence�

����� Segmenting the image

Once the primary and secondary motion have been
computed� we next attempt to classify the individual
pixels� Our solution to this problem involves the indi�
vidual pixel error scores when the images are shifted
by the primary motion� and when they are shifted by
the secondary motion�

We can now classify pixels based on their error
scores at the primary and secondary displacements�
Indistinct pixels 
for example� those from areas with
low texture� will have similar error scores at both dis�
placements� Pixels with small errors at the primary
displacement but large errors at the secondary dis�
placement will be classi
ed as undergoing the primary
displacement� Similarly� pixels in the opposite situ�



ation will be classi
ed as undergoing the secondary
displacement�

The results of this approach can be improved by

rst box�
ltering the error scores� Figure � shows
some results on the ice skater sequence� Pixels deter�
mined to be undergoing the primary motion are dis�
played at right� while other pixels are shown in black�
Note the two small black patches on the skater�s torso�
these are regions with minimal texture�

Figure �� Original image� and pixels segmented as un�
dergoing primary motion�

Conclusions
We have shown how by using edges and motion it

is possible to detect scene breaks� 
nd captions� and
perform motion segmentation� There are a number of
obvious extensions to this work� For example� it is
possible that the output of our caption detector can
be piped into an OCR system� This would provide an
automatic source of textual information about video
without relying on manual annotation or speech recog�
nition�
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