Video Browsing Using Edges and Motion

Ramin Zabih

Justin Miller

Kevin Mai

Computer Science Department
Cornell University

Ithaca, NY 14853
rdzQcs.cornell.edu

Abstract

Automatic video browsing requires algorithms for
detecting a variety of events, including production ef-
fects (e.g., scene breaks and captions) and moving 0b-
jects. We present new methods that use edges and
motion for detecting production effects and computing
motion segmentation. Production effects, such as cuts,
dissolves, wipes and captions, can be detected by look-
ing for new edges that are far from previous edges. A
global motion computation is used to register consecu-
tive images. We have also developed a method for mo-
tion segmentation, which does not require computing
local optical flow. Our methods run at several frames
per second on a Sparc workstation, and tolerate com-
pression artifacts.

1 Introduction

With modern compression techniques and the
plummeting costs of secondary storage, it is becoming
feasible to have thousands of hours of digital image
sequences available on-line. Several recent research
projects have investigated tools for querying such large
image databases [3, 4]. Automatic browsing of image
sequences requires algorithms for detecting a variety
of events, such as production effects (such as scene
breaks and captions) and moving objects.

Automated browsing is a fertile area for developing
and applying computer vision algorithms. Compres-
sion artifacts are a major challenge, since lossy com-
pression is commonplace in such applications. In this
paper, we describe new methods for detecting produc-
tion effects and moving objects. By using edges and
motion, we have designed solutions that withstand
compression artifacts.

We begin by reviewing existing work on automatic
video browsing, which has focused on scene break de-
tection and (to a lesser extent) motion. In section 3 we
present our solutions for detecting scene breaks, and
in section 4 we supply experimental evidence that our

methods perform well. In section 5 we extend these
methods to handle other production effects (eg. cap-
tions and subtitles) and to perform motion segmenta-
tion.

2 Related work

Most existing work has focused on browsing us-
ing scene break detection, although there has also
been some work on motion-based browsing. Scene
break detection and motion segmentation are also im-
portant for a number of multimedia applications be-
sides video browsing, such as compression and au-
tomatic keyframing. Motion-based compression al-
gorithms like MPEG can obtain higher compression
rates without sacrificing quality when the locations
of scene breaks are known. Knowledge about scene
breaks can be used to look for higher-level structures
(such as a sequence of cuts between cameras), or to
ensure that keyframes come from different scenes.
2.1 Scene break detection

Scene breaks mark the transition from one sequence
of consecutive images (or scene) to another. A cut is
an instantaneous transition from one scene to the next.
A fade is a gradual transition between a scene and a
constant image (fade out) or between a constant im-
age and a scene (fade in). During a fade, images have
their intensities multiplied by some value «, that varies
between 0.0 and 1.0. A dissolve is a gradual transi-
tion from one scene to another, in which the first scene
fades out and the second scene fades in. Another com-
mon scene break is a wipe, in which a line moves across
the screen, with the new scene appearing behind the
line.

Scene breaks are detected by computing and thresh-
olding a similarity measure between consecutive im-
ages. Existing work has relied directly on intensity
data, using such techniques as image differencing and
intensity histogramming. Most approaches are based
on intensity histograms, and concentrate on cuts [6, 7]

These methods have difficulty with “busy” scenes, in
which intensities change substantially from frame to
frame. Such changes often result from camera or ob-
ject motion.

Cuts usually result in a dramatic change in image
intensities, so they can be detected much of the time.
However, a dissolve is a gradual change of all the in-
tensities, and cannot be easily distinguished from mo-
tion. A dissolve can even occur between two scenes
each containing motion. Thus, dissolves are more dif-
ficult to detect than cuts, especially if the scenes in-
volve motion. Increasing the detection threshold can
reduce false positives due to motion, but at the risk of
missing gradual scene transitions.

Hampapur, Jain and Weymouth [4] use an explicit
model of the video production process to detect a vari-
ety of scene breaks. While their approach is intensity-
based, it does not involve histogramming. Instead,
they compute a chromatic image from a pair of con-
secutive images. Its value at each pixel is the change
in intensity between the two images divided by the
intensity in the later image. Ideally, the chromatic
image should be uniform and non-zero during a fade.

The difficulties caused by motion and by dissolves
are well-known. For example, Hampapur, Jain and
Weymouth note in their discussion of dissolves that
their measure “is applicable if the change due to the
editing dominates the change due to motion”[4, page
11], and describe both object and camera motion as
causes of false positives for their method. Another re-
cent paper [14] describes motion as a major limitation
of histogram-based methods.

Zhang, Kankanhalli and Smoliar [14] have extended
conventional histogram-based approaches to handle
dissolves and to deal with certain camera motions.
They use a dual threshold on the change in the inten-
sity histogram to detect dissolves. In addition, they
have a method for avoiding the false positives that
result from certain classes of camera motion, such as
pans and zooms. They propose to detect such camera
motion and suppress the output of their scene-break
measure during camera motion.

Their method does not handle false positives that
arise from more complex camera motions or from ob-
ject motion. Nor does their method handle false neg-
atives that occur in dissolves between scenes involv-
ing motion. In section 4 we will provide an empirical
comparison of our method with histogram-based tech-
niques and with chromatic scaling.

2.2 Motion-based browsing

A number of groups are currently investigating the
use of motion for automatic browsing of videos. For

example, researchers are exploring motion-based ex-
tensions to QBIC [3] and to Photobook [8]. However,
little work on motion-based browsing of videos has
been published.

There has, of course, been a great deal of work on
related problems, such as computing motion or motion
segmentation. Most work on motion segmentation in-
volves some kind of local computation of motion (often
called optical flow). For example, Adiv [1] partitions
the flow field into connected segments whose motion
is consistent with a planar surface moving rigidly. An-
other approach [10, 2] focuses on layered representa-
tions of multiple motions, which computes optical flow
and performs a segmentation into regions.

3 An Edge-Based Approach

During a cut or a dissolve, new intensity edges ap-
pear far from the locations of old edges and old edges
disappear far from the locations of new edges. These
simple observations allow us to detect and classify
scene breaks. We define an edge pixel that appears far
from an existing edge pixel as an incoming edge pixel,
and an edge pixel that disappears far from an exist-
ing edge pixel as an outgoing edge pixel. By counting
the incoming and outgoing edge pixels, we can detect
and classify cuts, fades and dissolves. By analyzing
the spatial distribution of incoming and outgoing edge
pixels, we can detect and classify wipes.

Our method can be easily extended in order to han-
dle motion. We can use any registration technique to
compute a global motion between frames. We can
then apply this global motion to align the frames be-
fore detecting incoming or outgoing edge pixels.

The algorithm we propose takes as input two con-
secutive images I and I'. We first perform an edge
detection step, resulting in two binary images F and
E'. Let p;n denote the fraction of edge pixels in E’
which are more than a fixed distance 7 from the clos-
est edge pixel in E. p;, measures the proportion of
incoming edge pixels. It should assume a high value
during a fade in, or a cut, or at the end of a dissolve.!

Similarly, let po.: be the fraction of edge pixels in
E which are farther than r away from the closest edge
pixel in E’. p,,: measures the proportion of outgoing
edge pixels. It should assume a high value during a
fade out, or a cut, or at the beginning of a dissolve.

Our basic measure of dissimilarity is

p = max(pinypout)- (1)

This represents the fraction of changed edges; this
fraction of the edges have entered or exited. Scene

1Due to the quantization of intensities, new edges will gen-
erally not show up until the end of the dissolve.

breaks can be detected by looking for peaks in p, which
we term the edge change fraction. In our experiments,
we have used a Canny-style edge detector. We smooth
the image with a Gaussian of width o, threshold the
gradient magnitude at a value of 7, and perform non-
maximum suppression.

3.1 Motion compensation

Our algorithm handles small motions through the
use of dilated edges. Edges which move no farther
than the dilation radius » will not result in changing
pixels (i.e., incoming or outgoing edge pixels). Even if
every edge moves by r pixels, there will still be no
changing pixels. A slow camera pan, for example,
will be handled in this manner. Other examples that
give rise to small motions include rotations, zooms and
non-rigid object motions.

A single larger motion requires a motion compensa-
tion step before computing the edge change fraction.
In our experience, it has been sufficient to restrict the
motion to be purely translational. While it is possible
to handle affine or projective motions, they incur sig-
nificant additional overhead, and do not seem to result
in better performance.

We have explored two algorithms for computing
motion, both of which have given satisfactory results.
The algorithms are based on correlation, but also tol-
erate the presence of multiple motions. In our initial
experiments we used the Hausdorff distance [5], which
operates on edge images. More recently, we have used
correlation based on non-parametric local transforms,
an approach described in [13].

Note that the simple motion compensation scheme
described does not handle multiple, distinctive mo-
tions. For example, if the camera pans to follow a
fast-moving object, motion compensation will stabi-
lize either the object or the background. Edges un-
dergoing the secondary motion will appear to move;
if the relative motion is larger than r, this will result
in incoming and outgoing pixels. Handling this case
requires motion segmentation, which we will discuss
in section 5.2.

3.2 DPeak detection and classification

There are three basic steps to our algorithm: mo-
tion compensate I and I’; perform edge detection; and
compute p;n, and poy: (and thus, p). Once this is done,
scene breaks can be detected by looking for peaks in p.
A detailed description of the methods used to classify
different types of scene breaks is beyond the scope of
this paper; a full specification is given in [12]. A sum-
mary of the classification methods for cuts, dissolves,
fades, and wipes is given here.

Cuts occur between a single set of frames and typ-
ically have the most intense difference measure, all
the other transitions occur over a sequence of frames.
Fades are characterized by a transition from or to a
constant image, therefore either p;, or pou: will be
near-zero for the duration of the transition. Wipes are
characterized by the spatial distribution of changing
pixels. In a wipe, the region of change moves consis-
tently across the frame for the duration of the transi-
tion, while in the other scene breaks the distribution
of changing pixels is random. Scene transitions that
do not display the characteristics of a cut, fade, or
wipe are classified as dissolves.

3.3 The Hausdorff distance

Our similarity measure is related to the Hausdorff
distance, which has been used to search for the best
match for a model in an image [5]. The Hausdorff
distance, which originates in point set topology, is a
metric for comparing point sets. The distance from
the point set A to the point set B is defined as

h(A, B) = Itllleajcrbléig |le — B]|. (2)
If h(E', E) < r then every edge pixel in E’ is within
r of the closest edge pixel in F, there are no incoming
edge pixels, and so p;, = 0. Similarly, if h(E, E') <7
then there are no outgoing edge pixels and pyyr = 0.

Most applications of the Hausdorff distance use a
generalization called the partial Hausdorff distance,
which is

he(A,B) = Kiminlle—b]. (3)
This selects the K** ranked distance from a point in
A to its closest point in B. If we select the largest
such distance, we have the original Hausdorff distance
defined in equation 2.

Applications which use the partial Hausdorff dis-
tance for matching can provide a fixed fraction f =
K/|A|, which is 1 — p. This specifies what fraction of
the points in A should be close to their nearest neigh-
bor in B at the best match. Alternatively, a fixed
distance can be supplied, and the fraction of points in
A within this distance of their nearest neighbor in B
can be minimized.

3.4 Algorithm parameters

Because our algorithm is based on edges, it relies on
the performance of the edge detector. Clearly our so-
lution will not work on image sequences with minimal
contrast, or in circumstances in which edge detection
fails.

Our algorithm has several parameters that control
its performance:

e the edge detector’s smoothing width o and
threshold 7,

e the expansion distance 7,

We have gotten good performance from a single set
of parameters across all the image sequences we have
tested. These parameters are 0 = 1.2 and 7 = 24,
for the edge detector, and r = 6, and were used to
generate the data shown in this paper.
3.5 Compression tolerance

Most video will undergo some form of compression
during its existence, and most compression methods
are lossy. It is therefore important that our algorithm
degrade gracefully in the presence of compression-
induced artifacts. While edge detection is affected by
lossy compression, especially at high compression ra-
tios, we do not rely on the precise location of edge
pixels. We only wish to know if another edge pixel
is with » of an edge. As a consequence, the precise
location of edge pixels can be changed by image com-
pression without seriously degrading our algorithm’s
performance. The experimental evidence we present
in the next section comes from images that were highly
compressed with the lossy JPEG compression scheme.

Figure 1 shows the results from an Eric Clapton
MPEG that has been further compressed by JPEG-
compressing each frame with a quality factor of 3. Our
algorithm performs correctly even though the com-
pression artifacts are so enormous as to make the se-
quence almost unviewable. Figure 1 also shows frame
#40 at this compression rate.

4 Experimental Results

We have tested our algorithm on a number of im-
age sequences, containing various scene breaks. To
provide a comparison, we have also implemented two
other intensity-based measures used to detect scene
breaks. The first measure is the intensity histogram
difference, which is used with slight variations in most
work on scene breaks [6, 7, 14]. The second mea-
sure is the chromatic scaling method of Hampapur,
Jain and Weymouth [4], a recent method for classify-
ing scene breaks. We implemented a histogramming
variant used by Zhang, Kankanhalli and Smoliar. For
each of the 3 color channels we used the 2 most signif-
icant bits, for a total of N = 64 bins in the histogram;
histograms are compared using the L; distance.
4.1 Sources of data

The image sequences used for testing are both
MPEG and QuickTime movies. Our web page

http://www.cs.cornell.edu/Info/People/rdz/
dissolve.html contains links to the sites from which

T
dissolve dissolve

o IS4
> @
T T
L L

o
>

edge change fraction

Figure 1: Clapton music video sequence results at .35
bits/pixel

samples were obtained. Segment genres include mu-
sic videos, television advertisements, NASA recordings
and motion picture trailers. We found motion picture
trailers to be particularly useful for their frequent and
rich scene transitions. The sequences are highly com-
pressed: MPEG movies typically have 0.80 bits per
pixel and the QuickTime movies typically have 2.4
bits per pixel (including the audio track). All these
sequences are color, so the compression ratios (from
24-bit color images) range from 10:1 to 69:1. Movies
available on the web are also characterized by small
frame sizes, most were 160 x 120 and the movie trail-
ers were 156 x 84. These high compression ratios and
small images are the result of using videos available
on the World-Wide Web, which places a premium on
compression to minimize bandwidth and storage costs.
However, this makes our data set representative of the
kind of video that is widely available today.

The image sequences we have collected fall into
three classes. Several image sequences had easy scene
breaks, which could be detected by all the methods we
tried. For example, there may only be cuts, or there

may be minimal motion. Another class of image se-
quences caused errors for conventional intensity-based
methods, but were handled correctly by our feature-
based method. Examples include sequences with mo-
tion, and especially ones with both motion and dis-
solves. Finally, certain image sequences yielded incor-
rect answers, no matter which method we used. Ex-
amples include commercials with very rapid changes
in lighting and fast-moving objects passing right in
front of the camera with velocities as high as 50 pixels
per frame.

4.2 Comparative results

The Clapton video that we used to demonstrate
compression tolerance is an example of a movie for
which the other methods we implemented failed and
has been used to benchmark other algorithms (e.g.,
[4]) . The Clapton sequence is difficult because of
large object motion (the singer) and the long duration
(over 30 frames) of the dissolves. Figure 2 compares
all three methods on the Clapton video, all methods
are intended to produce distinctive peaks at cuts and
dissolves. The data used here is the original decoded
MPEG, not the further JPEG-compressed data illus-
trated earlier.

The intensity histogram difference, shown in fig-
ure 2(b), shows a rise during the first dissolve, and it
is possible that the dual threshold scheme of [14] would
detect this (depending on the exact thresholds used).
However, the second dissolve appears to be indistin-
guishable from the noise. Their method for handling
motion would not help here, since the problem is a
false negative rather than a false positive.

The chromatic scaling feature of [4] is shown in fig-
ure 2(c). As the authors state, their method has diffi-
culty with dissolves involving motion.

4.3 Results on our data set

Our algorithm has been tested on an initial dataset
of over 50 sequences mentioned in section 4.1. This
data set consists of over 10,000 frames of video with
a total of 162 cuts 28 dissolves and 24 fades. Results
for our method and for the dual-thresholding color-
histogramming method described in [14] are given.
A single set of parameters is used with each method
for all the sequences. The parameters for the color-
histogramming method were obtained by searching
for the parameters that minimized the number of er-
rors (false negatives and false positives). The num-
ber of false negatives could not be reduced for color-
histogramming without introducing a much larger
number of false positives. (Note that the histogram
method does not classify scene breaks. All the false

o
=)

o
o

edge change fraction

I
IS

0.2

12

intensity histogram difference

o
®

o
o

Image Constancy

o
IS

0.2

dissolve dissolve

frame #

(a) Edge change fraction (clapton)

dissolve dissolve

frame #

(b) Intensity histogram difference (clapton)

dissolve dissolve

frame #

(c) Chromatic scaling feature (clapton)

150

Figure 2: Results from the clapton sequence

positives listed here exceed the single frame cut-
detection threshold.)

Method False Negatives False Positives
cut fade/dissolve | cut fade/dissolve
Edge Chg. | 0 0 1 9
Histogram | 1 7 7 na

4.4 Performance

The initial implementation of our algorithm is op-
timized for simplicity rather than for speed. However,
its performance is still reasonable. Most of the pro-
cessing time comes from the global motion computa-
tion. We have implemented our algorithm on a Sparc
workstation with a single 50-MHz processor, and with
4 50-MHz processors. Because it is so easy to perform
the motion compensation in parallel, we have obtained
near linear speedups.

The table below shows our implementation’s per-
formance with motion compensation disabled, when
running on the table tennis sequence.

Image dimensions

1 processor

4 processors

88 x 60
176 x 120
352 x 240

11.03 Hz
2.91 Hz
.62 Hz

44.13 Hz
11.63 Hz
2.48 Hz

The next table shows the performance when using a
simple Hausdorff-distance based motion compensation
scheme. The running time is linear in the number
of disparities considered. Data is shown for a range
of disparities which has been adequate for images of
these sizes.

Image dimensions

1 processor

4 processors

88 x 60
176 x 120
352 x 240

9.14 Hz
1.49 Hz
.15 Hz

36.57 Hz
5.95 Hz
.6 Hz

The performance on our corpus of MPEG movies was
typically around 2 frames per second on a single pro-
Ccessor.

4.5 Limitations

In our experience, our algorithm’s failures involve
false positives which result from very rapid motion
of large objects. We are developing methods to help
eliminate false positives, including the motion segmen-
tation scheme described in section 5.2. These methods
are not yet fully implemented and were not used when
generating the above results.

b

lCa roli na\

Figure 3: Example of caption localization

5 Extensions

We also address two problems in video browsing
beyond scene break detection. First, incoming and
outgoing pixels can be used to identify other produc-
tion effects, such as textual overlays. Second, our mo-
tion estimation methods can be extended to perform
motion segmentation without local optical flow com-
putation.

5.1 Production effects

We have extended our work on scene break detec-
tion to handle other production effects involving over-
lays. Many broadcast videos also provide some kind
of textual overlay. For example, news broadcasts of-
ten begin a story by overlaying the location of the
reporter. Similarly, a number of movies and television
shows overlay the opening credits on top of a scene.

These textual overlays contain significantly more
information than scene breaks, but they share some
similarities. Textual overlays can suddenly appear and
disappear (like a cut), or gradually fade in and fade
out (like a dissolve). The pixels in the textual overlay
should show up as incoming pixels when they appear,
and as outgoing pixels when they disappear.

An example is shown in figure 3. The title caption
is overlayed on a “busy” sequence of a waterfall and
appears instantaneously, in a manner similiar to a cut.
There are significant edges in the background, which
causes some degradation in the output; however, the
captions clearly show up as incoming edges.

5.2 Motion segmentation

We have developed a simple scheme for motion seg-
mentation that does not require estimating local op-
tical flow. It is based on the motion compensation
scheme described in section 3.1, which performs a sin-
gle estimate of global image motion. The advantage of
our approach is that global image motion can be esti-
mated much more efficiently than local motion. We
address two related problems: first, computing the
secondary motion; and secondly, segmenting the im-
age into pixels undergoing different motions. As an

example, we will analyze a sequence where a camera
pans to track a fast-moving ice skater.

5.2.1 Computing the secondary motion

Correlation-based methods for computing motion
compute the shift (displacement) that makes the two
images most similar. The similarity of the two images
is a scalar function of the displacement; this similar-
ity forms an error surface. The motion estimate is
the displacement with the highest peak in the error
surface.? Figure 4 shows the error surfaces for two
motion algorithms, for a scenes with one and two mo-
tions. Besides the standard sum of squared differences
(L2) error measure, we also show the results from us-
ing the census transform [13] to compute motion. Note
that the standard (Lz) correlation method yields an
error surface which does not show the presence of the
second motion. The census transform, on the other
hand, shows the second motion clearly as a second
bump.

(b) Census transform correlation

Figure 4: Error surfaces for motion algorithms, for
scenes with one motion (left) and two motions (right).

2For ease of viewing, we have displayed the similarity be-
tween the images. But we will use the “error surface” terminol-
ogy, since it is standard.

We observed that in sequences with two motions
there was always a clear secondary peak in the er-
ror surface. This suggested a simple method for com-
puting the second motion, namely finding the second
highest isolated peak. Note that such dual-peak de-
tection methods have been used with local motion es-
timation before, to compute discontinuities [9] and
to segment objects [11]. Results from this approach
are shown in figure 5. The z displacements are dis-
placed for the primary (shown as a line) and secondary
(shown with asterixes) motions. Note that around
frame 60 the primary motion and the secondary mo-
tion switch. This occurs because the skater is mov-
ing towards the camera, and becomes larger than the
background.

20

T T T T
camera pans left, remains centered on skater

151

101

predominant motion

Motion in the x—dimension
a1
T

-10 I I I I I
0 20 40 60 80 100 120

frame #

Figure 5: Primary and secondary motions in ice skater
sequence.

5.2.2 Segmenting the image

Once the primary and secondary motion have been
computed, we next attempt to classify the individual
pixels. Our solution to this problem involves the indi-
vidual pixel error scores when the images are shifted
by the primary motion, and when they are shifted by
the secondary motion.

We can now classify pixels based on their error
scores at the primary and secondary displacements.
Indistinct pixels (for example, those from areas with
low texture) will have similar error scores at both dis-
placements. Pixels with small errors at the primary
displacement but large errors at the secondary dis-
placement will be classified as undergoing the primary
displacement. Similarly, pixels in the opposite situ-

ation will be classified as undergoing the secondary
displacement.

The results of this approach can be improved by
first box-filtering the error scores. Figure 6 shows
some results on the ice skater sequence. Pixels deter-
mined to be undergoing the primary motion are dis-
played at right, while other pixels are shown in black.
Note the two small black patches on the skater’s torso;
these are regions with minimal texture.

Figure 6: Original image, and pixels segmented as un-
dergoing primary motion.

Conclusions

We have shown how by using edges and motion it
is possible to detect scene breaks, find captions, and
perform motion segmentation. There are a number of
obvious extensions to this work. For example, it is
possible that the output of our caption detector can
be piped into an OCR system. This would provide an
automatic source of textual information about video
without relying on manual annotation or speech recog-
nition.
Acknowledgements

Justin Miller is supported by a grant from the GTE
Research Foundation.

References

[1] Gilad Adiv. Determining three-dimensional mo-
tion and structure from optical flow generated
by several moving objects. IEEE Transactions
on Pattern Analysis and Machine Intelligence,
7(4):384-401, July 1985.

[2] Serge Ayer and Harpreet Sawhney. Layered repre-
sentation of motion video using robust maximum-
likelihood estimation of mixture models and MDL
encoding. In 5th International Conference on
Computer Vision, Cambridge, MA, pages 777-
784, 1995.

[3] M. Flickner et al. Query by image and video
content: The QBIC system. IEEE Computer,
28(9):23-32, September 1995.

[4] Arun Hampapur, Ramesh Jain, and Terry Wey-
mouth. Production model based digital video seg-
mentation. Journal of Multimedia Tools and Ap-
plications, 1:1-38, March 1995.

[5] Daniel Huttenlocher, Greg Klanderman, and
William Rucklidge. Comparing images using
the Hausdorfl distance. IEEE Transaclions
on Pattern Analysis and Machine Intelligence,
15(9):850-863, 1993.

[6] Akio Nagasaka and Yuzuru Tanaka. Automatic
video indexing and full-video search for object ap-
pearances. In 2nd Working Conference on Visual
Database Systems, October 1991.

[7] K. Otsuji and Y. Tonomura. Projection-detecting
filter for video cut detection. Multimedia Systems,
1:205-210, 1994.

[8] Alex Pentland, Rosalind Picard, Glorianna Dav-
enport, and Ken Haase. Video and image se-
mantics: Advanced tools for telecommunications.
IEEE Multimedia, 1(2):73-75,1994. Also appears
as MIT Media Lab technical report 283.

[9] Anselm Spoerri and Shimon Ullman. The early
detection of motion boundaries. In International
Conference on Computer Vision, pages 209218,
1987.

[10] John Wang and Edward Adelson. Representing
moving images with layers. IFEE Transactions
on Image Processing, 3(5):625—638, September
1994.

[11] John Woodfill. Motion Vision and Tracking for
Robots in Dynamic, Unstructured Environments.
PhD thesis, Stanford University, August 1992.

[12] Ramin Zabih, Justin Miller, and Kevin Mai. A
feature-based algorithm for detecting and classi-
fying scene breaks. In ACM Multimedia Confer-
ence, 1995.

[13] Ramin Zabih and John Woodfill. Non-parametric
local transforms for computing visual correspon-
dence. In Jan-Olof Eklundh, editor, 3rd Furopean
Conference on Computer Vision, number 801 in
LNCS, pages 151-158. Springer-Verlag, 1994.

[14] HongJiang Zhang, Atreyi Kankanhalli, and
Stephen William Smoliar. Automatic partition-
ing of full-motion video. Multimedia Systems,
1:10-28, 1993.

