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Abstract

Most visual features are parametric in nature, including, edges, lines, corners, and

junctions. We propose an algorithm to automatically construct detectors for arbitrary para-

metric features. To maximize robustness we use realistic multi-parameter feature models and

incorporate optical and sensing e�ects. Each feature is represented as a densely sampled

parametric manifold in a low dimensional subspace of a Hilbert space. During detection, the

vector of intensity values in a window about each pixel in the image is projected into the sub-

space. If the projection lies su�ciently close to the feature manifold, the feature is detected

and the location of the closest manifold point yields the feature parameters. The concepts of

parameter reduction by normalization, dimension reduction, pattern rejection, and heuristic

search are all employed to achieve the required e�ciency. Detectors have been constructed

for �ve features, namely, step edge (�ve parameters), roof edge (�ve parameters), line (six

parameters), corner (�ve parameters), and circular disc (six parameters). The results of de-

tailed experiments are presented which demonstrate the robustness of feature detection and

the accuracy of parameter estimation.

Index Terms: Feature detection, parametric features, feature modeling, optical e�ects, sen-

sor e�ects, feature manifolds, parameter normalization, dimension reduction, nearest neighbor

search, step edges, roof edges, corners, lines, circular discs, relaxation.
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1 Introduction

Many applications in image processing and computational vision rely upon the robust detec-

tion of parametric image features. The standard example of a parametric feature is the step

edge. It is by far the most frequently studied feature due to its abundance in natural scenes,

its high information content, and the fact that its simple one-dimensional structure makes

analysis tractable. Nevertheless, the step edge is by no means the only feature of interest

in image understanding. It is closely followed in signi�cance by other ubiquitous features

such as lines, corners, junctions, and roof edges 1. This list is far from comprehensive, even

if we restrict attention to features that can be de�ned analytically. Moreover, in any given

application, the term feature may take on a meaning that is speci�c to that application. For

instance, during the inspection or recognition of a manufactured part, a subpart such as bolt

may be the feature of interest. The appearance of such a feature in an image may well depend

upon a number of parameters such as orientation, localization, scale, and level of blurring.

In short, parametric features are too numerous to justify the process of manually deriving a

detector for each one.

The objective of this paper is to develop an algorithm that automatically constructs a

feature detector for an arbitrary parametric feature. Further, during detection we also wish to

recover the parameters of detected features and, in particular, do so with as high accuracy as

possible. In many applications, precise estimates of feature parameters are of vital importance

to higher levels of visual processing. A simple example is that of the generalized Hough

transform where accurate knowledge of edge direction reduces the dimension of the Hough

space by one. Likewise, the performance of boundary growing algorithms can be dramatically

enhanced when the orientation of image edgels is used to guide the growth of the boundary.

To obtain high performance in both detection and parameter estimation, it is essential

to accurately model the features as they appear in the physical world. Hence, we choose not

1Given the extent to which feature detection has been studied, a complete survey of previous work is

well beyond the scope of this paper. In our discussion we will provide examples of existing detectors with-

out attempting to mention all of them. Further, we focus on detectors that �t parametric feature mod-

els to the image intensities rather than detectors based on the gradient (e.g. [Prewitt 70]), Laplacian (e.g.

[Marr and Hildreth 80]), second directional derivatives (e.g. [Canny 86] [Haralick 84]), Hessian determinant

(e.g. [Deriche and Giraudon 93]), or other di�erential invariants. A concise description of one-dimensional

image features (e.g. step edges, roof edges, and lines) and a survey of step edge detectors can be found in

[Nalwa 93]. The papers by Rohr [Rohr 92] and Deriche and Giraudon [Deriche and Giraudon 93] cover most

of the previous work concerning the two-dimensional problems of corner detection and junction detection.
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to make any simpli�cations for analytic or e�ciency reasons, but instead use realistic multi-

parameter feature models. Whereas many step edge models assume that the edge passes

directly through the center of the pixel and is a perfect step discontinuity, we include a

localization parameter and a blurring parameter. These parameters enhance the robustness

of detection while at the same time being useful parameters to recover in their own right. Our

model of the step edge has �ve parameters, namely, the lower brightness level, the brightness

di�erence across the step, the angle (orientation) of the edge, the intrapixel location, and the

blurring (scaling) parameter. Our arguments in favor of highly descriptive feature models

apply to other features as well. We use a �ve parameter model for roof edges, a six parameter

model for lines, a �ve parameter model for corners, and a six parameter model for circular

discs.

In most previous work, feature detectors have been designed in the continuous domain

based upon continuous feature models. The detectors developed are only sampled as a �nal

step before their application to discrete images. We argue that to fully optimize the per-

formance of a detector, careful consideration must be given to how the sensor converts the

continuous radiance function of a scene feature into its discrete image. For instance, the aspect

ratio of an image sensor may signi�cantly a�ect the appearance of a feature in an image. Per-

haps less obvious are the e�ects of the shape and size of the photosensitive elements within a

CCD image sensor. Our notion of a parametric feature model is a continuous one, but during

detector construction we explicitly model the discretization of the sensor. The sensor model

used is that of a standard CCD imaging device which integrates the radiance function over a

sub-rectangle of each sensor pixel. The sub-rectangle corresponds to the pixel photosensitive

area, which in general is not the entire pixel. In addition to the sensing discretization, we also

model the blurring caused by the optical transfer function of the imaging optics.

When combined, a parametric feature model and an imaging system model allow us

to accurately predict the pixel intensity values in a window around an imaged feature. All

that is required are the parameters of the feature and the details of the imaging system. If

we treat the pixel intensity values as real numbers, we can regard each parametric feature

instance as a point in <N , where N is the number of pixels in the window surrounding the

feature. As the feature parameters vary, the point in <N corresponding to the feature traces

out a k-dimensional manifold, where k is the number of feature parameters. In this setting,

feature detection can be posed as �nding the closest point on the feature manifold to the

point in <N corresponding to the pixel intensity values in a novel image window. If the
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closest manifold point is near enough, we register the presence of the feature. Then, the

exact location of the closest point on the manifold reveals the parameters of the feature just

detected. On the other hand, if the nearest manifold point is too far away from the novel point,

we declare the absence of the feature. This statement of the feature detection problem was �rst

introduced by Hueckel [Hueckel 71], and was subsequently used by O'Gorman [O'Gorman 78],

Hummel [Hummel 79], Hartley [Hartley 85], and Nalwa and Binford [Nalwa and Binford 86]

for the detection of step edges. Hueckel [Hueckel 73] applied the same formulation to line

detection and Rohr [Rohr 92] used it to detect corners. The same approach generalizes to

three-dimensional image data as was used by Zucker and Hummel [Zucker and Hummel 81]

and also by Lenz [Lenz 87] in the detection of three-dimensional step edges.

Hueckel [Hueckel 71] and Hummel [Hummel 79] both argued that to achieve the re-

quired e�ciency, a closed form solution must be found for the parameters of the closest

manifold point. To make their derivations possible, they used simpli�ed feature models and

neglected sensing e�ects. Our view of feature detection is radically di�erent. We believe that

the features we wish to detect are inherently complex visual entities. Hence, we willingly

forego all hope of �nding closed-form solutions for the best-�t parameters. Instead, we dis-

cretize the search problem by densely sampling the feature manifold. The closest point on the

manifold is then approximated by �nding the nearest neighbor amongst the sample points.

Typically, this sampling will result in the order of 105 points, which lie in a space of dimension,

N = 25{100. Further, the search for the closest manifold point must be repeated for each

window (centered around each pixel) in the image. Nalwa and Binford [Nalwa and Binford 86]

and Rohr [Rohr 92] used more complex feature models than Hueckel and Hummel and also

used numerical methods to �nd the best-�t parameters of their models to the image data.

At �rst glance, applying a high dimensional search for every pixel in an image seems

ine�cient to the point of impracticality. However, we will show that our approach is indeed

very practical. To obtain the required e�ciency we used a number of di�erent techniques.

First, we introduce a set of simple normalizations that eliminate some of the parameters and

so reduce the dimensionality of the manifold to 3 or 4 (for the �ve features which we experi-

mented with). These normalizations cause no signi�cant loss of information or reduction in the

signal-to-noise ratio. Next, we apply the Karhunen-Lo�eve expansion [Oja 83], as a dimension

reduction technique. This enables us to improve e�ciency by projecting the feature manifold

into a subspace of dimension, d � N . Dramatic dimension reduction is possible because

most features of interest have signi�cant structure and inherent symmetries. In practice, d
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turns out to be in the range 5{15. Dimension reduction was �rst used in feature detection by

Hummel [Hummel 79] and a similar compressed representation was proposed for 3-D object

recognition and pose estimation in [Murase and Nayar 95].

During the search itself, we use a coarse-to-�ne algorithm that exploits the local

smoothness of the feature manifolds to quickly �nd the closest sample point. Further, we

do not need to perform the search at every pixel in the image. Amongst other techniques, we

use a recently developed rejection algorithm [Baker and Nayar 96] to quickly eliminate a vast

majority of pixels without even needing to project fully into the low dimensional subspace.

Such a rejection scheme is feasible and e�ective since most pixels in an image do not represent

features of interest. With all the above e�ciency enhancements in place, our feature detectors

take only a few seconds on a standard single-processor workstation when applied to a 512�480
image. Given the enormous strides being made in memory and multi-processor technology, it

is only a matter of time before real-time performance is achieved.

The remainder of this paper is organized as follows. In the next section, we introduce

the notion of a parametric scene feature and discuss our sensor models. We show how features

may be represented as parametric manifolds, and then describe the e�ciency enhancements

achievable through parameter normalization and dimension reduction. In Section 3, we in-

troduce our �ve example features, namely, step edges, lines, corners, roof edges, and circular

discs. In each case, we present the feature model, the result of dimension reduction, and the

feature manifold. In Section 4, the detection algorithm is presented in detail. In particular, we

describe manifold sampling, e�cient search, and the use of rejection techniques. In Section 5,

our experimental results are presented, which include comparisons with the Canny [Canny 86]

and Nalwa-Binford [Nalwa and Binford 86] step edge detectors. We conclude in Section 6 with

a discussion of several issues arising from our work.

2 Parametric Feature Representation

We begin by presenting the theoretical basis of our approach to feature detection. First,

the notion of a parameterized scene feature is introduced. Then, we describe the artifacts

introduced by the imaging system as it maps a scene feature to its discrete image. Finally,

parameter normalization and dimension reduction techniques are used to obtain parametric

feature manifolds in low-dimensional subspaces.

4



2.1 Parametric Scene Features

By a scene feature we mean a geometric or photometric phenomenon in the physical world

that produces spatial radiance variations which, if detectable, can aid in visual perception.

It is known that image brightness is proportional to scene radiance [Horn 86]. The image

feature is therefore the continuous radiance function of the scene feature. It can be written

as F c(x; y;q) where (x; y) 2 S are image points within a �nite feature window, S, and q

are the parameters of the feature. For instance, in the case of a step edge q would include

edge orientation and the brightness values on the two sides of the edge. In the case of a

corner q would include the orientation of the corner, the angle subtended by the corner, and

the brightness values inside and outside the corner. To fully specify a feature, we need to

provide the feature radiance function, F c(x; y;q), the feature window, S, and the ranges of

the parameters, q.

2.2 Modeling Image Formation and Sensing

Previous work on feature detection has implicitly assumed that the artifacts induced by the

imaging system are negligible and can be ignored. There are two possible reasons for this.

First, some of the artifacts are nonlinear in nature and would make the derivation of the detec-

tor, as approached before, more cumbersome. Second, the e�ects introduced by the imaging

system are typically less pronounced than those that result from the feature parameters them-

selves. For reasons that will become clear shortly, we are able to incorporate both linear and

nonlinear e�ects in our feature model. Hence, we choose to make our feature models as precise

as possible by incorporating image formation e�ects.

The �rst such e�ect is the blurring of the continuous feature image. If the scene

feature lies outside the focused plane of the imaging system, its image will be defocused.

Further, the �nite size of the lens aperture causes the optical transfer function of the imag-

ing system to be bandlimited in its spatial resolution. Finally, the feature itself, even before

imaging, may be somewhat blurred. For instance, a real scene edge would not be a perfect

step but rather rounded. The magnitude of this a�ect in image space is spatially variant

and also depends upon the magni�cation of the imaging system. Moreover, the level of

defocus is not constant across the image and so we will develop an approach that can han-

dle spatially varying blur. The defocus factor can be approximated by a pillbox function

[Born and Wolf 65], the optical transfer function by the square of the �rst-order Bessel func-
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tion of the �rst kind [Born and Wolf 65], and the blurring due to imperfections in the feature

by a Gaussian [Koenderink 84]. We combine all three e�ects in a single blurring factor that

is assumed to be a 2-D Gaussian:

g(x; y; �) =
1

2��2
exp(�1

2
� x

2 + y2

�2
) (1)

The continuous image on the sensor plane is converted (typically by a CCD detector)

to a discrete image through two processes. First, the light ux falling on each sensor element

is averaged, or integrated. If the pixels are rectangular [Barbe 80] [Norton 82], the averaging

function is simply the rectangular function [Bracewell 78]:

a(x; y) =
1

wxwy

2�(
1

wx

x;
1

wy

y) (2)

where, wx and wy are the x and y dimensions of the pixel, respectively. Next, the pixels are

sampled, which can be modeled by a rectangular grid:

s(x; y) = 2III( 1
px
x; 1

py
y) (3)

where, px and py are spacings between discrete samples in the two spatial dimensions. The

�nal discrete image of a feature may then be written as:

F (x; y;q) = fF c(x; y;q) � g(x; y) � a(x; y) g : s(x; y) (4)

where � is the 2-D convolution operator. (Note that g(x; y), a(x; y), and s(x; y) are all unit

volume and so the feature image is not scaled.) Since the above image is simply a weighted

sum of Kronecker delta functions [Bracewell 78], it can also be written as F (m;n;q), where

(m;n) 2 S are the (integer valued) pixel coordinates.

It is important to note that the blurring, averaging, and sampling functions vary from

sensor to sensor. Above, we have assumed the pixels and the sampling to be rectangular. In

practice, these functions should be selected based on the speci�cations of the actual sensor

used. More generally, a model of the imaging system is a functional that takes the continuous

radiance function F c(x; y;q) and maps it to the discrete function F (m;n;q).

2.3 Parametric Feature Manifolds

If the total number of pixels in the feature window is N , then each feature instance, F (m;n;q);

may be regarded as a point in the N -dimensional Hilbert space, <N . Suppose the feature has
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k parameters (dim(q)=k). Then, as the parameters vary over their ranges, the corresponding

feature instances trace out a k-parameter manifold in <N . Therefore, any parametric feature

may be represented as a multivariate manifold in a high-dimensional space. Feature detection

can then be posed as �nding the closest point on the feature manifold to each novel candidate

window in the image. Performing this task directly using the feature manifold is impractical

for reasons of e�ciency due to the high dimensionality of the Hilbert space (N) and the

manifold itself (k). In the following two subsections, we present techniques that dramatically

reduce the dimensionality of the manifold and the space in which it lies, thereby making the

feature manifold a viable representation for feature detection and parameter estimation.

2.4 Parameter Reduction by Normalization

For each feature instance F (m;n;q), we compute its mean �(q)= 1
N

P
(n;m)2S F (m;n;q); and

its magnitude �2(q) =
P

(n;m)2S (F (m;n;q)� �(q))2. The following brightness normalization

is then applied:

F (m;n;q) =
1

�(q)
(F (m;n;q) � �(q) ) (5)

This simple normalization proves to be very valuable. For all of the features we implemented,

it reduced the dimensionality of the feature manifold by two. This is because F (m;n;q)

turns out to be approximately independent of two of the brightness parameters in q. For

instance, in the case of the step edge the normalized feature F (m;n;q) is invariant to the

brightness values on either side of the step. It is only the values of � and � that change

with the two brightness parameters. There are three important points to note about this

brightness normalization: (a) it does not alter the signal-to-noise ratio of the feature, (b) the

normalization must be applied not only during the construction of the feature manifold but

also during feature detection, and (c) once a normalized feature has been detected, its mean

� and magnitude � can be used to recover the two brightness parameters eliminated during

normalization. See Appendix A for the details.

2.5 Dimension Reduction

For several reasons, such as feature symmetries and high correlation between feature in-

stances with similar parameter values, it is possible to represent the feature manifold in a
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low-dimensional subspace of <N without signi�cant loss of information2. If correlation be-

tween feature instances is the preferred measure of similarity, the Karhunen-Lo�eve (K-L)

expansion [Oja 83][Fukunaga 90] yields the optimal subspace.

The covariance matrix R = E[(F � E[F ])(F � E[F ])T ] represents the correlation be-

tween corresponding pixels in the di�erent feature instances. The normalized feature instances

F are N -dimensional vectors, and so R is a symmetric N �N matrix. The reduced space is

computed by solving the eigenstructure decomposition problem:

Re = � e (6)

The result is the set of eigenvalues f�j j j = 1; 2; :::; N g where �1 � �2 � ::::: � �N � 0,

and a corresponding set of orthonormal eigenvectors f ej j j = 1; 2; :::; N g. Due to the

inherent structure and symmetries of most parametrized features, the �rst few eigenvalues

tend to be signi�cantly larger than the remaining ones. This allows us to represent features

in a low-dimensional subspace spanned by the few most prominent eigenvectors. Suppose we

use the �rst d eigenvectors, then a measure of the information discarded is the K-L residue

de�ned by:

R(d) =
NX

j=d+1

�j (7)

To give an idea of the data compression possible, a step edge manifold in a 49-D Hilbert space

can be represented in a 3-D subspace with K-L residue of less than 10%. Moving to an 8-D

subspace reduces the residue to less than 2%.

The parametric feature manifold is constructed by projecting all feature instances into

the subspace. This requires the dot products (convolution) of each feature instance with the

prominent eigenvectors that serve as a basis for the subspace. Since such a parameterized

feature manifold is easy to compute for any feature, we have at our disposal a generic tool

for designing feature detectors. Further, the dramatic dimension reduction produced by the

K-L expansion together with the parameter elimination achieved through the brightness nor-

malization described in Section 2.4 allow us to compactly represent features and detect them

e�ciently.

2This idea was �rst explored by Hummel [Hummel 79] and later by Lenz [Lenz 87]. Whereas Hummel

derived closed-form solutions for the optimal subspace based upon simpli�ed feature models, our approach is

to use elaborate feature models and numerical methods. This results in higher precision and greater generality

[Nayar et al. 96]. A similar approach has been adopted by Nandy et al. [Nandy et al. 96] in concurrent work.

8



3 Example Features

We now illustrate the manifold representations of 5 parametric features. For each feature,

we provide a de�nition of the feature, list its parameters, discuss the e�ects of brightness

normalization, and present the results of dimension reduction. The features we have chosen

are merely examples that happen to be important in machine vision. The techniques are not

restricted to brightness images, but may also be applied to features found in data produced

by most other types of sensors.

3.1 Step Edge

Our �rst example feature is the familiar step edge. Parametric models for edges date back to

the work of Hueckel [Hueckel 71]. Since then, the edge has been studied in more detail than

any other visual feature (see [Nalwa 93]). Figures 1(a) and 1(b) show the isometric and plan

views of the step edge model which we use. This model is a generalization of those used in

[Hueckel 71], [Hummel 79], and [Lenz 87]. It is closest to the one used by Nalwa and Binford

[Nalwa and Binford 86] in terms of the number and type of parameters, but di�ers slightly in

its treatment of smoothing e�ects. The basis for the 2-D step edge model is the 1-D unit step

function:

u(t) =

8>><
>>:

1 if t � 0

0 if t < 0

(8)

A step with lower intensity level, A, and upper intensity level, A + B, can be written as

A + B � u(t). To extend the model to 2-D, we assume that the step edge is of constant cross

section (step size along its length), is oriented at an angle �, and lies at a distance � from the

origin. Then, the signed distance of an arbitrary point (x; y) from the step (see Figure 1(b))

is given by:

z = y � cos � � x � sin � � � (9)

Therefore, an ideal step edge is given by A+B �u(z). For the reasons given in Section 2.2, we

need to incorporate the Gaussian blur and the integration over each pixel performed by the

sensor. The resulting step edge model is:

F SE(x; y;A;B; �; �; �) = f (A+B � u(z)) � g(x; y; �) � a(x; y) g : s(x; y) (10)

where z is given by equation (9). Note that the step edge model has 5 parameters, namely,

orientation �, localization �, blurring or scaling �, and the brightness values A and B.

9



x

y

I

A

A+B

y

x

z

θ

ρ

A

A+B

(a) Step edge model (b) Plan view

"se.man"

-0.5
0

0.5
-0.5

0

0.5

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

(e) Step edge parametric manifold

ρ

θ

(d) Decay of the K-L residue(c) First 8 eigenvectors

1 2 3 4

5 6 7 8
0

0.2

0.4

0.6

0.8

1

2 4 6 88 10 12 14 16 18 20

"step_edge_disc9x9.eval"
1.0

0.8

0.6

0.4

0.2

0.0
2 4 6 8 10 12 14 16 18 20

S

Figure 1: The step edge model includes two constant intensity regions of brightness A and A+B. Its

orientation and intrapixel displacement are given by the parameters � and �, respectively. The �fth

parameter (not shown) is the blurring factor �. The decay of the K-L residue shows that 90% of the

edge image content is preserved by the �rst 3 eigenvectors and 98% by the �rst 8 eigenvectors. The

step edge manifold is parameterized by orientation and intrapixel localization for a �xed blurring

value and is displayed in a 3-D subspace constructed using the �rst three K-L eigenvectors.
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To complete our de�nition of the step edge, we need to specify the ranges that the

parameters may take. Distances are measured in units of the distance between two neighboring

pixels and angles are given in degrees. The orientation parameter, �, is drawn from [0o; 360o].

We restrict the localization parameter, �, to lie in [�
p
2
2
;
p
2
2
], since any edge must pass closer

than a distance
p
2
2
from the center of at least one pixel in the image. The blurring parameter,

�, is drawn from [0:3; 1:5]. As described in [Nalwa and Binford 86], substantially larger values

of � could be used, but really represent an edge at a much higher magni�cation. Such cases

require the use of a larger image window. The intensity parameters A and B are free to

take any value. This is because of the brightness normalization described in Section 2.4. The

structure of a normalized step edge, given by the parameters �; �, and �, is independent of A

and B. Further, the values of A and B may be recovered from the mean � and the magnitude

� as described in Appendix A.

The results of applying the Karhunen-Lo�eve expansion are displayed in Figures 1(c)

and 1(d). In Figure 1(c) we display the 8 most important eigenvectors, ordered by their

eigenvalues. The similarity between the �rst 4 eigenvectors and the ones derived analytically

by Hummel in [Hummel 79] is immediate. On closer inspection, we notice that while Hummel's

eigenvectors are radially symmetric, the ones we computed are not. This is to be expected since

the introduction of the parameters � and � breaks the radial symmetry that Hummel's edge

model assumes. While Hummel's eigenvectors are optimal for his edge model, our results imply

that they are not optimal for our, more complex, edge model. It is also interesting to note

that the �rst two eigenvectors resemble �rst-order spatial derivative operators that constitute

the basis of many popular edge detectors (for instance the Sobel operator [Prewitt 70]).

The window chosen for our edge model includes 49 pixels. To avoid unnecessary non-

linearities induced by a square window we used a disc shaped one. In Figure 1(d), the decay of

the Karhunen-Lo�eve residue is plotted as a function of the number of eigenvectors. As can be

seen from the residue plot, the �rst two eigenvectors capture only about 80% of the information

in an edge. Consequently, edge detectors that rely solely on the two �rst-order derivatives can

only suggest the possible existence of an edge but not guarantee it. To reduce the residue to

10% we need to use 3 eigenvectors. To reduce it further to 2% we need 8 eigenvectors. These

results illustrate a signi�cant data compression factor of 5-15 times. As a result, the e�ciency

of feature detection and parameter estimation is greatly enhanced. Hummel [Hummel 79]

predicts that for his continuous step edge model, the eigenvalues should decay like 1=n2. Our

results are consistent with this. By plotting �n against n on logarithmic scales and analyzing
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the slope of the curve, we found that our eigenvalues initially decay like 1=n2. Because we are

working in <N rather than the in�nite dimensional Hilbert Space of [Hummel 79], the rate of

decay increases somewhat with increasing n.

The step edge manifold is displayed in Figure 1(e). Naturally, we are only able to display

a 3-D projection of it into a subspace. This subspace is spanned by the 3 most important

eigenvectors. Also, for clarity, we only display a 2 parameter slice through the manifold, by

keeping � constant and varying � and �. As mentioned earlier, the �rst 3 eigenvectors capture

more than 90% of the information. This is reected in Figure 1(e), where most points on the

manifold are seen to lie close to unit distance from the origin. Note that the four apparent

singularities of the manifold are simply artifacts of the projection into the 3-D subspace. If

we were able to visualize a higher dimensional projection, the singularities would disappear.

3.2 Roof Edge

The roof edge is similar to the step edge. However, unlike the step edge, it has not been

explored much in the past despite having been acknowledged as a pertinent feature [Nalwa 93].

The di�erence between the two edge models is that the step discontinuity is replaced by a

uniform intensity gradient as shown in Figure 2(a). A formal de�nition is obtained by replacing

A+B � u(z) with A�M � z � u(z); where A is the upper intensity level of the roof, and M is

the gradient, or slope, of the roof. The result is a 5 parameter model:

FRE(x; y;A;M; �; �; �) = f (A�M � z � u(z)) � g(x; y; �) � a(x; y) g : s(x; y) (11)

where u(z) and z are as de�ned for the step edge. The parameter ranges which we used for the

roof edge are: � 2 [0o; 360o], � 2 [�
p
2
2
;
p
2
2
], and � 2 [0:4; 1:0]. The range of sigma is less than

that for the step edge since blur has more e�ect on the roof edge for the same size window.

Increasing the size of the window would allow a larger range for sigma. The parameters A and

M are free. As with the step edge, the structure of the normalized roof edge is independent

of A and M , and their values are easily recovered from the normalization coe�cients � and

�. See Appendix A for the details.

The results of applying the Karhunen-Lo�eve expansion, as shown in Figures 2(c) and

2(d), are similar to those for the step edge. The K-L residue decays slightly faster as should

be expected since the roof edge more closely resembles a constant intensity region than the

step edge. (The residue of a constant intensity region would decay immediately to zero.) The
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(a) Roof edge model (b) Plan view
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Figure 2: The roof edge model has a region of constant brightness A on one side and a uniform

brightness slope of gradientM on the other. Both parameters A andM are removed by the brightness

normalization. The orientation parameter �, the localization parameter �, and the blur parameter

� are similar to those used for the step edge. The �rst two eigenvectors of the roof edge are similar

to those of the step edge, but after that the K-L residue decays marginally faster. The displayed

slice through the roof edge manifold is parameterized by orientation and intrapixel displacement for

a �xed blurring value.
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�rst two eigenvectors are approximately the same as those for the step edge (at least, up

to a sign change). For the roof edge 3 eigenvectors are needed to capture 90% of the edge

content, and 5 eigenvectors for 98%. The parametric manifold for the roof edge is displayed

in Figure 2(e). The signi�cant di�erence in appearance from the step edge manifold is due

to the di�erence between the third eigenvectors of the two features. The projection onto the

�rst two eigenvectors is similar; it is approximately a circle.

3.3 Line

The line consists of a pair of parallel step edges separated by a short distance, namely, the

width w of the line [Hueckel 73]. Our line model is illustrated in Figure 3(a). In our de�nition,

we assume that the intensity steps are both of the same magnitude. It is possible to generalize

the model to lines with di�erent intensities on either side of the line with the addition of one

extra parameter [Hueckel 73]. The symmetric line model which we use has 6 parameters and

is given by: FL(x; y;A;B; �; �; w; �) =

f (A+B � u(z + w=2)� B � u(z � w=2)) � g(x; y; �) � a(x; y) g : s(x; y) (12)

The ranges of the parameters � and � are exactly as for the roof edge: � 2 [�
p
2
2
;
p
2
2
],

and � 2 [0:4; 1:0]. Given the brightness symmetry in our line model, the orientation range can

be halved to � 2 [0o; 180o]. We restrict the width of the line to w 2 [1:0; 3:5]. The brightness

parameters A and B are free, as for the step and roof edge models, and can be eliminated by

applying the normalization procedures presented in Section 2.4. Again, during detection, A

and B can be recovered from the normalization coe�cients � and � using exactly the same

algorithm as for the step edge.

The result of applying the Karhunen-Lo�eve expansion is a little di�erent from the

results for the previous features. Most signi�cant is the lower rate of decay in the residue, as

seen in Figure 3(d). To reduce the residue to 10% we require 8 eigenvectors, and to reduce it

to 2% we need 22. By this measure, the line is a considerably more complex feature to detect

than an edge. However, the data compression factor is still relatively large, and in the range

of 3-5. It is interesting to note that the line manifold in Figure 3(e) has the structure of a

M�obius band. This follows directly from the following symmetry in the line model:

FL(x; y;A;B; � + 180o; �; w; �) = FL(x; y;A;B; �;��; w; �) (13)
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(a) Line model (b) Plan view
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Figure 3: The line is of widthw, has brightnessA+B on the line itself, and has regions of brightnessA

on either side of the line. In addition, there is the orientation parameter �, the localization parameter

�, and the blur parameter �. 8 eigenvectors are need to capture 90% of the feature content and 22

eigenvectors for 98%. By this measure the line is a more complex feature than an edge. The line

manifold is displayed for �xed values of � and w. It has the structure of a M�obius band.
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3.4 Corner

The corner is a common and hence important image feature [Nobel 88]. Most existing ap-

proaches to corner detection are based upon di�erential geometric measures of curvature such

as the determinant of the Hessian or the second directional derivative orthogonal to the gradi-

ent [Deriche and Giraudon 93]. Recently, Rohr [Rohr 92] proposed a parametric model �tting

approach to detect corners. The simplest way to think about a corner is as the intersection

point of two non-parallel lines. In our corner model, shown in Figure 4(a), �1 is the angle

one of the edges of the corner makes with the y-axis, and �2 the angle subtended by the

corner itself. That is, the corner lies at the intersection of its bounding edges at angles �1

and 180o + �1 + �2. This is illustrated in Figure 4(b). Mathematically, this intersection can

be expressed as the product of two unit step functions. The complete corner model has 5

parameters and is written as: FC(x; y;A;B; �1; �2; �) =

f (A+B � u(z(�1)) � u(z(180o + �1 + �2))) � g(x; y; �) � a(x; y) g : s(x; y) (14)

where, z(�) = y � cos � � x � sin �. The parameter ranges which we used are: �1 2 [0o; 360o],

�2 2 [30o; 120o], and � 2 [0:4; 1:0]. Again, brightness normalization eliminates the parameters

A and B. The decay of the K-L residue, shown in Figure 4(d), is similar to that of the line.

In this case, 7 eigenvectors reduce the residue to below 10%, and 15 eigenvectors are needed

to reduce it to less than 2%. The corner manifold is displayed for �xed � in Figure 4(e).

3.5 Circular Disc

Our �nal example feature is the circular disc which is illustrated in Figure 5(a) and Figure 5(b).

The parameters of the circular disc are its radius r, the direction � that the center P of the

disc makes with the y axis, the disc localization �, and the level of blurring �. The brightness

values inside and outside the disc are A+B and A, respectively. Mathematically, the circular

disc model can be expressed as:

FCD(x; y;A;B; �; �; r; �) = f(A+B � u(r � d(x; y))) � g(x; y; �) � a(x; y) g : s(x; y) (15)

where d(x; y) =
p
((x + (r � �) sin �)2 + (y � (r � �) cos �)2) is the distance of (x; y) from

the point P. The parameter ranges are: � 2 [0o; 360o], � 2 [�
p
2
2
;
p
2
2
], r 2 [3:0; 12:0]; and

� 2 [0:4; 1:0]. Again, brightness normalization removes the e�ects of A and B. The rate

of decay of the K-L residue, as seen from Figure 5(d), is slightly less than that of the step

16



"c4.man"

-0.5
0

0.5
-0.5

0

0.5-1

-0.5

0

0.5

1

x

y

I

A

B

y

x

A

A+B

θ
θ

1
2

(a) Corner model (b) Plan view

(e) Corner parametric manifold

θ1

2θ

(d) Decay of the K-L residue

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16 18 20

"corner_disc11x11.eval"
1.0

0.8

0.6

0.4

0.2

2 4 6 8 10 12 14 16 18 20

1 2 3 4

5 6 7 8

(c) First 8 eigenvectors

S

Figure 4: The corner is described by the brightness values (A and A + B) inside and outside the

corner, the angles �1 and �2 made by its edges, and the blur parameter �. 7 eigenvectors are needed

to preserve 90% of the information and 15 eigenvectors for 98%. The corner manifold is shown for a

�xed value of �.
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(a) Circular disc model (b) Plan view

(e) Circular disc parametric manifold
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Figure 5: The circular disc is described by the brightness parameters A and B, the radius r of the

disc, the angle � subtended by the center of the disc, the localization �, and the blur parameter �.

4 eigenvectors are needed to preserve 90% of the information, and 11 eigenvectors for 98%. The

circular disc manifold is displayed for �xed values of � and r.
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edge. In this case, we need 4 eigenvectors to reduce the residue to 10%, and 11 eigenvectors

to reduce it to below 2%. The �rst 8 eigenvectors are shown in Figure 5(c), and the manifold

in Figure 5(e).

4 Feature Detection and Parameter Estimation

In Section 2 we introduced parametric feature manifolds as a representation for parametric

features, and then in Section 3 we presented 5 example features together with their parametric

manifolds. We now describe how feature detection and parameter estimation are accomplished

in terms of the feature manifolds.

4.1 Sampling the Parametric Manifold

As we saw in Section 3, after eliminating two parameters by applying the brightness normal-

ization of Section 2.4, we are typically left with a manifold of dimension in the range 2{4. For

convenience, we sample each parameter independently and at equally spaced intervals across

its range. Then, the Cartesian product of the parameter sample points is taken and used

to sample the manifold. If the dimension of the manifold is k, the result is sampling at a

k-dimensional mesh of parameter values. For example, we might sample the angle � of the

step edge every 2o, the localization � every 0:1 pixels, and the blurring parameter � every 0:2

pixels. This leaves one question unanswered: How densely should we sample each parameter?

The answer to this question depends on how much varying each parameter a�ects the

visual appearance of the feature. Suppose we measure change in appearance by the Euclidean

distance traveled on the manifold in <N . Then, if changing a particular parameter causes the

appearance to vary rapidly, we should sample it densely in order to capture the full variation

in appearance. If varying a parameter results in only a small change in appearance, then there

is little point in sampling it densely, since the noise inherent in the image will fundamentally

limit the accuracy with which we can estimate that parameter anyway. As a rough guideline,

we should aim for the change in appearance between two neighboring sample points to be

approximately the same as the change in appearance we can expect due to noise.

In the absence of an estimate of the level of noise, we specify the number of sample

points that can be a�orded, for either time or space complexity reasons. Then, we sample

the manifold as uniformly and densely as possible, with approximately that number of sample
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Feature Step Edge Roof Edge Line Corner Circular Disc

No. Sample Points 49500 45300 41040 45650 41328

∆θ 2.007 ∆θ 0.796 ∆θ 2.532 ∆θ 2.171 ∆θ 2.928

∆ρ 0.082 ∆ρ 0.081 ∆ρ 0.106 ∆θ 2.930 ∆ρ 0.144

∆σ 0.136 ∆σ 0.161 ∆σ 0.376 ∆σ 0.122 ∆σ 0.174

∆w 0.218 ∆r 2.282
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Figure 6: Automatically generated sampling intervals for the 5 example features. The intervals are

generated by attempting to ensure that the appearance change (Euclidean distance) between each

pair of neighboring sample points is the same, while at the same time trying to limit the total to

50,000 sample points. This �gure may be used to assess the importance of each parameter to the

model. The most important parameters should be those with the smallest sampling intervals.

points. In Figure 6, we present the output of an algorithm that estimates the average rate

of change of appearance with respect to each parameter, and then uses the estimates to

derive sampling intervals for each parameter. The input to the program was the request

to generate manifold samplings each containing approximately 50,000 sample points. The

output is displayed in a separate column for each feature and consists of the sampling interval

determined for each parameter.

4.2 Search for the Closest Manifold Point

Finding the nearest neighbor amongst a �xed set of points to a given novel point is a well

studied problem in computational geometry, and was �rst posed by Knuth [Knuth 81]. The

more recent paper [Yianilos 93] contains a pretty comprehensive bibliography of algorithms

developed since then. Our problem has more structure than the general nearest neighbor

problem since we know that the points lie on a parametric manifold. So rather than using

any of the general purpose algorithms, we attempt to take advantage of the locally-smooth

nature of the feature manifolds and develop a less general but faster search technique. We

used a 4-level heuristic coarse-to-�ne search. It does not guarantee �nding the closest point for

pathological manifolds, but we found empirically that is performs very well for our 5 example

features all of which have smooth manifolds as can be seen in Figures 1{5. In particular,

for the manifolds sampled at approximately 50,000 points, the coarse-to-�ne search results

in a speed-up by a factor of 50-100 times over linear search through the 50,000 points. The

average error for each parameter of every feature was always less than the spacing between
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neighboring samples.

The coarse-to-�ne search is both conceptually simple as well as very easy to implement.

We sample the manifold several times, giving a sequence of meshes, from a very coarse one

with few points up to the �nest one containing the most points. The �nest mesh is the one

we really wish to search. We begin by �nding the closest point on the coarsest mesh by using

a brute force linear search. This does not cost much in terms of time since the coarsest mesh

does not contain many points. We then move to the next �ner mesh. We search this mesh

locally in the region of the result of the previous level. This search is also a linear brute force

search. It again does not cost much since it is only a local search, and on a relatively coarse

mesh. We repeat this for each mesh in turn, reducing the size of the local search at each step,

until we reach the �nest mesh. The result at the �nest search gives us the answer we are

looking for.

4.3 Further E�ciency Improvements

On a single-processor DEC Alpha 3600 workstation with no additional hardware, the coarse-

to-�ne search for a 3-D manifold in a 10-D space that is sampled at 50,000 points takes

approximately 1ms. So, applying the detector to every pixel in a 512 � 480 image takes

around 4mins. This �gure is by no means the best we can do in terms of e�ciency.

Rejection: We do not need to apply the coarse-to-�ne search at every pixel in the

image. This observation is almost as old as edge detection itself and is explicitly mentioned

in [Hueckel 71]. Combining a variety of techniques, we have already reduced the time to

process a 512 � 480 image to less than a minute. In particular, we currently threshold on

the magnitude, �, obtained during normalization. This technique is similar to Moravec's

interest operator [Moravec 77] used to predict the usefulness of potential stereo correspondence

matches. We also threshold on the distance of the novel point from the K-L subspace. Since

the distance from the subspace is (approximately) a lower bound on the distance from the

manifold, if the distance is too large, we can immediately decide that the pixel does not

contain the feature. Using the techniques in [Baker and Nayar 96], we can even avoid most of

the cost of computing the distance from the K-L subspace.

Parallel Implementation: Feature detection is inherently a parallelizable task. As

high performance multi-processor workstations become commonplace, the times mentioned

above will easily be cut by factors on the order of 10 or more. Also, it is reasonable to expect
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performance increases for the individual processors, further increasing the overall performance.

It is safe to expect that, within a few years, a standard workstation will be able to apply the

proposed detectors in real-time.

5 Experimental Results

Upon surveying the literature, we found a number of methods that have been used to compare

the performance of feature detectors:

� Examine the rates of occurrence of false positives and false negatives when applied to

synthetically generated feature instances. (See, for example, [Fram and Deutsch 75],

[Abdou and Pratt 79], and [Nalwa and Binford 86].)

� Study the accuracy of parameter estimation, either using statistical tests or through an

analytical investigation of systematic biases. (See, for example, [Deutsch and Fram 78],

[Abdou and Pratt 79], [Berzins 84], and [Nalwa and Binford 86].)

� Evaluate measures that combine feature detection rates with parameter estimation ac-

curacy. (One example is Pratt's Figure of Merit [Abdou and Pratt 79] [Pratt 90].)

� Subjectively analyze detector outputs when applied to real or synthetic images. (Almost

all feature detection papers do this.)

We begin this experimental section by presenting the results of a sequence of statistical tests.

In Section 5.1 we study feature detection rates, and then move on to investigate parameter

estimation accuracy in Section 5.2. In both cases, we compare our step edge detector with

those of Canny [Canny 86] and Nalwa-Binford [Nalwa and Binford 86]. In this, our aim is to

demonstrate that the parametric manifold method performs comparably to these well-known

step edge detectors. We also compare the performance of our technique across the �ve example

features, the goal of which is to demonstrate the generality of the approach by showing that

the performance is similar for all �ve features. In Sections 5.3 and 5.4 we present the results

of applying our feature detectors to a number of real and synthetic images.
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5.1 Feature Detection Rates

We �rst statistically compare our step edge detector with the Canny [Canny 86] and Nalwa-

Binford [Nalwa and Binford 86] detectors. For reasons of consistency with previous work,

we follow the approach taken in [Nalwa and Binford 86]. The statistical analysis consists of

two phases. In the �rst phase we generate a number of ideal step edges, add zero-mean

Gaussian noise to them, and then apply the three step edge detectors. Whenever a detector

fails to detect an edge, we increment a count of false negatives. The second phase consists of

generating windows not containing edges, adding noise, and again applying the detectors. If

a detector responds positively to a not-edge we register a false positive.

Although the basic idea behind the comparison is simple, there are a number of di�cult

decisions that need to be made. The �rst problem arises because each detector is based upon

its own model of an edge. Our model and the Nalwa-Binford model are closely related, but the

Canny operator is based upon di�erential invariants rather than a parametric model. Since

we took great care modeling both the features and the imaging system, we used our step

edge model in the comparison. For fairness we changed some of the details slightly. Both the

Canny and Nalwa-Binford detectors assume a constant amount of blur, so we �xed the value

of � in the step edge model to be 0:6 pixels. Secondly, the Nalwa-Binford detector is based

upon a square 5� 5 window, as is the Canny detector in the implementation3 that we used.

Hence, we used a square window containing N = 25 pixels for our detector, rather than the

49 pixel disc window presented in Figure 1. Another issue is the lack of a model for a window

not containing an edge [Nalwa 93]. We resolve this, as in [Nalwa and Binford 86], by taking

a constant intensity window as our characteristic non-edge. Finally, we need to be able to

measure the amount of noise in a consistent way across the �ve features. We de�ne the S.N.R.

of a feature to be 2��
�noise

, where � is the magnitude of the feature as de�ned in Section 2.4 and

�noise is the standard deviation of the added Gaussian noise. The reason for this de�nition is

that for an step edge with no blur in a window and where half of the pixels are on each side of

the edge, the value of the S.N.R. is the size of the step (i.e. the value of parameter B), which

is the measure of S.N.R. used in [Nalwa and Binford 86]

3We used an implementation of the Canny operator provided by Geo� West of Curtin University, Western

Australia, which is publically available from URL http://www.cs.curtin.edu.au/ geoff/. This imple-

mentation computes the Gaussian smoothed gradient which we then immediately threshold to detect edges.

For simplicity, we do not �nd the zero crossing of the second directional derivative. Neither do we perform

hysteresis [Canny 86] since this uses information derived from neighboring windows.
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Figure 7: A comparison of edge detection rates. The Canny (C), Nalwa-Binford (N-B), and para-

metric manifold (PM) detectors are compared for S.N.R. = 1.0 and 2.0. We plot false positives

against false negatives. For each detector and S.N.R., the result is a curve parameterized by the

threshold inherent in that detector. The closer a curve lies to the origin, the better the performance.

We see that the Canny detector and the parametric manifold technique perform comparably. The

results for the Nalwa-Binford detector are consistent with those presented in [Nalwa and Binford 86]

but are of a fundamentally di�erent nature. See text for a discussion of this.

In Figure 7 we compare the detection performance of the three edge detectors. Inherent

in each of the three detectors is a threshold. The Canny operator thresholds on the gradient

magnitude, the Nalwa-Binford detector thresholds on the estimated step size, and our ap-

proach thresholds on the distance from the parametric manifold. As we vary the threshold,

for a �xed level of noise, the relative number of false positives and false negatives changes.

Hence, for each signal-to-noise ratio (S.N.R.), we can plot a curve of false positives against

false negatives parameterized by that detector's threshold. The closer a curve lies to the ori-

gin in Figure 7, the better the performance. We see that both the Canny detector and our

detector do increasingly well as the S.N.R. increases. Further, we note that the two detectors

perform comparably, with our algorithm doing very marginally better4.

4These results di�er slightly from the ones presented in [Nayar et al. 96] as they reect re�nements made
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The results for the Nalwa-Binford detector are consistent with those presented in

[Nalwa and Binford 86]. (We did not use step 2)' of the algorithm.) Independently of the

S.N.R., the percentage of false positives in Figure 7 never exceeds 32%. This validates Fig-

ure 8 of [Nalwa and Binford 86]. Secondly, for a S.N.R. of 1.0, the number of false negatives

in Figure 7 never drops below 56%, whereas in Figure 9 of [Nalwa and Binford 86] its lowest

level is 77%. These two numerical results are slightly di�erent because (a) we use a di�erent

model to generate the ideal step edges, and (b) our de�nition of S.N.R. yields a slightly lower

value than the de�nition in [Nalwa and Binford 86] due to blurred and o� center edges. Com-

paring our results with those in Figure 9 of [Nalwa and Binford 86], we see that our curve for

S.N.R. 1.0 lies somewhere between the two curves for S.N.R. 1.0 and 2.0. The reason that

the Nalwa-Binford performs qualitatively di�erently to the Canny and Parametric Manifold

detectors in Figure 7 is its inherent conservatism in detecting edges, as enforced by steps 4)

and 5) of the Nalwa-Binford algorithm (see page 704 of [Nalwa and Binford 86]).

In Figure 8 we compare the detection rates of our �ve example features. In the �gure,

the curves are all plotted for S.N.R. 1.0, and for a disc shaped window containing 49 pixels.

We see that the performances of the step edge and the circular disc are marginally superior

to that of the other 3 features. We conclude, that the roof edge, corner, and line are slightly

more sensitive to noise. One method of reducing the noise sensitivity is to use a slightly

larger window. If we increase the window size to a disc containing 81 pixels, the performance

is greatly enhanced. We also found that the performance of each of the 5 feature detectors

improves with the S.N.R., just as it does for the step edge in Figure 7. For S.N.R. above

about 3.0, all the detectors perform almost without error.

5.2 Parameter Estimation Accuracy

Assessing the performance of parameter estimation is relatively straightforward when com-

pared to that of feature detection robustness. Again, generalizing the procedure used in

[Nalwa and Binford 86], we randomly generate a vector of feature parameters, synthesize a

feature with those parameters, add a known amount of zero-mean white Gaussian noise, apply

the detector, and then measure the accuracy of the estimated parameters. If we repeat this

procedure a statistically meaningful number of times, the results give a very good indication

of parameter estimation performance when applied to a real image. The issue of which model

to our detector, the de�nition of the S.N.R., and the manner in which the experiments were conducted.
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Figure 8: A comparison of feature detection rates for our �ve example features. All results are for

S.N.R. = 1.0 and for a disc shaped window containing 49 pixels. We see that the step edge and

circular disc are less noise sensitive than the other features. Note however that the noise sensitivity

of all features may be reduced by increasing the size of the window. Further, for S.N.R. around 3.0

and above, all the feature detectors perform with very little error.

we should use to generate the features is still problematic. For the same reasons as before, we

again used our feature models to generate the synthetic features.

In Figure 9 we compare the performance of our step edge detector with that of the

Canny detector [Canny 86] and the Nalwa-Binford [Nalwa and Binford 86] detector. For fair-

ness, as before, we used the parametric step edge detector computed for a 5�5 square window,
and with the blurring parameter �xed at 0:6 pixels. In the �gure, we plot the R.M.S. error

in the estimate of the orientation � against the S.N.R. The plot is consistent with the per-

formance �gures for the Nalwa-Binford detector presented in [Nalwa and Binford 86], after

allowing for the di�erent feature models used and de�nition of S.N.R. We see that for low

S.N.R. the performance of all detectors is severely limited by the noise. However, for all noise

levels, the parametric manifold detector marginally outperforms both of the other detectors.

If we plot a similar graph for the localization parameter � we �nd the behavior to be similar.

In this case however, the performance of the Nalwa-Binford detector is slightly better than
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Figure 9: A comparison of the orientation estimation accuracy for the three step edge detectors.

We took synthesized step edges, added noise to them, and then applied the edge detectors. We plot

the R.M.S. error of the orientation estimate against the S.N.R. At all noise levels, the parametric

manifold approach slightly outperforms both the Nalwa-Binford and Canny detectors.

that of the parametric manifold detector, except at low noise levels.

Next, we compare the performance of our �ve example features. Since all the feature

models have an orientation parameter, in Figure 10 we plot the R.M.S. error in orientation

estimate against the S.N.R. From Figure 10, we see the performance to be very similar for all

our features. Only for the corner is parameter estimation accuracy signi�cantly worst than

the rest. Although we do not have room to show them, we plotted similar graphs for the other

parameters. Qualitatively the results are all similar. We now summarize some of the more

interesting points:

� The plot for the localization parameter � shows that the step edge, roof edge, and

circular disc all perform very similarly. The performance for the line is noticeably better,

presumably because it is an average over two estimates, one for each of the two parallel

step edges.

� Estimating A is easier for the corner and line than for the step edge, but estimating B is
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Figure 10: A comparison of orientation estimation accuracy across the �ve features. Since all the

features have an orientation parameter, we use it to compare the performance. We plot the R.M.S.

orientation estimation error against the S.N.R. The graph shows that the performance for all �ve

features is approximately the same.

more di�cult. This reects the relative areas occupied by the lower and upper intensity

levels in these features.

� It is harder to estimate �2 for the corner than it is to estimate �1. Probably for related

reasons, estimating the width of the line is harder than estimating the localization.

5.3 Application to Synthetic Images

In Figures 11(b){(f) we display the results of applying the �ve example detectors to the

noisy synthetic image in Figure 11(a). The synthetic image is of size 128 � 128 pixels and

contains a pentagonal region (intensity of 175), a circular disc (radius of 8.5 pixels, intensity

of 206), a line (width of 2.3 pixels, intensity of 153), and a roof edge (slope of 4 intensity

levels per pixel). The background intensity is 110. The image was �rst blurred with Guassian

smoothing (� = 0:6 pixels) and then we added white zero-mean Gaussian (� = 4:0 pixels)

noise. At pixels where two feature detectors register the presence of a feature, we choose the

one with the closer manifold. Further, after blurring and the addition of noise, corners and
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(a) Noisy synthetic image (b) Step edges (c) Roof edges

(d) Lines (e) Corners (f) Circular discs

Figure 11: The application of our �ve feature detectors to a noisy synthetic image. Five di�erent

features have been detected and discriminated in the same image using the same technique.

circular discs can appear very similar and so it required a limited amount of post-processing

to discriminate these two features.

5.4 Application to Real Images

In Figures 12(b){(d), 13(b){(d), and 14(b){(d) we present some of the results obtained by

applying our feature detectors to three greyscale images in Figures 12(a), 13(a), and 14(a).

The original images are all taken from [MOMA 84] and were digitized using an Envisions 6600S

scanner at 200dpi. Feature detection was accomplished by thresholding on the distance from

the feature manifold. No further post-processing or sophisticated thresholding techniques (e.g.

hysteresis [Canny 86]) were applied. One slight change was made to the raw feature maps

for clarity. To make the detected corners in Figure 12(b) visible on the printed page, we

�rst applied non-maximal suppression to localize the corner, and then replaced each detected

corner with a 5� 5 disc of highlighted pixels.

The outputs of the step edge and corner detectors in Figure 12(b){(d), and the out-
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(a) Original image (711 � 661 pixels) (b) Detected step edges (blue) & corners (red)

(c) Grey-coded distance to step edge manifold (d) Grey-coded distance to corner manifold

Figure 12: Results of step edge and corner detection for a 711 � 661 image of \Red and Blue," by

Gerrit Rietveld, circa 1918. The raw (unthresholded) detector outputs in (c) and (d) reect high

accuracy in detection and localization as well as some similarly between the de�nition of corners and

edges as the angle subtended by a corner nears 180o. In (b), simple thresholds were used to �nd the

dominant feature (if any) at each pixel. Some corners remain undetected due to their angles being

less than the 40o minimum which we imposed in our de�nition.
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(a) Original image (796 � 679 pixels) (b) Detected lines (green) and discs (orange)

(c) Grey-coded distance to line manifold (d) Grey-coded distance to disc manifold

Figure 13: Results of line and disc detection for a 796� 679 image of \Lobster Trap and Fish Tail,"

by Alexander Calder, 1939. Though many of the lines in the image are faint, thin, and incomplete,

the line detector does a good job extracting them. In (b), simple thresholds were used to �nd the

dominant feature at each pixel. Again, (c) and (d) indicate considerable similarity between the

feature de�nitions. In this case, a thick line and a disc with a large radius are similar in appearance.
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puts of the line and disc detectors in Figure 13(b){(d) are consistent with the structures of

the images. The results in Figure 14(b){(d) are included simply to convey the richness of

information obtained by applying multiple detectors (step edge, line, and corner, in this case)

to an image. The distance from manifold and the parameters produced by a detector at a

pixel can be valuable in reinforcing or inhibiting the existence of the same or another feature

at a neighboring pixel. It is argued, therefore, that multiple feature detection can improve

the performance of individual feature detectors.

6 Discussion

We have proposed an algorithm to generate detectors for arbitrary parametric features. We

conclude with a few general observations related to the algorithm:

� The algorithm o�ers a level of generality that is uncommon in the realm of feature

detection. As far as we can ascertain, there is no single technique capable of detecting the

�ve features (step edges, lines, corners, circular discs, and roof edges) we implemented.

More importantly, the addition of a new feature to our implementation is simply a

matter of writing a single C/C++ function that de�nes the feature model. Alternatively,

features can be derived from experimentally obtained data sets by writing a de�ning

function that transforms (e.g. interpolates, scales, rotates, shifts, and blurs) the stored

data appropriately5. Further we note that although we present our results entirely in the

context of visible-light images, the same approach is directly applicable to any sensing

modality, including, X-ray, MR, infrared, ultrasound, and range.

� Most previous detectors have used relatively simple feature models with detection as

the main goal and not parameter estimation. Such models do not entirely capture the

properties of imaged features. The descriptive nature of our feature models and the

incorporation of sensor and optical e�ects give the features an unusual level of realism.

This serves to optimize the robustness of detection and accuracy of parameter estimation.

� The output of the detector consists of detected features, estimates of their parameters,

and a measure of how well the image data �ts the feature model in terms of the distance

to the closest manifold point. Combining the outputs of a number of such detectors,

5Recent work [Krumm 96] uses this approach to detect planar patterns with unknown rotation.
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(a) Original image (564 � 611 pixels) (b) Grey-coded distance to step edge manifold

(c) Grey-coded distance to corner manifold (d) Grey-coded distance to line manifold

Figure 14: Results of step edge, corner, and line detection for a 564 � 611 image of \Schr�oder

House," by Gerrit Rietveld, 1924. These results convey the richness of information is obtained from

the application of multiple feature detectors, as well as similarities in feature de�nitions for extreme

parameter values. The outputs (b), (c), and (d), together with parameter estimates, could serve as

the basis for an e�ective relaxation scheme that produces a descriptive primal sketch.
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each designed for a di�erent feature, yields a large amount of information that would

be valuable to a higher level algorithm such as relaxation [Rosenfeld et al. 76]. While

existing relaxation algorithms assume a single feature in the image, often the step edge,

powerful constraints result from the use of multiple feature detectors. For instance,

a corner cannot exist in isolation, but instead must have edges in its vicinity. The

incorporation of such constraints into a multi-feature relaxation algorithm should lead

to much improved performance over single-feature algorithms.

A Recovering Normalized Parameters

The brightness normalization described in Section 2.4 was used to eliminate two of the pa-

rameters for each of our example features. We now describe how to recover the normalized

parameters. The computation requires as input, the mean � and norm � computed during

normalization, and the unnormalized parameters estimated from the parameters of the closest

point on the manifold. For the step edge, line, corner, and circular disc, the two normalized

parameters are the base intensity A and the intensity step B. For the roof edge, it is the peak

intensity A and the intensity gradient M . Although we describe the recovery technique in

terms of A and B, the same approach works for the roof edge by replacing B with M .

If we work in a continuous domain and �x the parameters q� fA;Bg then the mean

� and norm � are linear functions of A and B:

� = c11 �A + c12 �B (16)

� = c21 �A + c22 �B (17)

where cij = cij(q� fA;Bg) are coe�cients that depend upon the unnormalized parameters.

If we incorporate the discretization of the sensor, the relationships may not hold exactly,

however the deviation should be very small. Hence, we use equations (16) and (17) to recover

the normalized parameters. If we know cij we can easily invert equations (16) and (17):

A =
c22
�

� � � c12
�

� � (18)

B = �c21
�

� � +
c11
�

� � (19)

where � = c11 � c22 � c12 � c21 is the determinant of the matrix (cij).
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The coe�cients cij = cij(q � fA;Bg) can be precomputed during the construction of

the manifold. For each vector of unnormalized parameters q � fA;Bg used to sample the

manifold, we evaluate the feature for A = 0, B = 1 and then normalize as in Section 2.4 to

give mean �1 and norm �1. Repeating for A = 1, B = 1, we obtain mean �2 and norm �2 and

can then compute:

c11 = �2 � �1 (20)

c12 = �1 (21)

c21 = �2 � �1 (22)

c22 = �1 (23)

The coe�cients cij are stored in a lookup table indexed by q � fA;Bg. As soon as the

parameters q � fA;Bg have been recovered from the closest manifold point, the coe�cients

cij can be easily found and then A and B can be recovered from the mean � the magnitude

� using equations (18) and (19).

We tested the accuracy of normalization inversion for each of our 5 features. After com-

puting the coe�cients, cij; for every manifold sample point using the method described above,

we then randomly generated a sequence of feature instances. The normalized parameters A

and B of the feature were generated uniformly at random in the interval [0; 1]. To generate

the unnormalized parameters, a point on the manifold was chosen uniformly at random and

its unnormalized parameters used. Then, we generated the feature according to our feature

and sensor models. After normalizing the feature, we then use equations (18) and (19) to

recover A and B. The normalization inversion works almost completely without error. The

worst performance across all 5 features and over every single feature instance we generated

gave an error of 0.02%. The average reconstruction error was an order of magnitude lower.
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