
Automated Model Acquisition from Range Images 
with View Planning 

Michael K. Reed, Peter K. Allen, and Ioannis Stamos 
Computer Science Department, Columbia University, New York, NY 10027 

Abstract 
We present an incremental system that builds accurate 

CAD models of objects from multiple range images. Using 
a hybrid of surjlace mesh and volumetric representations, 
the system creates a “water-tight” 3 0  model at each step of 
the modeling process, allowing reasonable models to be 
built from a small number of views. We also present a 
method that can be used to plan the next view and reduce the 
number of scans needed to recover the object. Results are 
presented for the creation of 30 models of a computer game 
controllel; U hip joint prosthesis, und U mechunicul strut. 

1. Introduction 

Recently there has been much research addressing the 
problem of automatically creating models from range 
images. Solving this problem has major implication in the 
application areas of reverse engineering, virtual reality, and 
3 0  Fax. A number of interesting research problems need to 
be studied in order to make these systems more functional. 
Our research and the results described in this paper focus 
on the following problem areas: 

*Model Fidelity: It is important to recover the correct 
geometry of an object whose shape is apriori unknown. 

*Topological Correctness: Model building systems 
should create topologically corrcct models, without 
holes and surface inconsistencies. 

*Planning the next view: Data redundancy should be 
minimized while at the same time guaranteeing com- 
plete coverage of the object. This is important for appli- 
cations such as 3D Fax. 

This paper describes a system that incrementally builds 
CAD models from multiple range images with these issues 
in mind. In our method, a mesh surface is created from a 
range image, which is then extruded in the imaging direc- 
tion to form a solid. The creation of the extruded solid pro- 
duces a topologically-correct 3-D CAD model. A key 
component of the model-building stage is the tagging of 
surfaces as to their type: either “properly imaged” or due to 
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occlusion artifacts. We are able to use our previous results 
in sensor planning to create continuous regions of unoc- 
cluded viewing space which also can include sensor-spe- 
cific constraints. Using this planning component makes it 
possible to reduce the number of sensing operations to 
recover a model: systems without planning typically utilize 
as many as 70 range images, with significant overlap 
between them. 

2. Background 

Recent research on the acquisition, modeling and merg- 
ing process includes Thompson et al.’s REFAB system, 
which allows a user to specify approximate locations of 
machining features on a range image of a part: the system 
then produces a best fit to the data using previously-identi- 
fied features and domain-specific knowledge as constraints 
[15]. The IVIS system of Tarbox and Gottshlich uses an 
octree to represent the “seen” and “unseen” parts of each of 
a set of range images and set-theoretic operators to merge 
the octrees into a final model [ 141. Methods that use a mesh 
surface to model and integrate each of a set of range 
images, such as work by Turk and Levoy [19] or by Rut- 
ishauser et al. [12], or to model a complete point sampling 
as by Hoppe [5] or Fua [4] have also proven useful in this 
task. Both Stenstrom and Connolly [13] and Martin and 
Aggarwal [9] perform edge detection and projection from 
intensity images, a concept that is revisited by Laurentini 
in [SI. Curless and Levoy [3] present a system that resem- 
bles ours in that it uses a surface mesh from each range 
image as a step towards construction of a solid. The mesh 
is used in a ray-casting operation to weight voxels in an 
octree, which is then used as input to an isosurface extrac- 
tion algorithm. This method has achieved excellent results 
at a cost of numerous (50 to 70) overlapping sensing opera- 
tions. In contrast, our method utilizes a planner with the 
goal of reducing the number of imaging and integration 
operations. 

The planning process presented in this paper operates by 
reasoning about occlusion, which has been strongly associ- 
ated with viewpoint planning in the research literature for 
some time. Kutulakos [7] utilizes changes in the boundary 
between sensed surface and occlusion with respect to sen- 
sor position to recover shape. In Connolly’s octree-based 
work [2], “unseen” space is explicitly represented and used 
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to plan the next view either by ray-casting or by analyzing a 
histogram of the normals of surfaces of “unseen” space. A 
similar histogram-based technique is used by Maver and 
Ehjcsy [IO] to find the viewing vector that will illuminate 
the most edge features derived from occluded regions. 
Whaite and Ferrie [21] use a sensor model to evaluate the 
efficacy of the imaging process over a set of discrete orien- 
tations by ray-casting: the sensor orientation that would 
hypothetically best improve the model is selected for the 
next view. More closely resembling the work presented in 
this paper is that of Pito [ 1 I], which performs the raycasting 
operation as well, but only at those regions in the sensor’s 
space that are known to image new surfaces. 

3. Model acquisition and merging 

The first phase of this system acquires and models range 
data, and integrates the resulting model into a composite 
model that represents all known information about the 
object or scene. Each model created by our method includes 
information about the space occluded from the sensor, an 
important difference from systems that only model sensed 
surfaces. This occlusion volume is a key component of our 
sensor planning process because it allows the system to rea- 
son about what has not been properly sensed. The acquisi- 
tion of range data is performed by a robotic system 
comprised of a Servo-Robot laser rangefinder attached to an 
I13M SCARA robot, with the object to be imaged being 
placed on a motorized rotation stage. This is a typical con- 
figuration in which the rangefinder acquires a single scan 
line of data at a time in a plane perpendicular to the robot’s 
z axis. After each scan line has been acquired, the robot 
steps the rangefinder a small distance along its z axis. The 
result of the scanning process is a rectangular range image 
of the object from a particular viewpoint, the direction of 
which is controlled by rotating the turntable. The rotation 
stage and the laser system are calibrated so that we may 
align the range images into a common coordinate system. 

The point data are used as vertices in a mesh, but since 
the mesh determined by a single range image is in essence a 
surface model, it does not contain information that permits 
spatial addressability (the ability to classify points as inside, 
on, or outside the model) which is necessary for many tasks 
and is inherent in solid models. Although a mesh that com- 
plletely covers an object may be used to determine a solid 
model, in most incremental modeling techniques the mesh 
can not be closed until the end of the scanning process. This 
precludes the use of a planning method or any other proce- 
dure that requires a solid model. 

A solution to this problem is to build a solid model from 
each scanning operation that incorporates both the informa- 
tion about the model’s sensed surfaces and the occlusion 
information in the form of the occlusion volume. The mesh 

surface M is “swept” to form a solid model S of both the 
imaged object surfaces and the occluded volume. The algo- 
rithm may be stated concisely as: 
S = V e x t r u d e ( m ) ,  m E M 

Vm 

An extrusion operator is applied to each triangular mesh 
element m, orthographically along the rangefinder’s sensing 
axis, until it comes in contact with a far bounding plane. 
The result is the 5-sided solid of a triangular prism. A union 
operation is applied to the set of prisms, which produces a 
polyhedral solid consisting of three sets of surfaces: a 
mesh-like surface from the acquired range data, a number 
of lateral faces equal to the number of vertices on the 
boundary of the mesh derived from the sweeping operation, 
and a bounding surface that caps one end. 

It is important to be able to differentiate between these 
surfaces during later model analysis and sensor planning. 
To do this we attach tags to each surface in the model based 
on which of the above sets the surface belongs to. All sur- 
face elements in the model whose surface normals form an 
angle greater than a threshold when compared with the inci- 
dent sensor beam should be tagged as “imaged surface”. 
This threshold may be found by determining the device’s 
breakdown angle empirically, so that “imaged surface” ele- 
ments describe surfaces of the object that were imaged 
properly and do not need to be imaged again. All the 
remaining surfaces should be tagged as “unimaged surface” 
so that they may be used to drive a later planning process. 
As an example of the sweeping and tagging process, con- 
sider the mesh shown at the left in Figure 1. The sweeping 
operation results in the solid shown at the right of the fig- 
ure, its surfaces tagged according to the process described 
above. 

Tagged “unimaged surf 

TaggGiimaged surface” 

Figure 1. Solid formed by sweeping a mesh (left of figure) in 
the sensing direction. Tags for hidden surfaces are shown 
with dotted arcs. 

Each successive sensing operation will result in new 
information that must be merged with the current model 
being built, called the composite model. Merging of mesh- 
based surface models has been done using clipping and re- 
triangulation methods [ 191 [ 121. These methods are neces- 
sary because these meshes are not closed, so specialized 
techniques to operate on non-manifold surfaces of approxi- 
mately continuous vertex density are needed. In our method 
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4. The planning process 

Occlusion is an important scene attribute useful to the 
planning process and has previously been used in one of 
two ways. In the first, a discrete ray casting method is 
applied to the model to find how much occluded volume 
will be imaged for every sensor position: the sensor posi- 
tion that images the most occlusions is selected [2] [21]. 
This has the disadvantage of high computational cost and 
the fact that some solutions will be missed. The second 
method collects a histogram of normals of the surfaces that 
comprise the occlusions, scaled by surface area [lo]. This 
technique is not sufficient because it does not take into 
account known self-occlusion of the model’s surfaces. 
What is desired is a method that takes known self-occlu- 
sions into account, and yet does not need to discretize the 
sensing positions and compute an image for each of them. 

Our planning component is based on previous work on 
the sensor planning problem [ 171 [ 181 and is performed in 
continuous space. Given a target “unimaged” model sur- 
face, the planner constructs a visibility volume Vtarget, fol- 
lowing [16]. Vtarget for a target T specifies the set of all 
sensor positions that have an unoccluded view of the target 
for a specified model. This can computed in four steps: 

1) Compute Vunoccluded, the visibility volume for Tin  the 
case where there are no occlusions. 

2) Compute M ,  the set of occluding model surfaces by 
including model surface F if F n V u n o c c l u d e d  # 0. 

3) Compute the set 0 of volumes containing the set of 
sensor positions occluded from T by each element of 
M .  

4, Compute Vtarget = Vunoccluded - 9 E 

The volume described by Vunoccluded is a half-space whose 
defining plane is coincident with the target’s face, with the 
half-space’s interior being in the direction of the target’s 
surface normal. Each element of 0 is generated by the 
decomposition-based occlusion algorithm presented in 
[16], and describes the set of sensor positions that a single 
model surface occludes from the target. 

It is important to note that this algorithm for determining 
visibility does not use a sensor model, and in fact part of its 
attractiveness is that it is sensor-independent. However, for 
reasons of computational efficiency it makes sense to 
reduce the number of surfaces in M ,  and therefore the num- 
ber of surfaces used to calculate 0. Since M is determined 
by considering which model surfaces intersect Vun,.&uded, if 
Vunoccluded is constrained then in many cases M will be 
reduced as well. To constrain Vunoccluded, we may consider 
specifics of the sensor, for example that the sensor can only 
properly image a surface when the surface inclination is 

Figure 2. Models for the video game controller and the hip joint 
prosthesis, showing partial models and the final model next to 
an image of the actual part. 

we generate a solid from each viewpoint which allows us to 
use a merging method based on set intersection. The merg- 
ing process starts by initializing the composite model to be 
the entire bounded space of our modeling system. The 
information determined by a newly acquired model from a 
single viewpoint is incorporated into the composite model 
by performing a regularized set intersection operation 
between the two. The intersection operation must be able to 
correctly propagate the surface-type tags from surfaces in 
the models through to the composite model. To demonstrate 
the operation of this modeling system, the construction of 
two models is shown in Figure 2: a controller for a video 
game and a hip joint prosthesis For each of these, the top 
row shows the extruded solid models built from each range 
image (three for the controller, four for the prosthesis), and 
below them is the final composite model. Using only a 
small number of scans, the models show large amounts of 
detail and correctly capture the geometry and topology of 
each object. Each of these models has been physically built 
on our rapid prototyping system. 



within some bounds. If, for example, the sensor's break- 
down angle dictates that it must be inclined less than some 
angle 0 e 8 < 90 to the surface in order to image it properly, 
then V,,nKcl,,ded may be modeled as a truncated prism, and so 
the volume Vunwclud& as well as M ,  is reduced in size. In a 
situation where there is a single target face, all that remains 
is to compute a transform that will bring the sensor into the 
visibility volume for the target, and then repeat the model 
acquisition process. 

As an example of such a system, a CAD model is built 
from distinct views of the object shown in Figure 3(i), 
which is a strut-like part. The planning for the sensor orien- 
tation is done by the algorithm above during the acquisition 
process, with the goal of determining a small number of 
views that will accurately reconstruct the object. A simple 
sensor model is used that assumes the sensor has six 
degrees of freedom and an infinite field of view, although it 
is possible to add more specific constraints as we will show 
below. This part has both curved and polygonal surfaces, 
and includes holes that are very difficult to image. 
Figure 3(a) and 3(b) show two models that were automati- 
cally acquired from range images with a turntable rotation 

of 90" between them. Figure 3(e) shows the integration of 
these into a composite model. We have manually desig- 
nated a target on this composite model from those tagged 
"unimaged surface". Figure 3(g) shows the visibility vol- 
ume for this target assuming a spherical sensor positioning 
geometry and a sensor grazing angle of about 45". This vol- 
ume is shown with a light and a dark region: the entire vol- 
ume represents Vunoccluded for the target, while the light 
region represents Vtarget and the dark region represents the 
total occlusion due to model surfaces, i.e WO. This plan is 
executed by rotating the turntable to place the sensor within 
the visibility volume, in this case an additional 83", from 
which the model in Figure 3(c) is acquired. The composite 
model at this point is shown in Figure 3(f). Again, a target 
is designated on the composite model and a plan produced, 
which is shown in Figure 3(h). The turntable is rotated 134" 
to move the sensor into this visibility volume, and another 
model is acquired, shown in Figure 3(d). The final compos- 
ite model is shown rendered in Figure 3(i), under the image 
of the actual part. 

Figure 3. Strut part reconstruction: (a-d) models created from four distinct range scans. (e) composite model found by intersecting 
(a) and (b). (f) composite models found by intersecting (c) and (e). (9) visibility volume computed from target on composite model 
(e). (h) visibility volume computed from target on composite mode (f). (i) image of actual strut part. (j) final reconstruction computed 
by intersection of (f) and (d). 
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5. Improving the planning process 

The previous example used a manual target selection to 
find the visibility volume for an unimaged surface, as well 
as a simplified sensor model. We now discuss an approach 
to planning the next view that will automate the viewpoint 
selection process and will also include a stronger set of sen- 
sor constraints. The best next viewpoint is the one that will 
image the most “unimaged” surface elements in the current 
composite model. We may determine an appropriate next 
view as follows: 

1) Compute iVtarget for each “unimaged” surface i, keep- 

2) Intersect each iVtar,,et with the sensor’s reachable 

3) Search this intersection for a point that will image the 

ing track of the target’s surface area. 

space. 

most surface area associated with each iVtarget. 

The first step is the algorithm described in Section 4. 
Once the visibility volume is computed, the second step 
determines valid sensor positions via an intersection opera- 
tion with a surface or volume representing the set of all pos- 
sible sensor positions. If the sensor can be positioned 
arbitrarily, then the sensing space is a volume. If the sensor 
is constrained to a fix offset, as in many laser scanning sys- 
tems, then the sensing space is a surface. In either case, 
because we are building these visibility and sensing objects 
as CAD primitives, we can easily find continuous intersec- 
tions between them. The result is a decomposition of sensor 
space into volumes or surfaces from which zero, one, or 
more target areas are visible. The third step may be accom- 
plished by a variety of methods. Typically, this type of 
problem is solved by discrete sampling of sensor space, 
with accumulation of the target area for each containing 
Vtarget at each sample point [ 1 11. 

We show some results in Figure4 of this algorithm for 
the strut part. In this case the plans use the model of the 
strut after two views, and so the model is that shown in 
Figure 3(e). For reasons of computational efficiency, the 
model is first decimated to reduce the later computation 
using a modified version of the fast and robust Simplifica- 
tion Envelopes algorithm [l]. Figure 4(a) and (b) show the 
results of visibility planning for imaging the largest “unim- 
aged” surfaces in the decimated model. Figure 4(a) shows 
the visibility volumes, i.e. all placing no restriction 
on the sensor’s ability to orient itself. These volumes are 
shown truncated for clarity, but actually extend to the limits 
of the modeled space. A point that is interior to any of these 
volumes is able to entirely image the corresponding model 
surface. If a point is not interior to any such volume, none 
of the planned-for model surfaces is fully visible for that 
point. Likewise, a point that is interior to more than one vis- 

Figure 4. Results of visibility planning. 
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ibility volume has each of the corresponding surfaces in full 
visibility: these overlapping volumes show up in the figure 
as darker regions. Figure 4(b) shows the effect of including 
a sensor constraint in the planning process. In this case the 
constraint is that in the sensor operates orthographically in 
the z direction (“up” in the examples). This is typical of 
imaging systems such as ours where a light-striping 
rangefinder moves perpendicular to the striping plane and a 
turntable controls rotation of the part. This constraint is 
integrated during the occlusion planning phase by altering 
the shape of Vunoccluded that is generated for each target. 

Figure 4(c) and (d) show the results of intersecting the 
visibility volumes with sensor space representations. 
Figure 4(c) is the intersection of a spherical sensing surface 
with the visibility volumes in Figure 4(a). Figure 4(d) 
shows the intersection of a cylindrical sensing surface with 
tlhe visibility volumes from Figure 4(b). Given these repre- 
sentations, we can now search for regions of maximum vis- 
ibility. These regions appear as darker regions in 
Rgure 4(c) and (d), and signifies where the visibility vol- 
umes from more than one target intersect the sensor space 
representation. Choosing the next imaging position can be 
done by sampling this representation as described above. 
The visibility planning has, thus far, been in continuous 
sipace, allowing the possibility of a continuous-space solu- 
tion rather than a discrete sampling. This is useful in situa- 
tions where high accuracy is necessary for sensor 
placement, which can cause problems for discrete methods. 

6. Conclusion 

We have presented a system that creates CAD models 
from multiple range images. The method incrementally 
builds models that are solids at each step of the process. It 
requires a calibrated sensor in order to align the individual 
models. We have developed a method to reduce the number 
o f  scans by using a sensor planner that is able to reason 
about occlusion and sensor constraints. The result is the 
computation of a new viewpoint from which to create a new 
model to be merged with the composite model. We believe 
this method has promise for building high-fidelity models 
as well being able to build approximate models from a very 
small number of scans.There are a number of problems that 
still need to be addressed in this research. In the model- 
building phase, these are sensor resolution artifacts at 
occlusion edges in the scene, which can cause problems 
when using set intersection methods. In the planning phase, 
there are granularity issues for the size of the surface ele- 
ments, and refining the computation of the optimal view- 
point. 
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