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Abstract 

In this paper, we consider a multi-camera vision 
system mounted on a moving object in a static three- 
dimensional environment. By using the motion flow 
f ields seen b y  all of the cameras, an algorithm which 
does not need to solve the point-correspondence prob- 
lem among the cameras is proposed to estimate the 3 0  
ego-motion parameters of the moving object. Our ex- 
periments have shown that using multiple optical flow 
fields obtained from different cameras can be very help- 
ful for ego-motion estimation. 

1 Introduction 

Three-dimensional ego-motion estimation has been 
one of the most important problems for the applica- 
tion of computer vision in mobile robots [lo]. Accu- 
rate estimation of ego-motion is very helpful for hu- 
man computer interaction and short-term control such 
as braking, steering, and navigation. 

In the past, there have been many methods [l, 6 ,  7, 
121 which use flow vectors as the basis of their deriva- 
tions for motion estimation. No matter their deriva- 
tions are linear or nonlinear, the flow vectors are ob- 
served by using single camera. However, there are 
some drawbacks on using only one camera. First, one 
can only solve the translation up to the direction, i.e., 
the absolute scale cannot be determined. This is the 
well known scaling factor problem. Second, the size of 
view field substantially affects the accuracy of 3D ego- 
motion estimation. Third, the solution is not unique, 
which is the most serious problem. Given a flow field 
observed from one camera, it may be interpreted as two 
different kinds of motions. 

Let us consider a moving vehicle with two cameras 
mounted on the left and right sides. Assume there are 
only two types of motions: one is pure translation to- 
ward the front direction and the other is pure rotation 
around the vertical axis. Now, Suppose we have only 
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the left camera. The flow fields generated by the pure 
translation and the pure rotation are very similar if the 
field of view of the camera is not large enough. It is 
hard to distinguish from this single flow field whether 
the motion is pure translation or pure rotation. 

Next, let us consider the left and right cameras to- 
gether on this moving vehicle. If there is only trans- 
lation, the optical flows observed from the two cam- 
eras will be the same in scale but opposite in direction. 
If there is only rotation, the optical flows will be the 
same in both the scale and the direction. Therefore, if 
we can combine the information contained in the two 
flow fields appropriately, it will be easier to solve the 
ambiguity problem. 

There are many methods [2, 9, 141 of using multi- 
camera vision systems to estimate the 3D motion pa- 
rameters. Most of these systems need to  solve the spa- 
tial point correspondence problems among all of the 
cameras. Hence, in a multi-camera vision system, the 
view fields of the cameras are usually arranged to be 
overlapping in order to determine the 3D positions of 
feature points by triangulation. Thus, this kind of ap- 
proach did not enjoy the fact that the estimation ac- 
curacy can be improved by increasing the field of view. 
Besides, it is not easy to achieve high correction rate 
when trying to solve the spatial correspondence prob- 
lem. 

We propose to solve the 3D ego-motion estimation 
problem by a multi-camera system without overlap- 
ping view fields. This idea implies: 1) we can obtain 
a very large view field by using several low-cost small- 
view-angle cameras, and 29 we do not have to solve the 
spatial correspondence problem. Based on this idea, 
we have developed a new algorithm for 3D ego-motion 
estimation. 

In this paper, we consider a multi-camera vision sys- 
tem mounted on a moving object (e.q., human or air- 
craft) in a static three-dimensional environment. A 
special case of 3D ego-motion, vehicle-type 3D motion, 
has been discussed in a previous paper [lo]. By us- 
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ing the motion flow fields seen by multiple cameras, an 
algorithm without solving the spatial point correspon- 
dence problem is proposed to estimate 3D ego-motion 
parameters of the moving object. 

2 Ego-Motion Estimation Algorithms 

Let us consider an arbitrary multi-camera configura- 
tion shown in Fig. 1. Without loss of generality, their 
focal lengths f k ' s  (for k = 1 to  K )  are all set to  1. A 
global coordinate system (C, = (0, I = [e11e21e3]}) 

attached to the moving object is used to  describe the 
relative position of each camera. The point 0 is the ori- 
gin, el = (1,0, O ) T ,  e2 = (0,1, O ) T ,  and e 3  = ( O , O ,  l)T. 
Then, the Ic-th camera coordinate system can be ex- 
pressed by c k  = { b k ,  R k  = [ U k l l U k 2 ) U k 3 ] } .  The 3-by- 
1 vector b k  denotes the position of o k ,  and R k  is a 
3-by-3 orthonormal matrix. The positions of all the K 
cameras are assumed to have been calibrated before- 
hand. 

h--- 
Figure 1: An arbitrary configuration of multiple cameras. 

At any time instance, we can compute a flow field for 
each of the K cameras. The k-th flow field is composed 
of N k  image feature points and their corresponding flow 
vectors. Our goal is to  compute the 3D ego-motion 
from the K motion flow fields. 

A point P in 3D space can be respectively denoted 
by P and P k  in the two coordinate systems C, and c k .  

These coordinate vectors must satisfy 

P E  P g k  = R k P k  + b k .  (1) [::I 
Due to the 3D ego-motion, a point P in the static envi- 
ronment will have an instantaneous 3D motion relative 
to the global coordinate system C, [4]: 

P = - w x P - t .  (2) 

where w and t denote the 3D angular velocity and 
translational velocity of the ego-motion. This 3D rela- 
tive motion can be expressed with respect to the k-th 
camera coordinate system c k :  

P k  = - w k  x P k  - t k ,  (3) 

where 

W k  5 R z W  and t k  RE [(W X b k )  + t )  . (4) 

According to the perspective projection model, the 
image point p k  of the 3D point PI, is 

( 5 )  

where P Z k  is the z-component of P k .  After differenti- 
ating both sides of Eq. (5) with respect to time t and 
substituting Eq. (3) into P k ,  we have 

Applying cross product (x )  to  both sides of Eq. (6) 
by P k ,  we have 

1 
P k  [ P k  + ( w k  P k ) ]  = - - ( P k  t k ) .  (7) pz k 

If we further apply inner product of t k  to  both sides 
of Eq. (7), we will have the following fundamental 
equation which does not contain the unknown depth 
P z k :  

{ P k  [ P k  -k ( W k  P k ) ] }  ' t k  = 0. (8)  
Since we want to  estimate w and t using the observa- 
tions from all the K cameras, the above fundamental 
equation is re-expressed in terms of w and t by using 
Eq. (4): 

R k { P k  [ i ) k  -k ( R z W  x P k ) ]  } ' (U b k  + t ,  = 0. (9) 

It is Eq. (9) that we use to  determine the 3D motion 
parameters without solving the point correspondence 
problem. 

There are N k  flow vectors associated with the k -th 
camera. we use p k i  and pki to  represent the i-th point 
and flow associated with the IC -th camera. Eq. (9) can 
be rewritten to: 

m T i ( h k  -k t )  = 0, (10) 

where 
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hk E w x bk. (12) 

Algorithm 1: Non-Derzenerate Case 

According to Eq. (lo), we may define an error func- 
tion J: which depends on the unknowns w and t: 

K N L  

k = l  i=l 

We can search for the optimal estimates of w and t by 
minimizing Ji. By letting aJ[/at = 0, we have 

t = M-lc ,  (14) 

where 

K Nk K Nk 

In the following, the matrix M is sometimes written 
as M ( w )  to emphasize that M is a function of w. 

By substituting Eq. (14) into the t in Eq. (13), we 
have a new error function J1 which only depends on 
the unknown rotation parameter w: 

Therefore the optimal estimate of w (denoted by 
2) is the one that minimizes the error function J ~ ( w ) .  
Once we have 2,  the optimal estimate o f t ,  denoted i, 
can be easily obtained by using Eqs. (14) and (15). 

Algorithm 2: Degenerate Case 

When M ( w )  is not full-rank, Eq. (14) fails to  solve 
the corresponding t ,  which also causes a singularity 
when calculating J1. 

(10) and (14), we know the 
following conditions will make the matrix M ( w )  have 
a close-to-zero eigenvalue. They include: 

(1) wtrue x 0, i.e., there is almost no rotational motion. 

By considering Eqs. 

(2) All of the hk’s are very close to zero. In this case, 
the whole multi-camera vision system is just like a 
monocular vision system with K separate view fields, 
which provides a much larger field of view. 

(3) All of the hk’s are parallel to ttrue. 

Because the optimal solution & can not be obtained 
by searching a close-to-singular error function, we have 
to  define a new error function to  solve these degenerate 
cases. In these degenerate cases, we found that all of 
the (hk + t)’s are almost parallel to the true translating 
direction tn,true (E ttrue/llttruell). SO Eq. (10) can be 
reduced into the following form: 

(17) mEt = 0, or mzit, = 0. 

The second form of Eq. (17) indicates that only the 
translating direction t, is recoverable in these degen- 
erate cases. 

Similarly, we can define an error function Ji as 

K NL. 

k = l  i=l 

Expanding Eq. (18), we have 

K Nr 

k=1 i=l 

= t:Mt, 

where the matrix M is defined in Eq. (15), and X is 
an eigenvalue of M (w ) . 

Given an estimate of w ,  the best estimate of t, 
should be the eigenvector of M ( w )  corresponding to 
the smallest eigenvalue. If we substitute the above op- 
timal t, into Ji, a new error function J2 which only 
depends on the unknown o can be defined as 

J2(w) 5 the smallest eigenvalue of M ( w ) .  (20) 

Here, the 3-by-3 matrix M is a function of w. 
Therefore, the optimal estimate of w, denoted by &, 

is the one which minimizes the error function J ~ ( w ) ,  
and the optimal estimate of t, (denoted by in) is 
the eigenvector of M(2) corresponding to the smallest 
eigenvalue. 

3 Experimental Results 

This section will show some results of real experi- 
ments. We use a binocular head (referred to as the IIS 
head) to  simulate a moving object with two cameras 
mounted on it. The IIS head is built for experiments 
of active vision, which has four revolute joints and two 
prismatic joints, as shown in Fig. 2. The two joints 
on top of the IIS head are for camera verge or gazing. 
The next two joints below them are for tilting and pan- 
ning the stereo cameras. All of the above four joints 
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Table 1: True motion parameters used in Experiment 1. 

w (deg/frame) 
wz I wy I wz 
0.00 I 0.00 I 0.00 

I rotation 1 1 1  translation I 
direction mag. (mm) 

t z n  I ty, I tm lltll 
-0.017 I ,045 I 1.00 20.00 

Figure 2: A picture of the 11s head. 

t, (translational direction) 
t z ,  I t,, I t z n  

are revolute and are mounted on an X-Y table which 
is composed of two prismatic joints. The lenses of the 
binocular head are motorized to  focus on objects at 
different distances. 

To simplify the coordinate transform, we let the 
global coordinate system and the left camera coordi- 
nate system be identical. Then the left camera coor- 
dinate system (LCCS) can be expressed by LCCS = 
{bl, R I } ,  where bl = 0 and RI = I .  We let the angle 
between the optical axes of left and right cameras be 
about 90". Notice that the z-axis of LCCS is the same 
as the optical axis of the left camera, the z-axis points 
toward the left side of the left camera, and the y-axis 
points toward the upper side of the left camera. The 
focal lengths of both cameras are 25 mm, and the fields 
of view are 15". The coordinate systems and camera 
configuration are illustrated in Fig. 3. 

error 
e(t,, tn,true) 

3.1 Experiment 1 

We let the 11s head move forward, such that the 
left camera of the 11s head looks ahead and the right 

Both I .040 1 ,054 I 1.00 

t 
Y=Y,  

3.30" Global Coordinate System = LCCS Right Camera 

Figure 3: The coordinate systems and camera configura- 
tion of the real experiments. 

Table 2: Rotational parameters estimated in Experiment 
1. 

w (deg/ f rame)  error 

.040 

.073 
0.00 

camera looks to the right. Table 1 is the true motion 
parameters used in this experiment. We estimate the 
ego-motion for three cases: using the left camera only, 
using the right camera only, and using both the left 
and right cameras. The scenes viewed from the left 
and right cameras are shown in Figs. 4(a) and 4(b), 
respectively. The flow fields observed from the left and 
right cameras are shown in Figs. 4(c) and 4(d), re- 
spectively. Notice that we did not optimize the optical 
flow, so that some matching errors may occur. Also, 
the depth of the scene viewed from left camera is in the 
range from 1.3m to  1.5m, while the depth of the scene 
viewed from the right camera is about 5m. 

Table 2 and 3 lists the estimates of the rotational pa- 
rameters and translational parameters. The results shows 
that using both cameras performs better than using only 
one camera. The performance of using only the left camera 
is also acceptible, which is because the translation direction 
is close to the optical axis of the left camera [lo]. If we use 
the right camera only, the ambiguity we mentioned in sec- 
tion 1 will occur, where the rotational motion about y-axis 
can be easily mis-classfied as a translational motion when 
the field of view is relatively small. 
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Table 4: True motion parameters used in Experiment 2. 

w (deg/frame) direction mag.(") ' 
wx wy wz t x n  t y n  t z n  lltll 
,017 .50 -0.023 -0.62 -0.012 -0.78 1.89 

I rotation 111 translation I 

Table 5: Rotational parameters estimated in Experiment 
2. 

L j  (degl f rame) error 

,025 
.086 , 

Right I .017 I -0.0057 1 -0.011 11 .50 

3.2 Experiment 2 

In experiment 2, we let the IIS head pan with a small 
angle. Table 4 is the true motion parameters used in this 
experiment. Again, we estimate the ego-motion by using 
the left camera only, the right camera only, and both the 
left and right camera, respectively. The scenes viewed from 
the left and right cameras are the same as Figs. 4(a) and 
4(b). The flow fields observed from left and right cameras 
are shown in Fig. 5(a) and 5(b), respectively. 

The result of this experiment is given in Tables 5 and 
6 .  As expected, the performance of using both the left 
and right cameras is the best. The ambiguity problem 
occurs again when using the right camera only, which 
is because the depth of the scene viewed from the right 
camera is as far as five meters and hence the optical 
flow field looks very similar to  the one caused by small 
pure translation. Notice that the errors of the trans- 
lational direction are larger than the ones obtained in 
Experiment 1. This is because the signals of transla- 
tion in this experiment are very small. Whenever there 
is noise, the signals of translation will be seriously cor- 
rupted, and it is hard to  estimate the translational pa- 
rameters with high accuracy. 

4 Conclusion 

In this paper, we propose a method for ego-motion 
estimation using a multiple-camera vision system. By 
combining the information contained in the multiple 
optical flows observed from different cameras, some 
ambiguity problems can be avoided and the accuracy 
can be improved. Our algorithm considers two cases 
separately: non-degenerate case and degenerate case. 

Table 6: Translational parameters estimated in Experi- 
ment 2. @(in, tn,trve) is defined as the angle between i, 
and t, t.P*IP. 

tn (translational direction) error 

36.00 
36.00 

-0.095 89.00 

Figure 4: The images and the flow fields used in experiment 
1: (a) The scene viewed from the left camera. (b) The 
scene viewed from the right camera. (c) The optical flow 
field obtained from the left camera. (d) The optical flow 
field obtained from the right camera. The flow vectors in 
the figures are enlarged by a, factor of two. 

Figure 5: The flow fields used in experiment 2: (a) The 
optical flow field obtained from the left camera. (b) The 
optical flow field obtained from the right camera. The flow 
vectors in the figures are also enlarged by a factor of two. 
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One potential application of our multiple-camera ap- 
proach is the “inside-out” (or “outward looking”) head 
tracker for virtual reality. The current outward look- 
ing head tracker requires structured environments, e.g. 
regular pattern in the ceiling. Our approach does not 
require specially-designed environment, as long as the 
environment have enough features for computing opti- 
cal flow. 

Different camera configurations have different per- 
formance on ego-motion estimation. In this paper, we 
have not analyzed the performance between different 
camera configurations. Some analysis on finding the 
optimal camera configuration can he found in another 
paper [lo]. 
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